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Abstract

Fisher, D.C. and J. Ryan, Bounds on the number of complete subgraphs, Discrete
Mathematics 103 (1992) 313-320.
Let G be a graph with a clique number w. For 1<j<w, let k; be the number of complete
subgraphs on j nodes. We show that k., <(;¥,)(k; /(“’))"'“)” This is exact for complete
balanced w-partite graphs and gives Turdn’ theorem when j = 1.

A corollary is w = (8k3 — 9k3 + 3k;V16k3 + 9k3)/(4k3 — 18k2). This new bound on the clique
number supercedes an earlier bound from Turan’s theorem.

Let G be a simple graph. Let w (the clique number) be the size of the largest
complete subgraph in G. For 1<j=<w, let k; be the number of complete
subgraphs on j nodes (so G has k; nodes, k, edges, k; triangles, etc.). The main
result of this paper is:

<%)1/12<E%)1/22<(1(73)>1/32.”2(%)1/w. )

This is exact for a complete balanced w-partite graph.

The first inequality of (1) can be written as k,<(w — I)kz/(2w) This is a
slightly weakened form of Turdn’s theorem [9]. The second inequality is a new
bound on the number of triangles, k5, in a graph with k, edges and clique
number, w.

<\/§(W 2) 3
k3\3—\/ﬁk2 . 2)

This bound is shown in Fig. 1. Fisher [4] proved (2) for w =3.
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Fig. 1.

Each inequality in (1) is a lower bound on the clique number. Turdn’s theorem
gives the well-known bound, w = k%/(k% — 2k,). Solving (2) for w gives a new
bound:

. 8k3 — 9k3 + 3ksV16k3 + 9k3
4k} — 18k3

We show that (3) always supercedes the bound from Turan’s theorem.

3)

1. The main result

This section proves (1) (as Theorem 1) with a sequence of Lemmas. While
Lemma 1 is purely analytic, Lemmas 2-5 and Theorem 1 can be described as
‘analytic graph theory’.
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Definitions. Let G be a simple graph. Let w(G) be the size of the largest
complete subgraph in G. Let K;(G) be the set of j node complete subgraphs in G.
Let #(G) =\~ K;(G) and k;(G) = |K;(G)|. For each node a € G, let G, be the
subgraph of G induced on the neighbors of a. For all R e ¥#(G), let
GR = meR Ga~

When the dependence on the graph suppressed, assume the function depends
on the graph (as opposed to its subgraphs). So, for example, w = w(G).

1.1. A corollary of Hélder’s inequality

Holder’s inequality is: for all nonnegative sequences {u;}7~, and {v;}%,, and
for all p € (0, 1).

m m 1-p, m P
1/(1— 1/

> Uiy < (2 uj p)) <2 v; p) .

i=1 i=1 i=1

Lemma 1 follows from Hoélder’s inequality by letting »;, =1 and v; = r%.

Lemma 1. Let {r;}7., be a nonnegative sequence. Then for all p € (0, 1),

m m P
> r{-’sml_"(z r,-) .
i=1

i=1

1.2, The degree of a complete subgraph

Here, we define and give several properties of the ‘degree of a complete
subgraph’. Lemma 5 is the key result needed to prove Theorem 1. Lemma 5 with
Jj =11is equivalent to Turén’s theorem so it also generalizes Turdn’s theorem. Fig.
2 gives an example of Lemma 5. Lemmas 2—4 are used to prove Lemma 5.

For all R € % and for 1 <j, let 0;(R) = X,z k;(G,). Since o,(a) is the degree of
node a, o;(R) is a generalization of the degree of a node.

Fig. 2.
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Lemma 2. Let G be a graph and S € #. Then 0;(S) = Lrex, IGr N S|.

Proof. If R € K, then a € Gy if and only if R € K;(G,). Thus we may interchange

mmatinne tn oot
Suminanons 1o get

D IGNSI=2 X 1=3 Y 1= k(G)=0(S). 0O

ReK; ReK;aeGrNS aeS ReKi(G,) aes
Lemma 3. Let G be a graph and S € ¥. Then 07(S) <|S| Lgex, 0;(Gr N S).

Proof. From the definition of 0,(S) and Lemma 1 with p = 3:
2
)= (S K(G) <ISI S KGP=ISI S, S k(Go.
aeS aeS aeS ReK;(G,)

Since, for R € K, a € Gy if and only if R € K;(G,), we may exchange summations
to get

AS)<IS| > > k(G)=IS| X 0(GxNS). O

ReK;aeGrNS ReK;
Lemma 4. Let G be a graph. For all S € ¥, 0,(S) < (w —j)k;.

Proof. Let R € K;. Since RU (Gg N S) € X and RN Gg =0, we have |R| +|Gg N
S|<w and hence |GxNS|<w —j. Thus from Lemma 2, 0;(S)= Lrex, [Gr N
S| =(w—j)k,. O

Lemma 5. Let G be a graph. Then for all 1<j<sw, Yr 0/(R)=<
(j(w = DIw)k;.

Proof. Let x be the largest number such that for all R € ¥,
o(R) < (w —j)k; — (w — |R|)x. “)

By Lemma 4, x is well-defined and nonnegative. Also, there is some § € ¥ with
oSy =(w—jk; - (w —|SDx. 5)
Since RU(Gx N S) e # and Gk N R =6, we have |[RU(Gr N S)|=|R|+|Gg N
S|=j+|GrN S| and g;(R) = g;(R U (Ggr N S)) — 0;(Gg N S). Using these and (4)
gives
> 6(R)= 2 [0(RU(GrNS) = 0(GaNS)]

ReK;

< X [(w—j)k;—x(w = [RU(Gg N S)|) — 0,(Gg N S)]

ReK;

= (w — j)k? — xwk; + xjk; + x >, |GeNS|— 2, 0,(GrNS).
ReK;

ReK;
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We may now use Lemmas 2 and 3 and (5) to get
> G(R)=<ki(w —j)(k; = x) +x0,(S) — 07(S)/ S|
R ki(w = j)(k; = x) + x((w = j)k; = (w — |S] )x)
~[(w = jYk; = (w ~ IS )x /IS
= k(w = j)(k; = x) = x((w — )k; — wx)
~[(w = j)k; — wxF/ 1],
Since |S| < w,

[ = j)k; — wx?
w

2 G(R)<ky(w —j)(k; —x) — x((w — j)k; — wx) =

ReK;
(Gl ) PERC

w

1.3. A proof of (1)

Theorem 1. Let G be a graph. Then forall1<j<w, k;,; < (;%1)(k;/(}))V*VA.

Proof. This is by induction on j. For j =1, this is Turdn’s theorem (or Lemma 5
with j=1). For j>1, let ae G. If G, had a complete subgraph § with |S|=w,
then S +a would be a complete subgraph on w +1 nodes. So w(G,)=w — 1.
Thus by induction,

k(G < (w]"’)(k—(G))() ©)

(51

Each a € G is in k;(G,) complete subgraphs on j nodes. Then using (6), we have

1 1 . e
= > k(G =—— D k; Vige. G—=1)j
kj+1 j+1aeG /( a) j+1asle(Ga) J(Ga)
1 (w—1\U"Yk_(G,)
s.—Ek-G,,l"( . ) Zi-1\Ja)
] + laeG I( ) ] 7—_11

(w; 1)(/‘—1)/]‘ i
= G+DC-D EG k(G.) "k;_1(G,).
i— ae

Since node a is in k;_,(G,) complete subgraphs on j nodes, and using Lemma 1
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with p = 1/j, we have

(wj— 1)(j—1)/j . ) ) 1/
b= 095, 2 k00)
_ Gk
TG+ nezh <R§Ki (I,-(R)) '

So using Lemma 3,

_ (]-kj(wj—l))(j—-l)/j (](w —j)k?)w B ( w )( k,- )(i+1)/i‘

TG+ ) D W i+1/\()

("

0O

1.4. How sharp is Theorem 1?

For all j, Theorem 1 is exact for graphs whose complete subgraphs on j nodes
are all in one complete balanced w-partite subgraph. However, not all combina-
tions of k;, kj,; and w that satisfy Theorem 1 can be achieved. For example,
when j=2, w=3 and k, =9, Theorem 1 gives k;<5. But graphs with 9 edges
and clique number 3 have at most 4 triangles.

2, Corollaries and related results
Theorem 1 has many implications. This section discusses some of these.

2.1. Complete subgraph sequences

Alavi, Malde, Schwenk and Erdss [1] studied the sequence {ki, k,, ..., k,}
(actually they studied independent sets, but the independent sets of a graph
corresponds to the complete subgraphs of its complement). Given any permuta-
tion of the first w natural numbers, iy, i, ..., i,, they exhibited a graph with
k;, >k;,>--->k,, ie., the sequence {ky, ks, ..., k,} can increase and de-
crease in an arbitrary fashion.

For 1<js<w, let 5;=(k;/(}))"”. Theorem 1 brings order into this chaos by
requiring {s;, s,, . . ., 5,,} be monotonically non-increasing.

2.2. Bounds based on the number of nodes and edges

A classic problem is: what is the maximum number of j node complete
subgraphs in an 7 node graph with clique number w? Since the first term in (1) is
greater than or equal to the jth term, we get the following (this is also a corollary
of a result due to ErdGs [3] and Sauer [8)).

Corollary 1. A graph with n nodes and clique number w has at most ()n’{w/
complete subgraphs on j nodes.
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Similarly, we can find the maximum number of complete subgraphs in a graph
with e edges and clique number w. This is a new result.

Corollary 2. A graph with e edges and cligue number w has at most

(7)2e/(w — Dwy™

complete subgraphs on j =2 nodes.

2.3. Bounds on the clique number

For each j, Theorem 1 gives a lower bound on the clique number. Let &; be the
polynomial

] j ) x j+1
= 2,0
h](x) 7 ]+1 j+1 ]

Let w; be the largest real root of h;(w;) =0 (w; exists because h;(j) <0 and, by
Theorem 1, h;(w)=0). Then we have the following.

Corollary 3. Let G be a graph. Then for all j, w;<w.

We can find explicit expressions for w; and w,. Then Corollary 3 gives the
following lower bounds on the clique number:

k2 8k3 — 9k3 + 3k;V16k3 + 9k3
3 and w=w,= 3 > .
k1 - 2k2 4k2 - 18k3

w=w; =
Surprisingly, the second inequality always supercedes the first.
Theorem 2. For all graphs, w, <w,.

Proof. For all graphs, Nordhaus and Stewart (7] showed k; = (4k, — k2)k,/(3k,).
Thus,

wy\2 wi\>
hy(wy) = k%( 31) - k%( 21>

KKS 8k — K22
T )6[<( g . 2) —kg]so.
1 2 1

Theorem 1 gives A,(w)=0. So we must have w, <sw,<sw. O

We believe (see [6]) the bounds on w in Corollary 3 become increasingly better
as j increases, i.e., W, Sw, <. --sw, =w.
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