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Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria
overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide
dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell.
Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to
mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as
cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia
remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production
and by regulating mitochondria-dependent apoptosis pathways.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Mitochondria are the powerhouse of the cell. Their primary
physiological function is to generate adenosine triphosphate through
oxidative phosphorylation via the electron transport chain, which
contains five multi-subunit enzyme complexes, I–V. Reactive oxygen
species (ROS) are generated in complex I and complex III during
mitochondrial respiration [1]. Therefore, oxygen metabolism can be a
potential threat to tissues and cells.

Numerous studies have shown the roles ROS play in the
pathophysiology of neurological disorders, including ischemia, trau-
ma, and degenerative diseases. ROS cause macromolecular damage
such as lipid peroxidation, protein oxidation, and DNA oxidation, all of
which can lead to cell injury and death [2,3]. In addition, ROS can act
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as intracellular messengers to transduce signals of various pathways,
including cell death pathways [4,5], similar to the way in which
reactive nitrogen species transduce signals in endothelial cells or
neurons [6,7].

Besides triggering molecular signals by overproduction of ROS,
mitochondria regulate apoptotic pathways by sequestering Ca2+,
storing and releasing pro-apoptotic proteins such as cytochrome c
and apoptosis-inducing factor (AIF), and probably by opening the
permeability transition pore [8,9]. In this review, we discuss the roles
of ROS generated in mitochondria and mitochondria-dependent
apoptotic pathways in several in vivo models of cerebral ischemia.
2. The roles of ROS generated by mitochondria

2.1. Generation and clearance of ROS under normal physiological
conditions

Because mitochondria generate superoxide anions (O2
−) and

hydrogen peroxide (H2O2) during mitochondrial respiration under
normal physiological conditions [1], oxygen metabolism poses a
potential threat to cells. It is, nevertheless, essential for cell survival.
Pro-oxidant enzymes, such as nitric oxide synthases (NOS), cycloox-
ygenases, xanthine dehydrogenase, xanthine oxidase, NADPH oxi-
dase, myeloperoxidase, and monoamine oxidase, generate the ROS
O2
−, H2O2, nitric oxide, and lipid peroxides.
To detoxify such ROS, cells develop ROS clearance systems.

Superoxide dismutase (SOD), glutathione peroxidase (GSHPx), and
catalase contribute to scavenging these ROS. SOD has three isoforms:
copper/zinc SOD (SOD1), manganese SOD (SOD2), and extracellular
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SOD (SOD3) (Table 1). All three SOD isoforms dismutate O2
− to H2O2

and molecular oxygen. Then, GSHPx scavenges H2O2 to water at the
expense of glutathione. Catalase also dismutates H2O2 to water [2].
Other small molecular non-enzymatic antioxidants such as vitamin E
and vitamin C are also involved in the detoxification of free radicals
[10].

Oxidative stress is defined as the pathogenic outcome of ROS
overproduction beyond the capacity of ROS clearance in cells. After
cerebral ischemia, the balance between ROS production and clearance
shifts to the production side, resulting in induction of oxidative stress-
induced signaling and cell injury.

2.2. Reperfusion injury and ROS

Reperfusion injury is brain damage caused by the return of blood
flow, resulting in progression of vasogenic edema, hemorrhagic
transformation, and an increase in stroke volume. ROS involvement
in reperfusion injury has been described since the early 1980s [11,12].
Numerous subsequent reports have presented the relationship
between reperfusion injury and ROS. In ischemic brain tissue, ROS
generation is accelerated by cytosolic pro-oxidant enzymes and by
mitochondria, inactivation of detoxification systems, consumption of
antioxidants, and failure to adequately replenish antioxidants [2].
These overproduced ROS cause macromolecular damage and activa-
tion of various pathways.

2.3. Detection and quantification of ROS

To detect and quantify various ROS in the ischemic brain, an
indirect measurement method is required because of the short half-
life of most ROS. One approach is to detect oxidative modification of
biological targets of ROS such as lipid peroxidation, protein oxidation,
or DNA oxidation. Another approach is to use reporter molecules,
which are oxidized by ROS, resulting in the production of chromo-
genic, fluorescent, or luminescent molecules. Hydroethidine (HEt),
one such reporter molecule, has been used to detect O2

− in cells and
tissues [13,14]. “Ethidium fluorescence,”which is the red fluorescence
arising from oxidation of HEt, has been attributed to O2

− trapping in
cells [13,14]. However, a recent study revealed that ethidium could be
generated by other ROS [15]. To specifically detect O2

−, 2-hydro-
xyethidium (2-HE), the two-electron oxidation product of HEt [16], is
a more suitable diagnostic marker than HEt [15].

Although the fluorescence spectra from 2-HE and ethidium
overlap and fluorescence from 2-HE cannot be separated under a
fluorescent microscope, red fluorescence caused by HEt oxidation is
still a powerful tool for detecting ROS, mainly O2

−. Upregulation of this
red fluorescence suggests that O2

− affects signaling and injury after
cerebral ischemia [17–20]. A disadvantage of HEt is that reliable
quantification cannot be provided with a fluorescent microscope. For
specific and quantitative detection of O2

−, a high-performance liquid
Table 1
Mammalian superoxide dismutases.

SOD1 (CuZnSOD) SOD2 (MnSOD) SOD3 (ECSOD)

Location Cytosol Mitochondria Extracellular space
Molecular weight 32,000 88,000 120,000
Structure Dimer Tetramer Tetramer
Metals,
g-atoms/subunit

Cu 1, Zn 1 Mn 1 Cu 1, Zn 1

Phenotype of transgenic
mouse (+/+)

Normal Normal Normal

Phenotype of knockout
mutant (−/−)

Normal Neonatal
lethality

Normal

Chromosome 21 (human)
16 (mouse)
11 (rat)

6 (human)
17 (mouse)
1 (rat)

4 (human)
5 (mouse)
14 (rat)

CuZn, copper, zinc; Mn, manganese; EC, extracellular.
chromatography/fluorescence assay [15], in addition to a fluorescent
microscope study, may be required.

2.4. Transgenic and knockout studies of SOD

Although development of methodologies to detect and quantify
ROS have enabled researchers to investigate their roles after cerebral
ischemia, their causative roles in ischemic brain injury remain
unclear. Advances in transgene and gene knockout (KO) technology
have allowed us to investigate the contributions of ROS to molecular
mechanisms of ischemic brain injury. Table 2 shows studies using
cerebral ischemia models with transgenic (Tg) animals that carry
human SOD genes or KO animals that are homozygously or
heterozygously deficient in SOD genes.

SOD1 is neuroprotective. In heterozygous SOD1 Tg animals that
carry the human SOD1 gene, SOD1 activity increased (a three-fold
increase in SOD1 Tg mice [21] and an approximate four-fold increase
in SOD1 Tg rats [22]) compared with wild-type (Wt) animals. In SOD1
Tg animals, a 35–50% decrease in infarct volume is usually observed
after focal cerebral ischemia (FCI) [23,24]. After transient global
cerebral ischemia (tGCI), delayed neuronal cell death decreases to
about 50% in SOD1 Tg animals [25,26]. Regulation of various pathways
contributes to neuroprotection, including activation of the phosphoi-
nositide 3-kinase (PI3-K) pathway [27,28], and inhibition of the
mitogen-activated protein kinase (MAPK) related pathway [29,30],
and the p53 signaling [18,31], nuclear factor-κB [19,20,32], and
mitochondria-dependent apoptotic [22,29,33] pathways. Moreover,
infarct volume and edema levels decrease after FCI in homozygous
SOD1 KO mice [34–36], while cell death increases after tGCI [37].

SOD2 also has important neuroprotective roles. Heterozygous
SOD2 Tg mice carrying the human SOD2 gene showed decreased
injury [38] and reduced vascular endothelial cell death [39] after FCI.
Moreover, infarct volume [40], brain edema [39], O2

− production [17],
matrix metalloproteinase-9 activity [39], caspase-9 activation [41],
and cytochrome c release [42] increase after FCI in SOD2 KO mice
compared with Wt mice. Furthermore, hemorrhagic transformation
after transient FCI (tFCI) significantly increases in SOD2 KO mice [39].

Although only a few studies have used SOD3 Tg or KO mice in
cerebral ischemia models, they have shown that SOD3 has neuropro-
tective roles. Infarct volume after FCI decreases (−28%) in SOD3 Tg
mice [43] that express a five-fold higher level of SOD3 in the brain
comparedwithWtmice [44]. Neuronal death after tGCI also decreases
(−48%) in SOD3 Tg mice [45]. In contrast, infarct after FCI in
homozygous SOD3 KO mice increases (+81%) [46]. In summary,
studies using various SOD Tg and KO animals imply that ROS have
important roles in activating various pathways and determining the
outcome after cerebral ischemia.

2.5. Mitochondrial NOS

Three canonical isoforms of NOS are well known in mammals:
neuronal NOS (nNOS), inducible NOS, and endothelial NOS. Recent
findings reveal that mitochondria contain their own isoform of NOS,
mitochondrial NOS (mtNOS), at their inner membrane [47,48]. Since
NOS isoforms are encoded not by mitochondrial DNA, but by nuclear
DNA, mtNOS is thought to be synthesized in the cytosol and
translocated to mitochondria [49], although the mechanism of this
translocation remains unknown. mtNOS stays active because of
mitochondrial Ca2+ content, in contrast to other nitric oxide sources.
mtNOS continuously controls mitochondrial respiration [47,48] and is
considered a key molecule of reperfusion injury [50].

The enzymatic activity of mtNOS was higher in hypoxic animals
than in normoxic controls [51]. mtNOS is also considered a marker of
brain aging. In aged mice, mtNOS activity was linearly correlated
with neurological performance and survival [52]. Since mtNOS
controls mitochondrial respiration and nitric oxide generation, it



Table 2
Transgenic and knockout studies of superoxide dismutases using in vivo cerebral ischemia models.

Study Animal Model Main findings References

SOD1 +/− Mouse pFCI Decreased cortical infarct (−35%) [23]
SOD1 +/− Mouse pFCI No protection [84]
SOD1 +/− Mouse tFCI Decreased infarct [85]
SOD1 +/− Mouse tFCI Sustained hsp70 mRNA expression [86]
SOD1 +/− Mouse tFCI Sustained c-fos mRNA expression [87]
SOD1 +/− Mouse tGCI Induction of hsp 70 [88]
SOD1 +/− Mouse tFCI Decreased injury (−50%) [24]
SOD1 +/− Rat tGCI Decreased injury (−50%) [25]
SOD1 +/− Mouse tGCI Decreased injury (−50%) [26]
SOD1 +/− Mouse tFCI Decreased DNA fragmentation [89]
SOD1 +/− Mouse tFCI Decreased cytochrome c release [90]
SOD1 +/− Mouse tFCI Decreased NF-κB expression [32]
SOD1 +/− Mouse tFCI Decreased activation of activator protein-1 [91]
SOD1 +/− Mouse pFCI No difference in infarct volume [92]
SOD1 +/− Rat tGCI Decreased active caspase-3, -9 [22]
SOD1 +/− Mouse tFCI Decreased ERK activation [29]
SOD1 +/− Mouse tFCI Decreased Bad activation [33]
SOD1 +/− Mouse tFCI Increased pAkt expression; decreased DNA fragmentation [27]
SOD1 +/− Mouse tFCI Decreased PARP activation [93]
SOD1 +/− Mouse tFCI Decreased lesion size and edema; decreased MMP-2, -9 expression [36]
SOD1 +/− Rat tGCI Decreased injury, PERK phosphorylation and GRP78 release [94]
SOD1 +/− Mouse tFCI Decreased injury, PERK phosphorylation and GRP78 release [95]
SOD1 +/− Mouse tFCI Decreased binding of XIAP/DNP, Smac/DNP and caspase-9/DNP [96]
SOD1 +/− Mouse tFCI Decreased Omi/HtrA2 activation [96]
SOD1 +/− Mouse tFCI Increased ILK expression and ILK/Akt complex [97]
SOD1 +/− Rat tGCI Inhibited ATF-4 induction and CHOP expression; decreased endoplasmic reticulum damage [98]
SOD1 +/− Mouse tFCI Inhibited ATF-4 induction and CHOP expression [98]
SOD1 +/− Mouse tFCI Increased proteasome activity and MDM2 activation; decreased nuclear p53 [31]
SOD1 +/− Rat tGCI Inhibited APE/Ref-1 decrease; decreased injury [99]
SOD1 +/− Mouse tFCI Decreased MCP-1 and MIP-1α expression [100]
SOD1 +/− Mouse tFCI Decreased level of O2

−; decreased NF-κB activation and phosphorylation [20]
SOD1 +/− Mouse tFCI Increased pPRAS, pPRAS/pAkt binding and pPRAS/14-3-3 protein binding [101]
SOD1 +/− Rat tGCI Increased pAkt and pGSK-3β expression [28]
SOD1 +/− Rat tGCI Decreased p53 translocation to mitochondria [58]
SOD1 +/− Mouse tFCI Decreased level of O2

−; inhibited persistent upregulation of NF-κB [19]
SOD1 +/− Rat tFCI with hyperglycemia Decreased MMP activity and Evans blue leakage [102]
SOD1 +/− Rat tFCI Decreased activity of p38, phospho-p38, Evans blue leakage, edema and infarct [30]
SOD1 +/− Rat tGCI Decreased PUMA activation and injury; decreased level of O2

− [18]
SOD1 −/− Mouse tFCI Increased infarct (+40%) [34]
SOD1 −/− Mouse tFCI Increased lesion size and edema [35]
SOD1 −/− Mouse tGCI Increased cell death [37]
SOD1 −/− Mouse pFCI No difference in infarct volume [92]
SOD1 −/− Mouse tFCI Increased edema [36]
SOD2 +/− Mouse tFCI Decreased injury (−50%) [38]
SOD2 +/− Mouse tFCI Decreased vascular endothelial cell death [39]
SOD2 −/+ Mouse pFCI Increased infarct (+66%) [40]
SOD2 −/+ Mouse pFCI Increased active caspase-9 [41]
SOD2 −/+ Mouse tFCI Increased cytochrome c release [42]
SOD2 −/+ Mouse pFCI Increased O2

− production [17]
SOD2 −/+ Mouse tFCI Increased MMP-9 expression [103]
SOD2 −/+ Mouse tFCI Increased MMP activity, edema, inflammation and hemorrhagic transformation [39]
SOD3 +/− Mouse tFCI Decreased infarct (−28%) [43]
SOD3 +/− Mouse tGCI Decreased injury (−48%) [45]
SOD3 −/− Mouse tFCI Increased infarct (+81%) [46]

+/−, heterozygous transgenic animals carrying human SOD genes; −/+, heterozygous knockout mutant of SOD genes; −/−, homozygous knockout mutant of SOD genes.
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may correlate with apoptosis after stroke. Further studies may reveal
the roles of mtNOS after stroke and may provide novel therapeutic
strategies.
3. Ischemic neuronal apoptotic pathways (Fig. 1)

3.1. The intrinsic pathway

After mitochondria trigger various signaling pathways by over-
production of ROS, some, but not all, apoptotic signals return to
mitochondria with the help of BH3-only proteins. Then, Bcl-2 family
proteins (such as cytochrome c, AIF, endonuclease G [Endo G], and
second mitochondria-derived activator of caspase [Smac]) interact
with each other, resulting in the release of pro-apoptotic proteins
stored in the mitochondrial intermembrane space, followed by
neuronal apoptosis. This pathway is called the ‘intrinsic pathway.’

3.2. Bcl-2 family protein interactions

The Bcl-2 protein family, which is a principal regulator of
mitochondrial membrane integrity and function, is classified into
three subgroups according to structural homology: the anti-apoptotic
proteins such as Bcl-2, Bcl-XL, and Bcl-w; the pro-apoptotic proteins
such as Bax and Bak; and the BH3-only proteins including Bad, Bid,
Bim, Noxa, and p53-upregulated modulator of apoptosis (PUMA).
Since neurons lack full-length Bak, Bax is the only pro-apoptotic
protein in neurons. In response to apoptotic stimuli, specific BH3-only
proteins are activated and transduce apoptotic signals to mitochon-
dria. Studies have shown that after cerebral ischemia, BH3-only



Fig. 1. Mitochondria-dependent pathways of apoptosis in cerebral ischemia and reperfusion. After cerebral ischemia, various pathways, such as the death receptor pathway, p53
pathway, c-Jun N-terminal kinase (JNK) pathway, PI3-K pathway, and the MAPK pathway, are activated. Most signaling pathways induce apoptosis with the help of pro-apoptotic
proteins, such as cytochrome c, Endo G, AIF, and Smac, which are stored in mitochondria.
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proteins were upregulated, meaning cerebral ischemia activates
various apoptotic pathways.

Currently, two main ideas can explain Bcl-2 protein family
interaction: the ‘direct model’ and the ‘hierarchy model’ (Fig. 2). In
the direct model, anti-apoptotic proteins trap pro-apoptotic proteins.
BH3-only proteins disrupt this interaction, resulting in liberation of
pro-apoptotic proteins and subsequent apoptosis (Fig. 2A).

Recently, Kim et al. [53] advocated the ‘hierarchy model.’ In this
model, BH3-only proteins are subdivided into two groups: ‘activator’
and ‘inactivator.’ Bim, PUMA, and truncated Bid (tBid) belong to the
activator group and other BH3-only proteins belong to the inactivator
group. Activator BH3-only proteins are trapped by anti-apoptotic
proteins, whereas pro-apoptotic proteins are not. Inactivator BH3-
only proteins disrupt this interaction, resulting in liberation of
activator BH3-only proteins. Liberated activator BH3-only proteins
interact with pro-apoptotic proteins, followed by apoptosis (Fig. 2B).

The Bcl-2 family plays various roles in cerebral ischemia. BH3-only
proteins, including Bad [33,54,55], Bim [56,57], Noxa [57,58], PUMA
[18,59], and tBid [18,60], contribute to cell death after cerebral
ischemia, mainly through interactions with other Bcl-2 family
members. Bax increases after tGCI [61] or FCI [62], and translocates
from the cytosol to mitochondria, mediated by c-Jun N-terminal
kinase with BimL [56]. Bim [56], tBid [63], and PUMA [18] have been
reported to interact with Bax after cerebral ischemia, which may
support the hierarchy model. After interacting with other Bcl-2 family
proteins, Bax is oligomerized and activated, which triggers release of
apoptotic proteins stored in the mitochondrial intermembrane space,
leading to neuronal apoptosis [8,56].
3.3. Bcl-2 family downstream interactions

Proteins in the mitochondrial intermembrane space, including
cytochrome c [64,65], Smac [66], AIF [67], and Endo G [68], are
released after cerebral ischemia, at which time they cause transduc-
tion of apoptotic signals. Release of these proteins leads to ‘the point
of no return.’ Cytochrome c interacts with apoptosis activating factor-
1, deoxyadenosine triphosphate, and procaspase-9, and forms the
apoptosome, which activates procaspase-9 [69–71]. Caspase-9 acti-
vates procaspase-3, then caspase-3 cleaves inhibitor of caspase-
activated DNase, which is an inhibitor and a chaperone of caspase-
activated DNase. Liberated caspase-activated DNase damages DNA
and induces apoptosis. Caspase-3 can also activate other effector
caspases, which activate crucial substrates, including poly(ADP-
ribose) polymerase (PARP), after cerebral ischemia [72,73]. Although
PARP is involved in both apoptotic and non-apoptotic cell death, 89-
and 21-kDa fragments are cleaved by caspases and are related to
apoptosis after cerebral ischemia [73,74].



Fig. 2. Two models of Bcl-2 protein family interaction. (A) The direct model for Bax
activation. After apoptotic stimuli, specific BH3-only proteins are activated and inhibit
anti-apoptotic Bcl-2 family proteins. Liberated Bax oligomerizes and triggers the release
of pro-apoptotic proteins stored in the mitochondrial intermembrane space. (B) The
hierarchy model for Bax activation. After apoptotic stimuli, specific inactivator BH3-
only proteins are activated and inhibit anti-apoptotic Bcl-2 family proteins. Then,
liberated activator BH3-only proteins interact with Bax, resulting in the release of pro-
apoptotic proteins stored in the mitochondrial intermembrane space.
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Smac also contributes to activation of caspases. Smac released
from mitochondria binds to and neutralizes the effect of the X
chromosome-linked inhibitor-of-apoptosis protein, which prevents
procaspase activation and inhibits activities of activated caspases
[66,74] after cerebral ischemia.

Recent reports show the importance of the caspase-independent
pathways. AIF translocates from mitochondria to the nucleus and
induces apoptosis after tFCI [67]. In mutant mice that express low-
level AIF, infarct volume decreased (−43%) after tFCI [67]. PARP
helped nuclear translocation of AIF [75]. Endo G is also known to
translocate to the nucleus, causing DNA fragmentation after tFCI [68].

3.4. Upstream of the intrinsic pathway

ROS activate a number of pathways, including PI3-K, MAPK, and
p53 pathways. These pathways modulate the intrinsic pathway.

3.4.1. Kinase pathway
Akt is a keymolecule for neuronal death and survival after cerebral

ischemia [27]. Akt is a serine/threonine kinase and a major
downstream target of PI3-K. Akt phosphorylates and inactivates Bad
after cerebral ischemia [55]. Since phosphorylated Bad is unable to
inhibit the pro-survival Bcl-2 family proteins, Bad phosphorylation
results in inactivation of the apoptotic pathway. Akt also phosphor-
ylates procaspase-9 and caspase-9 on serine-196, Procaspase-9
phosphorylation inhibits activation of procaspase-9, and caspase-9
phosphorylation inhibits protease activity [76]. Akt modulates p53
degradation through MDM2 phosphorylation [31].

Other kinases also have regulative roles in the intrinsic pathway.
Phosphorylated extracellular signal-regulated kinase, which also
phosphorylates and inactivates Bad, is upregulated after tFCI [29].
Protein kinase A phosphorylates and inactivates Bad after cerebral
ischemia [33].
3.4.2. p53 signaling pathway
Since a number of Bcl-2 family proteins such as Bax, Bid, Noxa,

PUMA, and p53AIP1 are the products of p53, p53 plays important roles
in the intrinsic pathway. These Bcl-2 family proteins increase and
regulate cell death after cerebral ischemia, as described in section 3.2.
Recent findings suggest that p53 can activate the intrinsic pathway in
a transcription-independent manner, as well as in a transcription-
dependent manner [58]. p53 translocates to mitochondria and
interacts with anti-apoptotic Bcl-XL, which precedes cytochrome c
release after tGCI [58]. A p53 inhibitor, pifithrin-α, decreased the
translocation of p53, and resulted in neuroprotection in the
hippocampal CA1 subregion after tGCI [58]. In summary, p53 acts as
a BH3-only protein in this transcription-independent manner in
addition to transcription of apoptosis-related proteins such as Bcl-2
family proteins.

3.4.3. PIDD signaling pathway
p53 and caspase-2 are involved with stress-induced apoptosis.

However, the key molecules connecting them have not been
determined. Tinel and Tschopp [77] reported that p53-induced
protein with a death domain (PIDD), which is a target of p53, formed
a high-molecular weight protein complex with RAIDD and procas-
pase-2. This molecular complex is referred to the ‘PIDDosome,’ in
which caspase-2 is activated, similar to caspase-9 activation in the
apoptosome [77]. After tGCI, the PIDDosome increased in the
hippocampal CA1 subregion, followed by caspase-2 activation and
Bid cleavage, which preceded neuronal death [78].

Recently, in vitro studies have presented new findings regarding
this PIDD pathway. One finding is that caspase-2 can directly interact
with mitochondria and activate the mitochondria-dependent apo-
ptotic pathway [79,80]. Interestingly, this interaction occurs inde-
pendently of its proteolytic activity. Another finding is that a cleaved
fragment of PIDD (PIDD-C) forms protein complexes that differ from
the PIDDosome. The protein complex containing PIDD-C and nuclear
factor-κB has an anti-apoptotic role in response to genotoxic stress
[81]. These interactions after cerebral ischemia are unknown and
require further study.

3.4.4. Crosstalk between the intrinsic pathway and the extrinsic pathway
The extrinsic pathway is the death receptor-mediated pathway

that receives extracellular signals and transduces them to intracellular
signals. Recent studies have shown that the death receptor pathway
has various physiological functions as well as apoptotic roles.

The Fas pathway (Fas is a death receptor) is involved in apoptosis
after cerebral ischemia. mRNA and protein levels of both Fas and the
Fas ligand are upregulated after cerebral ischemia [82,83]. Mutant
mice that have a loss-of-function mutation for Fas show reduced
infarct volume after FCI [82]. Fas, Fas-associated death domain, and
procaspase-8 form a protein complex that is referred to as the death-
inducing signaling complex (DISC). DISC activates procaspase-8,
similar to procaspase-9 activation by the apoptosome. Caspase-
8 activation is followed by activation of caspase-3 and caspase-10
after cerebral ischemia [83].

There is crosstalk between the intrinsic pathway and the extrinsic
pathway. The key molecule involved in this crosstalk is Bid, which is
also a key molecule for the p53–caspase-2 pathway as described
above. Bid is truncated by caspase-8, translocates to mitochondria,
and interacts with other Bcl-2 family proteins, which causes
cytochrome c release followed by apoptotic cell death [60].

4. Conclusions

Numerous reports show the involvement of ROS in cell death after
cerebral ischemia. ROS contribute not only to injury of macromole-
cules, but also to transduction of apoptotic signals. Although it is well
known that various factors, including necrosis, are involved in the
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mechanisms of cell death after cerebral ischemia, mitochondria
contribute to cell death by activating signaling pathways through
ROS production and by regulating intrinsic apoptosis pathways.
Future studies of these cell death mechanisms after ischemia may
provide unique information regarding molecular targets for thera-
peutic strategies in clinical stroke.
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