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Abstract

We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through
stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in
a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly
toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed
approximation to give erroneous predictions about the model’s phase diagram.
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1. Introduction

Gene networks are extremely robust against genetic perturbations [1, 2]. For example, systematic gene knock-out
studies on yeast showed that almost 40% of genes on chromosome V have no detectable effects on indicators like cell
division rate [3]. Similar studies on other organisms agree with these results [1, 2]. It is also known that phenotypically,
most species do not vary much, although they experience a wide range of environmental and genetic perturbations.
This striking resilience makes one wonder about the origins, evolutionary consequences, and mechanistic causes of
genetic robustness.

It has been proposed that genetic robustness evolved through stabilizing selection for a phenotypic optimum. Wag-
ner showed that this in fact could be true by modeling a developmental process within an evolutionary scenario, in
which the genetic interaction sequence represents organismal development, and the equilibrium configuration of the
gene network represents the phenotype [4]. His results show that the genetic robustness of a population of model
genetic regulatory networks can increase through stabilizing selection for a particular equilibrium configuration (phe-
notype) of each network.

In this paper we investigate the effects of the biological evolution of genetic robustness on the dynamics of gene
regulatory networks in general. In particular, we want to answer the question whether the evolution process moves
the system to a different point in the phase diagram. Below, we present some preliminary results.
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2. Model

We use a model by Wagner [4], which has also been used by other researchers with minor modifications. Each
individual is represented by a regulatory gene network consisting of N genes. The expression level of each gene,
si, has only two values, +1 or −1, expressed or not, respectively. The expression states change in time according to
regulatory interactions between the genes. The time evolution of the system configuration represents an (organismal)
developmental pathway. The discrete-time dynamics are given by a set of nonlinear difference equations representing
a random threshold network (RTN),

si(t + 1) =

⎧⎪⎪⎨⎪⎪⎩
sgn
(∑N

j=1 wi js j(t)
)
,
∑N

j=1 wi js j(t) � 0
si(t),

∑N
j=1 wi js j(t) = 0

, (1)

where sgn is the sign function and wi j is the strength of the influence of gene j on gene i. Nonzero elements of the
N×N matrixW are independent random numbers drawn from a standard normal distribution. (The diagonal elements
of W are allowed to be nonzero, corresponding to self-regulation.) The (mean) number of nonzero elements inW is
controlled by the connectivity density, c, which is the probability that a wi j is nonzero.

The dynamics given by Eq. (1) can have a wide variety of features. For a specified initial configuration s(0),
the system reaches either a fixed-point attractor or a limit cycle after a transient period. The lengths of transients,
number of attractors, distribution of attractor lengths, etc. can differ from system to system, depending on whether
the dynamics are ordered, chaotic, or critical. The fitness of an individual is defined by whether it can reach a
developmental equilibrium, a certain fixed gene-expression pattern, s∗, in a “reasonable” transient time. Further
details of the model are explained in the next section.

3. Monte Carlo Simulations

3.1. Generation and Robustness Assessment of Random Networks

We studied populations of N = 400 random networks (founding individuals) with N = 10. Each network was
assigned a matrix W and an initial configuration s(0). W was generated as follows. Each wi j was independently
chosen to be nonzero with probability c. If so, it was assigned a random number drawn from a standard gaussian
distribution, N(μ = 0, σ = 1). Then, each “gene” of the initial configuration, si(0), was assigned either −1 or +1 at
random, each with probability 1/2.

AfterW and s(0) were created, the dynamics were started and the network’s stability was evaluated. If the system
reached a fixed point, s∗, in 3N timesteps, then it was considered stable and kept. Otherwise it was considered unstable,
bothW and s(0) were discarded, and the process was started over and repeated until a stable network was generated.
For each stable network, its fixed point, s∗, was regarded as the “optimal” gene-expression state (phenotype) of the
system. This is the only modification we made to Wagner’s model: he generated networks with preassigned s(0) and
s∗, whereas we accept any s∗ as long as it can be reached within 3N timesteps from s(0).

After generatingN = 400 individual stable networks, we analyzed their state-space structures and evaluated their
robustness as discussed in subsection 3.3.

3.2. Evolution

In order to generate a breed of more robust networks, a mutation-selection process was simulated for all of the
N = 400 random, stable networks as follows. First, a clan of N′ = 500 identical copies of each network was
generated. For each clan, a four-step process was performed for T = 400 generations:

1. Recombination: Each pair of the N rows of consecutive matrices in the clan were swapped with probability 1/2.
Since the networks were already shuffled in step 4 (see below), there was no need to pick random pairs.

2. Mutation: Each nonzero wi j was replaced with probability 1/(cN2) by a new random number drawn from the
same standard gaussian distribution. Thus, on average, one matrix element was changed per matrix per Monte
Carlo step.
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3. Fitness evaluation: Each network was run starting from the original initial condition, s(0). If the network
reached a fixed point, s†, within 3N timesteps, then its fitness, f(s†, s∗) = exp(−H2(s†, s∗)/σs)), was calculated.
Here H(s†, s∗), denotes the normalized Hamming distance between s† and s∗, and σs denotes the strength of
selection, s∗ is the optimal gene-expression state, which is the final gene-expression state of the original network
that “founded” the clan. We used σs = 0.1. If the network could not reach a fixed point, then it was assigned
the minimum nonzero fitness value, exp(−1/σs).

4. Selection/Asexual Reproduction: The fitness of each network was normalized to the fitness value of the most
fit network in the clan. Then, a network was chosen at random and duplicated into the descendant clan with
probability equal to its normalized fitness. This process was repeated until the size of the descendant clan
reached N′. Then the old clan was discarded, and the descendant clan was kept as the next generation. Note
that this process allows multiple copies (offspring) of the same network to appear in the descendant clan, while
some networks may not make it to the next generation due to genetic drift.

At the end of the T = 400 generation selection, any unstable networks were removed from the evolved clan.

3.3. Assessment of Robustness

The mutational robustness of a network was assessed slightly differently for random and evolved networks. For a
random network, first, one nonzero wi j was picked at random and replaced by a new random number with the same
standard gaussian distribution. Then, the dynamics were started, and it was checked if the system reached the same
equilibrium state, s∗, within 3N timesteps. This process was repeated 5000c times using the original matrix (i.e.,
each mutated matrix was discarded after its stability was evaluated). The robustness of the original network before
evolution was defined as the fraction of singly-mutated networks that reached s∗.

For the evolved networks, clan averages were used. For each of Nopt ≤ 400 networks in a clan, robustness
was assessed as described above with one difference: the number of perturbations was reduced to 5000c/Nopt per
network to keep the total number of perturbations used to estimate robustness of networks before and after evolution
approximately equal. The mean robustness of the those Nopt networks was taken as the robustness of the founder
network after evolution. Therefore, the robustness of a network after evolution is the mean robustness of its descendant
clan of stable networks.

4. Results

As Wagner pointed out, the stabilizing selection described above increases the robustness of the model population
against mutations [4]. However, it is not very clear what kind of a reorganization in the state space occurs during the
evolution. Also, it is not known whether this robustness against mutations leads to robustness against environmental
perturbations. In this paper, we focus on the effects of evolution in terms of moving the system to another point in
the phase diagram. In other words, we investigate whether the system becomes more chaotic or more ordered after
evolution.

A standard method for studying damage spreading in systems such as the one considered here is the Derrida
annealed approximation [5, 6], in which one calculates changes with time of the overlap of two distinct states, s(t) and
s̃(t),

x(t) =
1
2N

N∑

i=1

|si(t) + s̃i(t)| . (2)

The change of the overlap over one time step for N � 〈k〉 = Nc is given by

x(t + 1) = n(0)x(t) + n(1)x(t) +
∞∑

k=2

n(k)

⎡⎢⎢⎢⎢⎢⎢⎣(x(t))
k +

k−1∑

l=1

Πk(l)P(k, l)
⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where the Poisson distribution n(k) = κk exp(−κ)/k!, is the probability of finding a gene, i, with k inputs, the binomial
distribution Πk(l) =

(
k
l

)
(1 − x(t)) l (x(t)) k−l is the probability of finding k − l of these inputs in the overlapping parts

of s(t) or s̃(t), and P(k, l) = 1 − 2
π
arctan

(√
l/(k − l)

)
(for k > l) is the probability of the sum of k − l matrix elements
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Figure 1: (a) x(t + 1) shown vs. x(t) for N = 16 and 〈k〉 = 4. The theory, Eq. (3), is in good agreement with the simulations. The deviations are due
to the small size of the simulated system as the theoretical calculation assumes N � 〈k〉. (b) Damage-spreading rate, x(t + 1) − x(t) vs. x(t), for
random and evolved networks with N = 10 and 〈k〉 = 5 and 7, showing the difference between the “random” and “evolved” curves. Only the first
half of the curves are shown since x(t + 1) vs. x(t) is point-symmetric about (1/2, 1/2). The results were averaged over 10 random networks and
all of their evolved descendants (∼ 300 evolved networks per random network). The evolved curves for each 〈k〉 lie very close to their “random”
counterparts. However, they are outside twice the error bar range of each other at most data points.

being larger than the sum of lmatrix elements, which are independent and N(0, 1) distributed. Here, κ = 〈k〉, the mean
number of inputs per node.

For most RTNs that have been studied so far [5, 6], Eq. (3) can be iterated as a map to give the full time evolution
of the overlap. Changes in the fixed-point structure of this map with changing 〈k〉 would then signify phase transitions
of the system. As seen in Fig. 1a, for 〈k〉 = 4, such a map would have a stable fixed point at x = 1/2. One
can also show that limx(t)→0+ dx(t + 1)/dx(t) > 1 for all 〈k〉 > 0 (this implies limx(t)→1− dx(t + 1)/dx(t) > 1 and
limx(t)→1/2 dx(t + 1)/dx(t) < 1), and so it would seem that the system has no phase transition and always stays chaotic
for nonzero 〈k〉. However, simulations of damage spreading for longer times indicate that the system studied here has
strong memory effects due to the update rule for spins with no inputs, given by the last line in Eq. (1), which retard the
damage spreading [7]. In fact, like other RTNs the system undergoes a phase transition near 〈k〉 ≈ 2 from a chaotic
phase at larger 〈k〉 to an ordered phase at smaller 〈k〉. The strong, retarding memory effects mean that Eq. (3) cannot
be iterated as a map, and the naı̈ve prediction based on the Derrida annealed approximation is erroneous.

Despite its irrelevance for the long-time damage spreading, the damage-spreading rate shown in Fig. 1b properly
describes the short-time dynamical character of the system. However, as Eq. (3) assumes that the interaction constants,
wi j, are statistically independent, it may not apply to evolved networks as we do not knowwhether the selection process
creates correlations between the matrix elements. Nevertheless, we can still compute x(t + 1) as a function of x(t)
numerically to see if there is a change in the degree of chaoticity (or order) of the dynamics. As seen in Fig. 1b, the
damage-spreading rates for evolved networks are slightly (but statistically significantly) lower than for their random
predecessors, which are thus slightly more chaotic.

To summarize, we have presented preliminary results on some general properties of a popular RTN model of a
gene regulatory network and on how the biological evolution of genetic robustness affects its dynamics [8]. We have
also shown that the update rule for spins without inputs leads to strong memory effects that invalidate naı̈ve iteration
of the Derrida annealed approximation as a map. The evolutionary process that improves the genetic robustness of
such networks has only a very small effect on their dynamical properties: after evolution, the system moves slightly
toward the more ordered part of the phase diagram.
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