Note

Bounds on the number of complete subgraphs

David C. Fisher* and Jennifer Ryan

Department of Mathematics, University of Colorado, Denver, CO 80217-3364, USA 17814

Received 17 April 1989 Revised 7 September 1990

Abstract

Fisher, D.C. and J. Ryan, Bounds on the number of complete subgraphs, Discrete Mathematics 103 (1992) 313-320.

Let G be a graph with a clique number w. For $1 \le j \le w$, let k_j be the number of complete subgraphs on j nodes. We show that $k_{j+1} \le {w \choose j+1} (k_j/{w \choose j})^{(j+1)/j}$. This is exact for complete balanced w-partite graphs and gives Turán' theorem when j = 1.

A corollary is $w \ge (8k_2^3 - 9k_3^2 + 3k_3\sqrt{16k_2^3 + 9k_3^2})/(4k_2^3 - 18k_3^2)$. This new bound on the clique number supercedes an earlier bound from Turán's theorem.

Let G be a simple graph. Let w (the *clique number*) be the size of the largest complete subgraph in G. For $1 \le j \le w$, let k_j be the number of complete subgraphs on j nodes (so G has k_1 nodes, k_2 edges, k_3 triangles, etc.). The main result of this paper is:

$$\left(\frac{k_1}{\binom{w}{1}}\right)^{1/1} \ge \left(\frac{k_2}{\binom{w}{2}}\right)^{1/2} \ge \left(\frac{k_3}{\binom{w}{3}}\right)^{1/3} \ge \dots \ge \left(\frac{k_w}{\binom{w}{W}}\right)^{1/W}. \tag{1}$$

This is exact for a complete balanced w-partite graph.

The first inequality of (1) can be written as $k_2 \le (w-1)k_1^2/(2w)$. This is a slightly weakened form of Turán's theorem [9]. The second inequality is a new bound on the number of triangles, k_3 , in a graph with k_2 edges and clique number, w.

$$k_3 \le \frac{\sqrt{2}(w-2)}{3\sqrt{w^2-w}} k_2^{3/2}. \tag{2}$$

This bound is shown in Fig. 1. Fisher [4] proved (2) for w = 3.

* Research supported by NSF Grant No. CCR-8702553.

0012-365X/92/\$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved

Each inequality in (1) is a lower bound on the clique number. Turán's theorem gives the well-known bound, $w \ge k_1^2/(k_1^2 - 2k_2)$. Solving (2) for w gives a new bound:

$$w \ge \frac{8k_2^3 - 9k_3^2 + 3k_3\sqrt{16k_2^3 + 9k_3^2}}{4k_2^3 - 18k_3^2}.$$
 (3)

We show that (3) always supercedes the bound from Turán's theorem.

1. The main result

This section proves (1) (as Theorem 1) with a sequence of Lemmas. While Lemma 1 is purely analytic, Lemmas 2–5 and Theorem 1 can be described as 'analytic graph theory'.

Definitions. Let G be a simple graph. Let w(G) be the size of the largest complete subgraph in G. Let $K_j(G)$ be the set of j node complete subgraphs in G. Let $\mathcal{K}(G) \equiv \bigcup_{j=1}^{\infty} K_j(G)$ and $k_j(G) = |K_j(G)|$. For each node $a \in G$, let G_a be the subgraph of G induced on the neighbors of G. For all $G \in \mathcal{K}(G)$, let $G_R \equiv \bigcap_{a \in R} G_a$.

When the dependence on the graph suppressed, assume the function depends on the graph (as opposed to its subgraphs). So, for example, w = w(G).

1.1. A corollary of Hölder's inequality

Hölder's inequality is: for all nonnegative sequences $\{u_i\}_{i=1}^m$ and $\{v_i\}_{i=1}^m$, and for all $p \in (0, 1)$.

$$\sum_{i=1}^{m} u_{i} v_{i} \leq \left(\sum_{i=1}^{m} u_{i}^{1/(1-p)} \right)^{1-p} \left(\sum_{i=1}^{m} v_{i}^{1/p} \right)^{p}.$$

Lemma 1 follows from Hölder's inequality by letting $u_i = 1$ and $v_i = r_i^p$.

Lemma 1. Let $\{r_i\}_{i=1}^m$ be a nonnegative sequence. Then for all $p \in (0, 1)$,

$$\sum_{i=1}^m r_i^p \leq m^{1-p} \left(\sum_{i=1}^m r_i\right)^p.$$

1.2. The degree of a complete subgraph

Here, we define and give several properties of the 'degree of a complete subgraph'. Lemma 5 is the key result needed to prove Theorem 1. Lemma 5 with j = 1 is equivalent to Turán's theorem so it also generalizes Turán's theorem. Fig. 2 gives an example of Lemma 5. Lemmas 2-4 are used to prove Lemma 5.

For all $R \in \mathcal{K}$ and for $1 \le j$, let $\sigma_j(R) = \sum_{a \in R} k_j(G_a)$. Since $\sigma_1(a)$ is the degree of node a, $\sigma_j(R)$ is a generalization of the degree of a node.

Lemma 2. Let G be a graph and $S \in \mathcal{K}$. Then $\sigma_j(S) = \sum_{R \in K_i} |G_R \cap S|$.

Proof. If $R \in K_j$, then $a \in G_R$ if and only if $R \in K_j(G_a)$. Thus we may interchange summations to get

$$\sum_{R \in K_i} |G_R \cap S| = \sum_{R \in K_i} \sum_{\alpha \in G_R \cap S} 1 = \sum_{\alpha \in S} \sum_{R \in K_i(G_a)} 1 = \sum_{\alpha \in S} k_j(G_a) = \sigma_j(S). \quad \Box$$

Lemma 3. Let G be a graph and $S \in \mathcal{K}$. Then $\sigma_j^2(S) \leq |S| \sum_{R \in K_j} \sigma_j(G_R \cap S)$.

Proof. From the definition of $\sigma_i(S)$ and Lemma 1 with $p = \frac{1}{2}$:

$$\sigma_j^2(S) = \left(\sum_{a \in S} k_j(G_a)\right)^2 \le |S| \sum_{a \in S} k_j(G_a)^2 = |S| \sum_{a \in S} \sum_{R \in K_j(G_a)} k_j(G_a).$$

Since, for $R \in K_j$, $a \in G_R$ if and only if $R \in K_j(G_a)$, we may exchange summations to get

$$\sigma_j^2(S) \leq |S| \sum_{R \in K_i} \sum_{a \in G_R \cap S} k_j(G_a) = |S| \sum_{R \in K_i} \sigma_j(G_R \cap S). \qquad \Box$$

Lemma 4. Let G be a graph. For all $S \in \mathcal{H}$, $\sigma_i(S) \leq (w - j)k_i$.

Proof. Let $R \in K_j$. Since $R \cup (G_R \cap S) \in \mathcal{H}$ and $R \cap G_R = \emptyset$, we have $|R| + |G_R \cap S| \le w$ and hence $|G_R \cap S| \le w - j$. Thus from Lemma 2, $\sigma_j(S) = \sum_{R \in K_j} |G_R \cap S| \le (w - j)k_j$.

Lemma 5. Let G be a graph. Then for all $1 \le j \le w$, $\sum_{R \in K_j} \sigma_j(R) \le (j(w-j)/w)k_i^2$.

Proof. Let x be the largest number such that for all $R \in \mathcal{X}$,

$$\sigma_i(R) \le (w - j)k_i - (w - |R|)x. \tag{4}$$

By Lemma 4, x is well-defined and nonnegative. Also, there is some $S \in \mathcal{X}$ with

$$\sigma_i(S) = (w - j)k_i - (w - |S|)x.$$
 (5)

Since $R \cup (G_R \cap S) \in \mathcal{K}$ and $G_R \cap R = \emptyset$, we have $|R \cup (G_R \cap S)| = |R| + |G_R \cap S| = j + |G_R \cap S|$ and $\sigma_j(R) = \sigma_j(R \cup (G_R \cap S)) - \sigma_j(G_R \cap S)$. Using these and (4) gives

$$\sum_{R \in \mathcal{K}_j} \sigma_j(R) = \sum_{R \in \mathcal{K}_j} [\sigma_j(R \cup (G_R \cap S)) - \sigma_j(G_R \cap S)]$$

$$\leq \sum_{R \in \mathcal{K}_j} [(w - j)k_j - x(w - |R \cup (G_R \cap S)|) - \sigma_j(G_R \cap S)]$$

$$= (w - j)k_j^2 - xwk_j + xjk_j + x\sum_{R \in \mathcal{K}_j} |G_R \cap S| - \sum_{R \in \mathcal{K}_j} \sigma_j(G_R \cap S).$$

We may now use Lemmas 2 and 3 and (5) to get

$$\sum_{R \in K_{j}} \sigma_{j}(R) \leq k_{j}(w - j)(k_{j} - x) + x\sigma_{j}(S) - \sigma_{j}^{2}(S)/|S|$$

$$= k_{j}(w - j)(k_{j} - x) + x((w - j)k_{j} - (w - |S|)x)$$

$$- [(w - j)k_{j} - (w - |S|)x]^{2}/|S|$$

$$= k_{j}(w - j)(k_{j} - x) - x((w - j)k_{j} - wx)$$

$$- [(w - j)k_{i} - wx]^{2}/|S|.$$

Since $|S| \leq w$,

$$\sum_{R \in \mathcal{K}_j} \sigma_j(R) \leq k_j(w - j)(k_j - x) - x((w - j)k_j - wx) - \frac{[(w - j)k_j - wx]^2}{w}$$

$$= \frac{j(w - j)}{w} k_j^2. \qquad \square$$

1.3. A proof of (1)

Theorem 1. Let G be a graph. Then for all $1 \le j \le w$, $k_{j+1} \le {w \choose j+1} (k_j/{w \choose j})^{(j+1)/j}$.

Proof. This is by induction on j. For j = 1, this is Turán's theorem (or Lemma 5 with j = 1). For j > 1, let $a \in G$. If G_a had a complete subgraph S with |S| = w, then S + a would be a complete subgraph on w + 1 nodes. So $w(G_a) = w - 1$. Thus by induction,

$$k_j(G_a) \le {w-j \choose j} \left(\frac{k_{j-1}(G_a)}{{w-1 \choose j-1}}\right)^{j/(j-1)}$$
 (6)

Each $a \in G$ is in $k_i(G_a)$ complete subgraphs on j nodes. Then using (6), we have

$$k_{j+1} = \frac{1}{j+1} \sum_{a \in G} k_j(G_a) = \frac{1}{j+1} \sum_{a \in G} k_j(G_a)^{1/j} k_j(G_a)^{(j-1)/j}$$

$$\leq \frac{1}{j+1} \sum_{a \in G} k_j(G_a)^{1/j} {w-1 \choose j}^{(j-1)/j} \frac{k_{j-1}(G_a)}{{w-1 \choose j-1}}$$

$$= \frac{{w-1 \choose j}^{(j-1)/j}}{(j+1){w-1 \choose j-1}} \sum_{a \in G} k_j(G_a)^{1/j} k_{j-1}(G_a).$$

Since node a is in $k_{j-1}(G_a)$ complete subgraphs on j nodes, and using Lemma 1

with p = 1/j, we have

$$k_{j+1} \leq \frac{\binom{w-1}{j}\binom{(j-1)/j}{(j+1)\binom{w-1}{j-1}}}{(j+1)\binom{w-1}{j-1}} (jk_j)^{(j-1)/j} \left(\sum_{R \in K_j} \sum_{a \in R} k_j(G_a)\right)^{1/j}$$

$$= \frac{(jk_j\binom{w-1}{j})^{(j-1)/j}}{(j+1)\binom{w-1}{j-1}} \left(\sum_{R \in K_j} \sigma_j(R)\right)^{1/j}.$$

So using Lemma 5,

$$k_{j+1} \leq \frac{(jk_j\binom{w-1}{j})^{(j-1)/j}}{(j+1)\binom{w-1}{j-1}} \left(\frac{j(w-j)k_j^2}{w}\right)^{1/j} = \binom{w}{j+1} \left(\frac{k_j}{\binom{w}{j}}\right)^{(j+1)/j}. \quad \Box$$

1.4. How sharp is Theorem 1?

For all j, Theorem 1 is exact for graphs whose complete subgraphs on j nodes are all in one complete balanced w-partite subgraph. However, not all combinations of k_j , k_{j+1} and w that satisfy Theorem 1 can be achieved. For example, when j=2, w=3 and $k_2=9$, Theorem 1 gives $k_3 \le 5$. But graphs with 9 edges and clique number 3 have at most 4 triangles.

2. Corollaries and related results

Theorem 1 has many implications. This section discusses some of these.

2.1. Complete subgraph sequences

Alavi, Malde, Schwenk and Erdős [1] studied the sequence $\{k_1, k_2, \ldots, k_w\}$ (actually they studied independent sets, but the independent sets of a graph corresponds to the complete subgraphs of its complement). Given any permutation of the first w natural numbers, i_1, i_2, \ldots, i_w , they exhibited a graph with $k_{i_1} > k_{i_2} > \cdots > k_{i_w}$, i.e., the sequence $\{k_1, k_2, \ldots, k_w\}$ can increase and decrease in an arbitrary fashion.

For $1 \le j \le w$, let $s_j = (k_j/{\binom{w}{j}})^{1/j}$. Theorem 1 brings order into this chaos by requiring $\{s_1, s_2, \ldots, s_w\}$ be monotonically non-increasing.

2.2. Bounds based on the number of nodes and edges

A classic problem is: what is the maximum number of j node complete subgraphs in an n node graph with clique number w? Since the first term in (1) is greater than or equal to the jth term, we get the following (this is also a corollary of a result due to Erdős [3] and Sauer [8]).

Corollary 1. A graph with n nodes and clique number w has at most $\binom{w}{j} n^j / w^j$ complete subgraphs on j nodes.

Similarly, we can find the maximum number of complete subgraphs in a graph with e edges and clique number w. This is a new result.

Corollary 2. A graph with e edges and clique number w has at most

$$\binom{w}{i}(2e/(w-1)w)^{j/2}$$

complete subgraphs on $j \ge 2$ nodes.

2.3. Bounds on the clique number

For each j, Theorem 1 gives a lower bound on the clique number. Let h_j be the polynomial

$$h_j(x) \equiv k_j^{j+1} {x \choose j+1}^j - k_{j+1}^j {x \choose j}^{j+1}.$$

Let w_j be the largest real root of $h_j(w_j) = 0$ (w_j exists because $h_j(j) \le 0$ and, by Theorem 1, $h_j(w) \ge 0$). Then we have the following.

Corollary 3. Let G be a graph. Then for all $j, w_i \leq w$.

We can find explicit expressions for w_1 and w_2 . Then Corollary 3 gives the following lower bounds on the clique number:

$$w \ge w_1 = \frac{k_1^2}{k_1^2 - 2k_2}$$
 and $w \ge w_2 = \frac{8k_2^3 - 9k_3^2 + 3k_3\sqrt{16k_2^3 + 9k_3^2}}{4k_2^3 - 18k_3^2}$.

Surprisingly, the second inequality always supercedes the first.

Theorem 2. For all graphs, $w_1 \leq w_2$.

Proof. For all graphs, Nordhaus and Stewart [7] showed $k_3 \ge (4k_2 - k_1^2)k_2/(3k_1)$. Thus,

$$h_2(w_1) = k_2^3 {w_1 \choose 3}^2 - k_3^2 {w_1 \choose 2}^3$$

$$= \frac{k_2^3 k_1^6}{(k_1^2 - 2k_2)^6} \left[\left(\frac{(4k_2 - k_1^2)k_2}{3k_1} \right)^2 - k_3^2 \right] \le 0.$$

Theorem 1 gives $h_2(w) \ge 0$. So we must have $w_1 \le w_2 \le w$. \square

We believe (see [6]) the bounds on w in Corollary 3 become increasingly better as j increases, i.e., $w_1 \le w_2 \le \cdots \le w_w = w$.

References

- [1] Y.Alavi, P.J. Malde, A.J. Schwenk and P. Erdős, The vertex independence sequence of a graph is not constrained, Congr. Numer. 58 (1987) 15-24.
- [2] B. Bollobás, Extremal Graph Theory (Academic Press, New York 1978).
- [3] P. Erdős, In the number of complete subgraphs and circuits contained in a graph, Časopis Pěst. Mat. 94 (1969) 290-296.
- [4] D.C. Fisher, The number of triangles in a K_4 -free graph, Discrete Math. 69 (1988) 203–205.
- [5] D.C. Fisher, Lower bounds on the number of triangles in a graph, J. Graph Theory 13 (1989) 505-512
- [6] D.C. Fisher and J. Ryan, Conjectures on the number of complete subgraphs, Congr. Numer. 70 (1990) 207-210.
- [7] E.A. Nordhaus and B.M. Stewart, Triangles in ordinary graphs, Canad. J. Math. 15 (1963) 33-41.
- [8] N. Sauer, A. generalization of a theorem of Turán, J. Combin. Theory Ser. B 12 (1973) 109-112.
- [9] P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 19-30.