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Abstract 

Fisher, D.C. and J. Ryan, Bounds on the number of complete subgraphs, Discrete 

Mathematics 103 (1992) 313-320. 

Let G be a graph with a clique number w. For 1 s s w, let k, be the number of complete j 

subgraphs on j nodes. We show that k,,, c (j~l)(kj/(~))u”“‘. This is exact for complete 

balanced w-partite graphs and gives Turan’ theorem when j = 1. 

A corollary is w 3 (8/c: - 9k: + 3ks 16k: + 9k:)/(4k: - 18k$. This new bound on the clique 

number supercedes an earlier bound from Turan’s theorem. 

Let G be a simple graph. Let w (the clique number) be the size of the largest 
complete subgraph in G. For 1 =~j s W, let kj be the number of complete 
subgraphs on j nodes (so G has k, nodes, k, edges, k3 triangles, etc.). The main 
result of this paper is: 

(k&l> (LL)*‘z2 (L5)‘“a. . .a ($j,““. (1) 

This is exact for a complete balanced w-partite graph. 
The first inequality of (1) can be written as k2 s (w - l)k:/(2w). This is a 

slightly weakened form of Turan’s theorem [9]. The second inequality is a new 
bound on the number of triangles, k3, in a graph with k2 edges and clique 
number, W. 

(2) 

This bound is shown in Fig. 1. Fisher [4] proved (2) for w = 3. 
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Fig. 1. 

Each inequality in (1) is a lower bound on the clique number. Turan’s theorem 

gives the well-known bound, w 3 k:/(k: - 2k,). Solving (2) for w gives a new 

bound: 

w ~ 8k; - 9k; + 3k,Ih6k; + 9k: 

4k; - 18k: ’ 

We show that (3) always supercedes the bound from Turan’s theorem. 

1. The main result 

This section proves (1) (as Theorem 1) with a sequence of Lemmas. While 

Lemma 1 is purely analytic, Lemmas 2-5 and Theorem 1 can be described as 

‘analytic graph theory’. 
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Definitions. Let G be a simple graph. Let w(G) be the size of the largest 
complete subgraph in G. Let K,(G) be the set of j node complete subgraphs in G. 
Let X(G) G IJTZl K,(G) and k,(G) = lKj(G)(. F or each node a E G, let G, be the 
subgraph of G induced on the neighbors of a. For all R E X(G), let 

G,=aE,G,. 

When the dependence on the graph suppressed, assume the function depends 
on the graph (as opposed to its subgraphs). So, for example, w = w(G). 

1.1. A corollary of Hiilder’s inequality 

Holder’s inequality is: for all nonnegative sequences {uj}EI and {vi}&, and 
for all p E (0, 1). 

Lemma 1 follows from Holder’s inequality by letting Ui = 1 and vi = t-7. 

Lemma 1. Let {ri}zI be a nonnegative sequence. Then for all p E (0, l), 

1.2. The degree of a complete subgraph 

Here, we define and give several properties of the ‘degree of a complete 
subgraph’. Lemma 5 is the key result needed to prove Theorem 1. Lemma 5 with 
j = 1 is equivalent to Turan’s theorem so it also generalizes Turan’s theorem. Fig. 
2 gives an example of Lemma 5. Lemmas 2-4 are used to prove Lemma 5. 

For all R E X and for 1 -‘j, let q(R) = CaER &(G,). Since al(a) is the degree of 
node a, oj(R) is a generalization of the degree of a node. 

d 

b 

Fig. 2. 
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Lemma 2. Let-G be a graph and S E X. Then ai = CR+ IG, f~ SI. 

Proof. If R E Kj, then a E GR if and only if R E Kj(Ga). Thus we may interchange 
summations to get 

Lemma 3. Let G be u graph and S E .%-. Then a;(S) 6 ISI zREK, aj(GR fl S). 

Proof. From the definition of uj(S) and Lemma 1 with p = 1: 

4(S) = (C kj(Ga))* s ISI C kj(Ga)* = ISI C C ki(Go). 
UES ass UESREK,(G,) 

Since, for R E Kj, a E GR if and only if R E Kj(Ga), we may exchange summations 
to get 

~(S)C ISI C C kj(Ga) = lsl C C’j(GR nS). •I 
ReK,neG~rlS ReK, 

Lemma 4. Let G be a graph. For all S E X, ai s (w - j)ki. 

Proof. Let R E Kj. Since R U (GR n S) E X and R n GR =0, we have IRI + IGR n 

SI SW and hence IG, rl SI SW -j. Thus from Lemma 2, oj(S) = CRCK, [CR fl 
SI s (w - j)kj. 0 

Lemma 5. Let G be a graph. Then for all 1 C j< w, zREK, ai ~ 

(j(w - j)lw)kF. 

Proof. Let x be the largest number such that for all R E X’, 

ai s (w - j)k, - (w - IRl)x. (4) 

By Lemma 4, x is well-defined and nonnegative. Also, there is some S E X with 

q(S) = (w - j)kj - (w - (S()x. (5) 

SinceRU(GRnS)E~andGRnR=0,wehaveIRU(GRnS)J=IRI+IGRn 
S( = j + IGR n SI and Oj(R) = aj(R U (GR n S)) - aj(GR n S). Using these and (4) 
gives 

RTK 
I 

q(R) = R& [oj(R U (CR n 9) - oj(GR n S)l 
I 

~R~K[(~-i)kj-x(w-IRU(G~ns)l)-q(GR ns>l 
I 

= (W -j)kT-xwkj +xjkj+xRTK IGR nSI -RTK ~(GR~S). 

I I 
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We may now use Lemmas 2 and 3 and (5) to get 

RTK, ai s kj(W -j)(kj -X) + Xaj(S) - $(lj)/ IsI 

= kj(W -i)(kj -X) + X((W - j)kj - (W - ISI )X) 

- [(W - j)kj - (w - ISI )X]“llSI 

= kj(W - j)(kj -X) -X((W - j)kj - WX) 

-[(W - j)kj - WX12/ JSI. 

Since )S] s w, 

RTKi uj(R) < kj(w - j)(kj -X) - X((W - j)kj - Wx) - [(w -j’: - wx12 

i(w-i)kz q =- 
W 

I’ 

1.3. A proof of (1) 

Theorem 1. Let G be a graph. Then for all 1 <j s W, kj+l s (j +” ,)(kj/( ‘J’))(j+‘)‘s 

Proof. This is by induction on j. For j = 1, this is Turan’s theorem (or Lemma 5 
with j = 1). For j > 1, let a E G. If G, had a complete subgraph S with ISI = w, 
then S + a would be a complete subgraph on w + 1 nodes. So w(G,) = w - 1. 
Thus by induction, 

(6) 

Each a E G is in kj(Ga) complete subgraphs on j nodes. Then using (6), we have 

Since node a is in kj_l(Ga) complete subgraphs on j nodes, and using Lemma 1 
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with p = lfj, we have 

So using Lemma 5, 

1.4. How sharp is Theorem l? 

For all j, Theorem 1 is exact for graphs whose complete subgraphs on j nodes 
are all in one complete balanced w-partite subgraph. However, not all combina- 

tions of kj, kj+l and w that satisfy Theorem 1 can be achieved. For example, 
when j = 2, w = 3 and kz = 9, Theorem 1 gives k3 s 5. But graphs with 9 edges 
and clique number 3 have at most 4 triangles. 

2. Corollaries and related results 

Theorem 1 has many implications. This section discusses some of these. 

2.1. Complete subgraph sequences 

Alavi, Malde, Schwenk and Erdiis [l] studied the sequence {k,, kZ, . . . , k,} 
(actually they studied independent sets, but the independent sets of a graph 
corresponds to the complete subgraphs of its complement). Given any permuta- 
tion of the first w natural numbers, iI, iz, . . . , i,, they exhibited a graph with 
ki, > ki2> - - - > ki,, i.e., the sequence {k,, kz, . . . , k,} can increase and de- 
crease in an arbitrary fashion. 

For 1 <j s w, let si -(k,/(~))‘l’. Theorem 1 brings order into this chaos by 
requiring {sr, s2, . . . , s,} be monotonically non-increasing. 

2.2. Bouna!s based on the number of nodes and edges 

A classic problem is: what is the maximum number of j node complete 
subgraphs in an n node graph with clique number w? Since the first term in (1) is 
greater than or equal to the jth term, we get the following (this is also a corollary 
of a result due to Erdiis [3] and Sauer [8]). 

Corollary 1. A graph with n nodes and clique number w has at most (r)njlw’ 
complete subgraphs on j nodes. 
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Similarly, we can find the maximum number of complete subgraphs in a graph 
with e edges and clique number w. This is a new result. 

Corollary 2. A graph with e edges and clique number w has at most 

(7)(2e/(w - l)~)i’~ 

complete subgraphs on j 2 2 nodes. 

2.3. Bounds on the clique number 

For each j, Theorem 1 gives a lower bound on the clique number. Let hi be the 
polynomial 

hi(x) = kjt’(j : I)i - k:,,(;)l+l. 

Let Wj be the largest real root of hj(wj) = 0 (Wj exists because h,(j) ~0 and, by 
Theorem 1, h,(w) > 0). Then we have the following. 

CoroUary 3. Let G be a graph. Then for all j, wj < w. 

We can find explicit expressions for w1 and w,. Then Corollary 3 gives the 
following lower bounds on the clique number: 

k: 
WZW1=k:-2k, ~ and wsw,= 

8k; - 9k; + 3k3vm 

4k;- 18k; . 

Surprisingly, the second inequality always supercedes the first. 

Theorem 2. For all graphs, y1 s w2. 

Proof. For all graphs, Nordhaus and Stewart [7] showed k3 > (4k2 - kT)k,/(3k,). 

Thus, 

h2(w1) = k:( ;)‘- k;( ,), 

k;k: 

[( 

(4kz-kT)ka 

= (k:-2k$’ 3k, 1 1 2_ kz <o 

- . 

Theorem 1 gives h,(w) 2 0. So we must have WI c ~2 s W. q 

We believe (see [6]) the bounds on w in Corollary 3 become increasingly better 
asjincreases,i.e., w,Gw,<--0<w,=w. 
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