Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes

Igor' E. Zverovich

RUTCOR—Rutgers Center for Operations Research, Rutgers, The State University of New Jersey, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA

Received 18 February 2002; received in revised form 5 December 2003; accepted 21 June 2004

Available online 11 May 2005

Abstract

We characterize Post classes of Boolean functions (also known as clones) in terms of forbidden subfunctions that allows one to give a comparably short proof of the classical Post theorem.

© 2005 Elsevier B.V. All rights reserved.

MSC: 03G20; 03B05; 06E30

Keywords: Hereditary classes of Boolean functions; Closed classes; Post theorem

1. Introduction

Two Boolean functions \(f(x_1, x_2, \ldots, x_n) \) and \(g(y_1, y_2, \ldots, y_n) \) are congruent if there exists a bijection \(\phi : \{x_1, x_2, \ldots, x_n\} \rightarrow \{y_1, y_2, \ldots, y_n\} \) such that \(f(\phi(x_1), \phi(x_2), \ldots, \phi(x_n)) = g(y_1, y_2, \ldots, y_n) \). Two Boolean functions \(f \) and \(g \) are similar if deleting all inessential variables from \(f \) and \(g \) produces congruent functions. We distinguish Boolean functions (and classes of Boolean functions) up to similarity.

Definition 1. Let \(\Phi \) be a class of Boolean functions. The closure \([\Phi] \) is the class of all functions that can be obtained by substitutions of functions from \(\Phi \) and/or by identifica-
tion of variables, i.e., $[\Phi]$ consists of all functions that can be obtained by the following rules:

(CLO1): $\Phi \subseteq [\Phi]$, and

(CLO2): if $f(x_1, x_2, \ldots, x_n) \in [\Phi]$ and each of X_1, X_2, \ldots, X_n is either a member of $[\Phi]$ or a Boolean variable, then $f(X_1, X_2, \ldots, X_n) \in [\Phi]$.

We say that the class $[\Phi]$ is generated by Φ. A class Φ is called a closed class (also, a clone) if $\Phi = [\Phi]$.

Proposition 1. Intersection of any number of closed classes is a closed class.

Proof. Straightforward. □

A set Ψ of Boolean functions is called complete in a closed class Φ if $[\Psi] = \Phi$. For a class X of Boolean functions, we denote $\overline{X} = \{ \overline{f} : f \in X \}$ where $\overline{f}(\bar{x}) = \overline{f(x)}$ for every x. By f^d we denote the function which is dual to f, i.e., $f^d(x) = \overline{f(\bar{x})}$ for every x. Also, $\Phi^d = \{ f^d : f \in \Phi \}$. The number of essential variables of a function f is denoted by $\text{ess}(f)$.

Definition 2. The following classes of Boolean functions are called Post classes:

Classes of type E: $E = \{0, 1\}$, $E_0 = \{0\}$, $E_1 = \{1\}$, and $E_{01} = \emptyset$.

Classes of type O: $O = \{0, 1, x, \overline{x}\}$, $O_0 = \{0, x\}$, $O_1 = \{1, x\}$, $O_{01} = \{x\}$, $OS = \{x, \overline{x}\}$, and $OM = \{0, 1, x\}$.

Classes of type T: T is the class of all Boolean functions, $T_0 = \{ f : f(0, 0, \ldots, 0) = 0 \}$ is the class of functions preserving 0, $T_1 = \{ f : f(1, 1, \ldots, 1) = 1 \}$ is the class of functions preserving 1, and $T_{01} = T_0 \cap T_1$.

Classes of type P: $P = \{0, 1, x_1x_2 \cdots x_n : n \geq 1 \text{ is not fixed}\}$, $P_0 = P \cap T_0$, $P_1 = P \cap T_1$, and $P_{01} = P \cap T_{01}$.

Classes of type P^d: $P^d = \{0, 1, x_1 \lor x_2 \lor \cdots \lor x_n : n \geq 1 \text{ is not fixed}\}$, $P_{0}^d = P^d \cap T_0$, $P_1^d = P^d \cap T_1$, and $P_{01}^d = P^d \cap T_{01}$. Note that the classes P^d, P_{0}^d, P_1^d, and P_{01}^d are dual to P, P_0, P_1, and P_{01}, respectively.

Classes of type M: $M = \{ f : \alpha \leq \beta \text{ implies } f(\alpha) \leq f(\beta) \}$ is the class of monotone Boolean functions \{ for $\alpha = (a_1, a_2, \ldots, a_n)$ and $\beta = (b_1, b_2, \ldots, b_n)$, $\alpha \leq \beta$ means that $a_i \leq b_i$ for all $i = 1, 2, \ldots, n\}$. $M_0 = M \cap T_0$, $M_1 = M \cap T_1$, and $M_{01} = M \cap T_{01}$.

Classes of type S: $S = \{ f : f^d = f \}$ is the class of all self-dual functions, $S_{01} = M \cap T_{01}$, and $SM = S \cap M$.

Classes of type L: $L = \{a_0 \oplus a_1x_1 \oplus \cdots \oplus a_nx_n : n \geq 0 \text{ is not fixed}, a_i \in \{0, 1\}\}$ is the class of all linear Boolean functions, $L_0 = L \cap T_0$, $L_1 = L \cap T_1$, $L_{01} = L \cap T_{01}$, and $LS = L \cap S$.

Classes of type $A^k (k \geq 2)$: $A^k = \{ f : f(a_1) = f(a_2) = \cdots = f(a_k) = 1 \text{ then } a_1, a_2, \ldots, a_k \text{ have common coordinate } 1 \}$ (a common coordinate is a coordinate with the same index), $A_{1}^{k} = A^{k} \cap T_{1}$, $MA^{k} = A^{k} \cap M$, and $MA_{1}^{k} = A^{k} \cap T_{1} \cap M$.

Classes of type A^∞: $A^\infty = \bigcap_{k=2}^{\infty} A^k$, i.e., A^∞ is the class of all Boolean functions f such that all sequences over the set $\{x : f(x) = 1\}$ have a common 1, $A_{1}^{\infty} = A^{\infty} \cap T_{1}$, $MA^{\infty} = A^{\infty} \cap M$, $MA_{1}^{\infty} = A^{\infty} \cap T_{1} \cap M$.

Classes of type $a^k (k \geq 2)$: $a^k = \{ f : f(a_1) = f(a_2) = \cdots = f(a_k) = 0 \text{ then } a_1, a_2, \ldots, a_k \text{ have a common coordinate } 0\}$, $a_{0}^{k} = a^{k} \cap T_{0}$, $Ma^{k} = a^{k} \cap M$, $Ma_{0}^{k} = a^{k} \cap T_{0} \cap M$.

Classes of type a^∞: $a^\infty = \bigcap_{k=2}^\infty a^k$, i.e., a^∞ is the class of all Boolean functions f such that all sequences over the set $\{x : f(x) = 0\}$ have a common 0, $a_0^\infty = a^\infty \cap T_0$, $Ma^\infty = a^\infty \cap M$, and $Ma_0^\infty = a^\infty \cap T_0 \cap M$.

Proposition 2. Each Post class is closed.

Proof. It is sufficient to note that E, O, P, P^d, T_0, T_1, M, S, L, $A^k(k \geq 2)$, and $a^k(k \geq 2)$ are closed and apply Proposition 1. □

2. Hereditary classes

A Boolean function g is called a subfunction of a Boolean function f if g can be obtained by identification of variables of f. We denote by $\text{Sub}(f)$ the set of all subfunctions of f considered up to similarity.

Definition 3. A class Φ of Boolean functions is called hereditary if $\text{Sub}(f) \subseteq \Phi$ for each function $f \in \Phi$.

Proposition 3. Every closed class of Boolean functions is hereditary.

Proof. It follows directly from the definitions. □

Let Z be an arbitrary set of Boolean functions. We put $\text{FS}(Z) = \{f : \text{Sub}(f) \cap Z = \emptyset\}$, a hereditary class defined by Z as a set of forbidden subfunctions.

Theorem 1. (i) A class Φ of Boolean functions is hereditary if and only if $\Phi = \text{FS}(Z)$ for some set Z of Boolean functions.

(ii) The inclusion-wise minimal set Z satisfying (i) is uniquely defined (up to similarity).

Proof. (i) Let $Z = T \setminus \Phi$, where T is the class of all Boolean functions. Let $f \in \Phi$. By hereditariness, $\text{Sub}(f) \subseteq \Phi$ and therefore $\text{Sub}(f) \cap Z = \emptyset$, i.e., $f \in \text{FS}(Z)$. Thus, $\Phi \subseteq \text{FS}(Z)$. Conversely, if $f \in \text{FS}(Z)$ then $\text{Sub}(f) \cap Z = \emptyset$. In particular, $f \notin Z = T \setminus \Phi$. Hence $f \in \Phi$, and $\text{FS}(Z) \subseteq \Phi$. (ii) A function $f \notin \Phi$ is called a minimal forbidden subfunction for Φ if $\text{Sub}(f) \setminus \{f\} \subseteq \Phi$. Let Z^0 be the set of all minimal functions in Z. We show that $\Phi = \text{FS}(Z^0)$. Since $Z^0 \subseteq Z$, we have $\Phi = \text{FS}(Z) \subseteq \text{FS}(Z^0)$.

We show that $\text{FS}(Z^0) \subseteq \Phi$. Let $f \in \text{FS}(Z^0)$. If $f \notin \Phi$ then $f \in Z$. By finiteness of $\text{Sub}(f)$, it contains a minimal function g. Since $g \in Z^0 \cap \text{Sub}(f)$, we have $f \notin \text{FS}(Z^0)$, a contradiction.

Now we prove the uniqueness of the set Z^0 by showing that $\Phi = \text{FS}(Z')$ implies $Z^0 \subseteq Z'$. Let $f \in Z^0$ and $f \notin Z'$. It follows from $\Phi = \text{FS}(Z^0)$ and $f \in Z^0$ that $f \notin \Phi$. By minimality, $\text{Sub}(f) \setminus \{f\} \subseteq \Phi$. Since $\Phi = \text{FS}(Z')$, we have $\text{Sub}(f) \setminus \{f\} \cap Z' = \emptyset$. Also, $f \notin Z'$. Hence $\text{Sub}(f) \cap Z' = \emptyset$. It implies that $f \in \text{FS}(Z') = \Phi$, a contradiction. □

Proposition 4. If $\Phi_1 = \text{FS}(Z_1)$ and $\Phi_2 = \text{FS}(Z_2)$ are two hereditary classes of Boolean functions, then $\Phi_1 \cap \Phi_2 = \text{FS}(Z_1 \cup Z_2)$.

Theorem 2

See also Table 1 for alternative definitions.

Proof. If \(f \in \Phi_1 \cap \Phi_2 \) then \(Sub(f) \cap Z_i = \emptyset \) for \(i = 1, 2 \). Hence \(Sub(f) \cap (Z_1 \cup Z_2) = \emptyset \) and \(f \in FS(Z_1 \cup Z_2) \). Conversely, let \(f \in FS(Z_1 \cup Z_2) \). Since \(Z_i \subseteq Z_1 \cup Z_2, i = 1, 2 \), we have \(FS(Z_1 \cup Z_2) \subseteq FS(Z_i) \) and \(f \in FS(Z_i) = \Phi_i \). Thus, \(f \in \Phi_1 \cap \Phi_2 \). \(\square \)

Note that the set \(Z_1 \cup Z_2 \) in Proposition 4 may be redundant, so non-minimal forbidden subfunctions for \(\Phi_1 \cap \Phi_2 \) can be deleted from \(Z_1 \cup Z_2 \).

A Boolean function \(g \) is called a strong subfunction (respectively, a 0-subfunction; a 1-subfunction) of a Boolean function \(f \) if \(g \) can be obtained from \(f \) by substituting of constants 0, 1 (respectively, by substituting of 0; by substituting of 1) and/or by identification of variables. We denote by \(Sub_{01}(f) \), \(Sub_{02}(f) \) and \(Sub_1(f) \) the set of all strong subfunctions, 0-subfunctions and 1-subfunctions of \(f \), respectively. Note that a strong subfunction is not necessarily a subfunction (but the other way round).

Definition 4. A class \(\Phi \) of Boolean functions is called strongly-hereditary (respectively, 0-hereditary; 1-hereditary) if \(Sub_{01}(f) \subseteq \Phi \) (respectively, \(Sub_{02}(f) \subseteq \Phi \); \(Sub_1(f) \subseteq \Phi \)) for each function \(f \in \Phi \).

Let \(Z \) be a set of Boolean functions. We put \(FS_{01}(Z) = \{ f : Sub_{01}(f) \cap Z = \emptyset \} \), a strong-hereditary class defined by the set \(Z \) of forbidden strong subfunctions. In a similar way we define classes \(FS_{02}(Z) \) and \(FS_1(Z) \). For these modified concepts of subfunction and hereditary classes, analogs of Theorem 1 and Proposition 4 are valid.

3. Characterizations of Post classes in terms of forbidden subfunctions

We introduce the following Boolean functions:

- \(\phi_0(x, y, z) = xy \oplus xz \oplus yz \),
- \(\phi_1(x, y, z) = x \oplus y \oplus z \),
- \(\phi_2(x, y, z) = xy \oplus xz \oplus yz \oplus x \oplus y \),
- \(\phi_3(x, y, z) = x(y \sim z) [\phi_3^{d}(x, y, z) = xy \oplus xz \oplus x \oplus y \oplus z] \),
- \(\phi_4(x, y, z) = x(y \lor z) [\phi_4^{d}(x, y, z) = xyz \oplus xy \oplus yz \oplus x \oplus y] \),
- \(\phi_5(x, y, z) = xy \oplus x \oplus z \),
- \(\phi_6(x, y, z) = xy \oplus xz \oplus y \),
- \(\phi_7(x, y, z) = xyz \oplus x \oplus y [\phi_7^{d}(x, y, z) = xyz \oplus xy \oplus xz \oplus yz \oplus z] \),
- \(\phi_8(x, y, z) = xyz \oplus xy \oplus z [\phi_8^{d}(x, y, z) = xz \oplus yz \oplus x \oplus y] \),
- \(\phi_9(x, y, z) = x(y \lor z) \),
- \(\phi_{10}(x, y, z) = xy \oplus xz \oplus y \oplus z \),
- \(\phi_{11}(x, y, z) = xyz \oplus x \oplus y \oplus z \), and
- \(\phi_{12}(x, y, z) = xyz \oplus xy \oplus xz \oplus yz \oplus x \oplus y \).

See also Table 1 for alternative definitions.

Theorem 2 (Characterizations of Post classes). The following statements hold:
Table 1

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>ϕ_0</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>ϕ^d_3</th>
<th>ϕ_4</th>
<th>ϕ^d_4</th>
<th>ϕ_5</th>
<th>ϕ_6</th>
<th>ϕ_7</th>
<th>ϕ^d_7</th>
<th>ϕ_8</th>
<th>ϕ^d_8</th>
<th>ϕ_9</th>
<th>ϕ_{10}</th>
<th>ϕ_{11}</th>
<th>ϕ_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Theorem 3. The following statements hold for all $k \geq 2$ and $k = \infty$:
(H25) \(A^k = \text{FS}(Z_A \cup Z^k) = \text{FS}_0(\{1, \bar{x}, x \oplus y, x \lor y\} \cup Z^k) \), where \(Z^k = A^2 \setminus A^k \) and
\(Z_A = \{1, \bar{x}, x \oplus y, x \lor y, \phi_1, \phi_2, \phi_8, x, \phi_{10}, \phi_{11}, \phi_{12}\}; \)

(H26) \(A^k = \text{FS}(Z_{A_1} \cup (Z^k \cap T_1)) \), where \(Z_{A_1} = \{0, 1, \bar{x}, x \lor y, \phi_1, \phi_2, \phi_8\}; \)

(H27) \(MA^k = \text{FS}(Z_{MA} \cup (Z^k \cap M)) = \text{FS}_0(\{1, \bar{x}, x \oplus y, x \lor y\} \cup (Z^k \cap M)) \), where
\(Z_{MA} = \{1, \bar{x}, x \oplus y, x \lor y, \bar{x}, \phi_1, \phi_2, \phi_3, \phi_4, \phi_8\}; \)

(H28) \(MA^k = \text{FS}(Z_{MA_1} \cup (Z^k \cap M_1)) \), where \(Z_{MA_1} = \{0, 1, \bar{x}, x \lor y, \bar{x}, \phi_1, \phi_2, \phi_3, 0\}; \)

(H25d) \(a^k = \text{FS}(Z^d \cup Z^k) = \text{FS}_1(\{0, \bar{x}, x \lor y\} \cup Z^k) \), where \(Z^k = a^2 \setminus a^k; \)

(H26d) a^k = \text{FS}(\{Z_A\}^d \cup (Z^k \cap T_0));

(H27d) \(a^k = \text{FS}(Z_{MA} \cup \{Z^k \cap M\}) = \text{FS}_1(\{0, \bar{x}, x \lor y\} \cup (Z^k \cap M)); \)

(H28d) \(a^k = \text{FS}(Z_{MA_1} \cup \{Z^k \cap M_0\}) = xy. \)

Proof. It is enough to prove the statement for the classes \(E, O, P, P^d, T_0, T_1, M, S, L, A^k \), and \(a^k \) only, since the other classes are intersections of these (see Definition 2), and we may use Proposition 4. Also, every statement (H\#d) is dual to (H\#). Proofs of the dual statements are straightforward and hence omitted.

Suppose that we have a characterization \(\Phi = \text{FS}(Z) \) of a hereditary class \(\Phi \). Let \(Z_0 \) be the set of all functions \(f \in Z \) that cannot be obtained from a function in \(Z \setminus \{f\} \) by substitution of 0’s. Then \(\Phi = \text{FS}_0(Z_0). \) Thus, it is easy to produce an \(\text{FS}_0 \)-characterization (similarly for an \(\text{FS}_1 \)-characterization and an \(\text{FS}_{01} \)-characterization) of \(\Phi \) from a given characterization \(\Phi = \text{FS}(Z) \). See our proofs of (H22) and (H23) for illustrations.

(H1) We can obtain either 1 or \(\bar{x} \) from any Boolean function \(f \notin T_0 \) by identification of all its variables. Hence \(T_0 = \text{FS}(1, \bar{x}) \) and \(T_0 = \text{FS}_0(1). \)

(H3) Let \(f \notin M \). By definition, there exist \(a = (a_1, a_2, \ldots, a_n) \prec \beta = (b_1, b_2, \ldots, b_n) \) (i.e., \(a \preceq \beta \) and \(a \neq \beta \) such that \(f(a) = 1 \) and \(f(\beta) = 0. \) We put \(x = x_i \) if \(a_i = 0 \) and \(b_i = 1 \); \(y = x_i \) if \(a_i = b_i = 0 \); \(z = x_i \) if \(a_i = b_i = 1. \) We have constructed a Boolean function \(g(x, y, z) \) such that \(g(0, 0, 1) = f(x) = 1 \) and \(g(1, 0, 1) = f(\beta) = 0. \)

- If \(g(0, 0, 0) = g(1, 1, 1) = 0 \) then \(g(x, x, z) \in \{\bar{x}z, x \oplus z\} \subseteq Z_M. \)
- If \(g(0, 0, 0) = g(1, 1, 1) = 0 \) then \(g(x, x, x) \in \{x \lor y, \bar{x} \lor y\} \subseteq Z_M. \)
- If \(g(0, 0, 0) = 1 \) and \(g(1, 1, 1) = 0 \) then \(g(x, x, x) = \bar{x} \in Z_M. \)
- If \(g(0, 0, 0) = 0 \) and \(g(1, 1, 1) = 1 \) then we represent \(g \) in polynomial form:

\[
g = Axyz \oplus Bxy \oplus Cxz \oplus Dyz \oplus Ex \oplus Fy \oplus Gz \oplus H.
\]

- Since \(g(0, 0, 0) = 0 \), we have \(H = 0. \)
- Since \(g(0, 0, 1) = 1 \) and \(H = 0 \), we have \(G = 1. \)
- Since \(g(1, 0, 1) = 0 \) and \(G \oplus H = 1 \), \(C \oplus E = 1. \)
- Since \(g(1, 1, 1) = 1 \) and \(C \oplus E \oplus G \oplus H = 0 \), \(A \oplus B \oplus D \oplus F = 1. \)

When \(C = 0 \) and \(E = 1 \) we obtain the functions \(\phi_1, \phi_5, \phi_7, \phi_8, \phi_9 \) and \(\phi_{10} \). When \(C = 1 \) and \(E = 0 \) we obtain the functions \(\phi_2, \phi_3, \phi_4, \phi_5, \phi_6, \phi_7 \) and \(\phi_9 \).

To prove the other equalities in (H3) we use the method described above, that is we delete from \(Z_M \) all functions that are reduced to some other functions in \(Z_M \) by substituting 0 (respectively, 1; either 0 or 1).
To prove the FS 01-characterization, we use the general method.

If \(g(x, y, z, t) \) produces a function \(g(x, y) \) such that \(g(0, 1) = g(1, 0) \). If \(g(0, 0) = g(1, 1) \) then \(g(x, x) \in \{0, 1\} \subseteq FS(Z_S \cup Z_S) \). Otherwise \(g \in \{xy, x \vee y, xy, x \lor y\} \subseteq FS(Z_S \cup Z_S) \).

(H9) Let \(f \notin L \) be a minimal function, i.e., \(Sub(f) \setminus \{f\} \subseteq L \). Since \(f \) is not linear, there is a term \(K \) with more than one variable in the polynomial \(p \) of \(f \).

First suppose that \(K \) contains at least three variables, say \(x, y, z \). By minimality of \(f \), identification of \(x \) and \(y \) results in a linear function. So \(p \) contains a term \(K' \) which is obtained from \(K \) by deleting some \(t \in \{x, y\} \). Similar statements are valid for pairs \(x, z \) and \(y, z \). Therefore, at least two of the three terms \(K^x, K^y, K^z \) are contained in \(p \). By symmetry, we may assume that \(p \) contains terms \(K^x \) and \(K^y \). Putting \(x = y \), we see that the terms \(K, K^x, K^y \) only are transformed into \(K^x \), i.e., we obtain a non-linear function, a contradiction to minimality of \(f \). Therefore \(p \) contains a term \(K = xy \) and there are no terms with more than two variables. Clearly, if \(f \) has exactly two variables then it is a function of the form (1).

If \(ess(f) \geq 4 \) then identification of variables distinct from \(x \) and \(y \) produces a non-linear function, a contradiction to minimality of \(f \). Finally, if \(f \) has exactly three essential variables \(x, y, \) and \(z \), then both \(f(x, y, x) \) and \(f(x, y, y) \) do not have a term \(K = xy \) (by minimality of \(f \)). So \(p \) has terms \(xz, yz \) and \(f \) is of the form (2). By substitution of either \(z = 0 \) or \(1 \) a function of the form (2) is transformed to a function of the form (1), i.e., to the set \(Z_L' \cup Z_L' \).

To prove the FS01-characterization, we use the general method.

(H13) Since \(O \subseteq L \), it is sufficient to forbid \(Z_L \) and functions \(x \oplus y \oplus a, x \oplus y \oplus z \oplus a \), where \(a \in \{0, 1\} \). It remains to delete all non-minimal functions.

(H18) Since \(E \subseteq O \), it is sufficient to forbid \(Z_O \cup \bar{Z}_O \) and functions \(x, \bar{x} \). It remains to delete all nonminimal functions.

(H21) Since \(P \subseteq M \), all functions in \(Z_M \) are forbidden for \(P \). It is easy to check that \(x, x \oplus y, x \sim y, x \overline{y}, x \vee \ar{y}, \phi_1, \phi_2, \phi_3, \phi_4, \phi_5 \) are minimal forbidden for \(P \), while the others have a subfunction \(x \lor y \).

Now let \(f \in M \setminus P \). As usual, \(\min T(f) = \{z : f(z) = 1 \text{ and } f^z = 0 \text{ for each } z < x\} \) is the set of all \textit{minimal true points} of \(f \). Since \(f \notin P \), there are distinct points \(z = (a_1, a_2, \ldots, a_n) \in \min T(f) \) and \(\beta = (b_1, b_2, \ldots, b_n) \in \min T(f) \). We put

\[
\begin{align*}
x_i &= \begin{cases}
 x & \text{if } a_i = 0 \text{ and } b_i = 1, \\
y & \text{if } a_i = 1 \text{ and } b_i = 0, \\
z & \text{if } a_i = 0 \text{ and } b_i = 0, \\
t & \text{if } a_i = 1 \text{ and } b_i = 1
\end{cases}
\end{align*}
\]

and obtain a monotone function \(g(x, y, z, t) \) such that \(g(0, 1, 0, 1) = f(z) = 1 \) and \(g(1, 0, 0, 1) = f(z) = 1 \). Since \(z \in \min T(f) \), \(g(0, 0, 0) = g(0, 0, 0, 1) = g(0, 1, 0, 0) = 0. \) Since \(g(1, 0, 0, 1) = 1 \) and \(g \) is a monotone function, we have \(g(1, 1, 0, 1) = g(1, 1, 0, 1) = 1. \) If \(g(1, 0, 1, 0) = 1 \) then \(g(x, y, x, y) = x \lor y \in Z_P \). If \(g(1, 0, 1, 0) = 0 \) then

- \(g(x, y, x, t) = t(x \lor y) \) when \(g(1, 1, 1, 0) = 0 \) (\(g \) is congruent to \(\phi_0 \in Z_P \)),
- \(g(x, y, x, t) = xy \oplus xt \oplus yt \) when \(g(1, 1, 1, 0) = 1 \) (\(g \) is congruent to \(\phi_0 \in Z_P \)).
For the FS$_{01}$-characterization, the set Z_P can be reduced by deleting all functions which are either x or $x \lor y$ after substitution of constants.

(H22) We apply Proposition 4 to $P = \text{FS}(Z_P)$ and $T_0 = \text{FS}(1, x)$. Deleting the functions $x \sim y$ and $x \lor y$ reducible to 1, we obtain $P_0 = \text{FS}(1, x, x \lor y, x \oplus y, x \overline{y}, \phi_0, \phi_1, \phi_2, \phi_3, \phi_4, \phi_8, \phi_9)$. To obtain the FS$_{01}$-characterization, we delete the function \overline{x} (reducible to 1), ϕ_1, ϕ_8 (reducible to $x \lor y$), ϕ_2 (reducible to $x \lor y$), and ϕ_3, ϕ_4 (reducible to $x \overline{y}$).

(H23) We apply Proposition 4 to $P = \text{FS}(Z_P)$ and $T_1 = \text{FS}(0, x)$. Deleting the functions $x \oplus y, x \overline{y},$ and ϕ_8 reducible to 0, we obtain $P_1 = \text{FS}(1, x \lor y, x \sim y, x \lor \overline{y}, \phi_0, \phi_1, \phi_2, \phi_3, \phi_4).$ To obtain the FS$_{1}$-characterization, we delete the function \overline{x} (reducible to 0), ϕ_0, ϕ_9 (reducible to $x \lor y$), ϕ_1, ϕ_2 (reducible to $x \sim y$), and ϕ_2, ϕ_4 (reducible to $x \lor \overline{y}$).

(H25) It is sufficient to consider the case $k = 2$. Let $f \notin A^2$. By the definition, there exist $\alpha = (a_1, a_2, \ldots, a_n)$ and $\beta = (b_1, b_2, \ldots, b_n)$ such that $f(x) = f(\beta) = 1$, but x and β have no common coordinate 1. Putting $x = x_i$ if $a_i = 1$ and $b_j = 0; y = x_i$ if $a_i = 0$ and $b_j = 1; z = x_i$ if $a_i = b_i = 0$, we obtain a function $g(x, y, z)$ such that $g(1, 0, 0) = f(x) = 1$ and $g(0, 1, 0) = f(\beta) = 1$.

- If $g(0, 0, 0) = 1$ then $g(x, x, x) \in \{1, \overline{x}\} \subseteq Z_A$. Let $g(0, 0, 0) = 0.$
- If $g(1, 0, 1) = 1$ then $g(x, x, y) \in \{x \oplus y, x \lor y\} \subseteq Z_A$. Let $g(1, 0, 1) = 0.$
- If $g(0, 1, 1) = 1$ then $g(x, y, y) \in \{x \oplus y, x \lor y\} \subseteq Z_A$. Let $g(0, 1, 1) = 0.$
- If $g(0, 0, 1) = g(1, 1, 0) = 1$ then $g(x, x, z \oplus z, x \lor z) \subseteq Z_A.$
- If $g(0, 0, 1) = g(1, 1, 0) = 0$ then $g \in \{\phi_8, \phi_9, \phi_{10}\} \subseteq Z_A,$ where ϕ_{10} is congruent to $\phi_{10}.$
- If $g(0, 0, 1) = 0$ and $g(1, 1, 0) = 1$ then $g \in \{\phi_2, \phi_{12}\} \subseteq Z_A.$
- If $g(0, 0, 1) = 1$ and $g(1, 1, 0) = 0$ then $g \in \{\phi_1, \phi_{11}\} \subseteq Z_A.$

To prove the second equality we note that it is possible to obtain either $x \oplus y$ or $x \lor y$ from functions belonging to Z_A and having three essential variables by substitution of 0.

(H27) We apply Proposition 4 to M and A^k. For the FS$_0$-characterization, we delete redundant functions $\overline{x}, \phi_1, \phi_2, \phi_3, \phi_4$, and ϕ_7. \square

4. Criteria of completeness in Post classes

In the following theorem we omit trivial criteria for classes of types $E, O, P,$ and P^d.

Theorem 3 (Criteria of completeness). Let Ψ be a Post class. A set of Boolean functions $\Phi \subseteq \Psi$ is complete in Ψ if and only if Φ contains the following functions:

(C1) for $\Psi = T$: $f_0 \notin T_0, f_1 \notin T_1, f_L \notin L, f_S \notin S$, and $f_M \notin M$;
(C2) for $\Psi = T_0$: $f_1 \notin T_1, f_L \notin L, f_M \notin M$, and $f_A \notin A^2$;
(C2d) for $\Psi = T_1$: $f_0 \notin T_0, f_L \notin L, f_M \notin M$, and $f_A \notin A^2$;
(C3) for $\Psi = T_0$: $f_L \notin S, f_M \notin M, f_A \notin A^2$, and $f_A \notin A^2$;
(C4) for $\Psi = L$: $f_0 \notin T_0, f_1 \notin T_1, f_S \notin S$, and $f \notin O$;
(C5) for $\Psi = L_0$: $f_1 \notin T_1$ and $f \notin O$;
(C5d) for $\Psi = L_1$: $f_0 \notin T_0$ and $f \notin O$;
Thus, we have constructed one of the sets: y, x, y, x

The statements (C# d) are dual to (C#), hence their proofs are omitted.

Note that criteria of completeness in classes of type A_k and A^∞ are dual to corresponding criteria in classes of type A^k and A^∞.

Proof. The statements (C#d) are dual to (C#), hence their proofs are omitted.

Necessity can be directly checked by choosing required Boolean functions from Table 2, using the fact that $A^k \supset A^\infty$ and the function

$$h_k(x_1, x_2, \ldots, x_{k+1}) = \bigvee_{i=1}^{k+1} x_1x_2\cdots x_{i-1}x_{i+1}\cdots x_{k+1} \in MA^k_1 \setminus A^k \quad (k \geq 2). \quad (3)$$

Sufficiency. (C1) Since $T_0 = FS(1, \overline{x})$ and $T_1 = FS(0, \overline{x})$, from f_0 and f_1 we obtain either $\{0, 1\}$ or $\{\overline{x}\}$. Since $S = FS(Z_S \cup \overline{Z_S})$, where $Z_S = \{0, xy, x \lor y\}$, using \overline{x} and f_S it is possible to obtain either $\{0, 1\}$, or $\{\overline{x}, xy\} = T$, or $\{\overline{x}, x \lor y\} = T$. The last two equalities are implied by representation of an arbitrary Boolean function in a disjunctive normal form and De Morgan’s laws: $x \lor y = \overline{x} \overline{y}$, $xy = \overline{x} \overline{y}$. Using $f_M \notin M = FS_{01}(\overline{x})$, 0 and 1, we construct \overline{x}. Thus, we have $\{0, 1, \overline{x}\}$.

Since $L = FS_{01}(Z'_L \cup \overline{Z'_L})$, where $Z'_L = \{xy, x\overline{y}, x \lor y\}$, using 0, 1, \overline{x} and f_L we can construct one of the sets (which are complete in T): $\{\overline{x}, xy\}$ or $\{\overline{x}, x \lor y\}$. Indeed, xy is generated by $x\overline{y}$: $x\overline{y} = xy$.

(C2) Using $f_1 \notin T_1 = FS(0, \overline{x})$, we obtain 0, since $\overline{x} \notin T_0$. Using 0 and $f_L \notin L = FS_0(xy, x\overline{y}, x \lor y, y\overline{x}, x \lor \overline{y}, x \lor y)$, it is possible to obtain either xy or $x \lor y$. Indeed, $\overline{x}xy, x \lor \overline{y}, x \lor y \notin T_0$, and using $x\overline{y}$ we can construct xy: $x\overline{xy} = xy$.

From 0 and $f_M \notin M = FS(0, x \oplus y, x\overline{y})$ we obtain either $x \oplus y$ or $x\overline{y}$, since $\overline{x} \notin T_0$. Using 0 and $f_A \notin A^2 = FS_0(1, \overline{x}, x \oplus y, x \lor y)$ we can obtain either $x \oplus y$ or $x \lor y$, since $1, \overline{x} \notin T_0$. Thus, we have constructed one of the sets: $\{x \oplus y, xy\}, \{x \oplus y, x \lor y\}$ or $\{x\overline{y}, x \lor y\}$.

A function belongs to T_0 if and only if its polynomial has constant coefficient 0. Any such polynomial is generated by the functions $x \oplus y$ and xy. Therefore $[x \oplus y, xy] = T_0$.

<table>
<thead>
<tr>
<th>Boolean function</th>
<th>O</th>
<th>T_0</th>
<th>T_1</th>
<th>P</th>
<th>P^d</th>
<th>M</th>
<th>S</th>
<th>L</th>
<th>A^2</th>
<th>A^∞</th>
<th>a^2</th>
<th>a^∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td></td>
<td>T_0</td>
<td></td>
<td>P</td>
<td>P^d</td>
<td>M</td>
<td></td>
<td>L</td>
<td>A^2</td>
<td>A^∞</td>
<td></td>
</tr>
<tr>
<td>\bar{x}</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td>T_1</td>
<td>P</td>
<td>P^d</td>
<td>M</td>
<td></td>
<td></td>
<td>L</td>
<td>A^2</td>
<td>A^∞</td>
<td>a^2</td>
</tr>
<tr>
<td>$x \land y$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td>P</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>A^2</td>
<td>A^∞</td>
<td></td>
</tr>
<tr>
<td>$x \lor y$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>a^2</td>
<td>a^∞</td>
<td></td>
</tr>
<tr>
<td>$x \oplus y$</td>
<td></td>
<td>T_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \sim y$</td>
<td></td>
<td></td>
<td>T_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a^2</td>
<td>a^∞</td>
<td></td>
</tr>
<tr>
<td>$x \oplus y \oplus z$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$xy \oplus xz \oplus yz$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td>S</td>
<td>A^2</td>
<td></td>
<td>a^2</td>
</tr>
<tr>
<td>$x(y \lor z)$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>A^2</td>
<td>A^∞</td>
<td></td>
</tr>
<tr>
<td>$x(y \lor \bar{z})$</td>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A^2</td>
<td>A^∞</td>
<td></td>
</tr>
</tbody>
</table>
The set \(\{x \oplus y, x \lor y\} \) is complete in \(T_0 \), since from \(x \oplus y \) it is possible to obtain \(x \oplus y \oplus z \). Further, using \(x \lor y \), it is possible to construct \(xy: x \oplus y \oplus (x \lor y) = xy \). The set \(\{x \bar{y}, x \lor y\} \) is complete in \(T_0 \), since its closure contains \(x \oplus y; x \bar{y} \lor \bar{x} y = x \lor y \).

(C3) Using \(f_S \not\in S = FS(0, 1, xy, x \lor y, \bar{x}y, \bar{x} \lor y) \) we can obtain either \(xy \) or \(x \lor y \) (since \(0, 1, \bar{x}y, \bar{x} \lor y \not\in T_0 \)). Using \(f_M \not\in M = FS(Z_M) \) we can construct one of the functions: \(\phi_1, \phi_2, \ldots, \phi_8, \phi_3^d, \phi_4^d, \phi_5^d \) or \(\phi_6^d \), since the other functions in \(Z_M \) do not belong to \(T_0 \).

A function belongs to \(T_0 \) if and only if its polynomial has constant coefficient 0 and the total number of terms is odd. Therefore the set \(\Phi = \{xy, \phi_1 = x \oplus y \oplus z\} \) is complete in \(T_0 \). Since \(T_0^d = T_0 \), the dual set \(\Phi^d = \{x \lor y, \phi_1\} \) is complete in \(T_0 \).

Since \(\phi_1 = \phi_2(\phi_2(x, z, y), \phi_2(y, z, x), z) \), we have \([xy, \phi_2] = T_0 \) and \([x \lor y, \phi_2] = [xy, \phi_2]^d = T_0 \). From \(\phi_3 = xy \oplus x \oplus z \) (by substitution of \(x \oplus y \oplus z \) for \(z \)) we can obtain \(\phi_1 \). Besides, \(\phi_5(x, y, x) = xy \). Therefore \([\phi_5] = T_0 \). From \(\phi_6 = xy \oplus xz \oplus y \) (by substitution of \(x \oplus y \oplus z \) for \(x \)) we can obtain a function congruent to \(\phi_2 \). Also, \(\phi_6(x, y, x) = x \lor y \).

Further, we consider the functions \(\phi_3, \phi_4 \in A^2 \). From \(f_A \not\in A^2 \) it is possible to obtain either \(\phi_1, \phi_2, \phi_3 \) (they are already considered), or \(x \lor y \). From \(x \lor y \) and \(\phi_3 \) we obtain a function congruent to \(\phi_2 = \phi_3(x \lor y, y, z) \). Hence \([x \lor y, \phi_3] = T_0 \). Substitution of \(x \lor y \) for \(x \) in \(\phi_3 \) gives either \(\phi_6 \) or \(\phi_8 \) (since from \(x \lor y \) we can obtain any linear function with constant coefficient 0). Then, by substitution of 1, we may obtain any linear function. Finally, \([0, x \lor y \oplus 1] = [1, x \lor y]^d = L^d = L \).

Further, we consider the functions \(\phi_3, \phi_4 \in A^2 \) may be considered in the dual way.

(C4) Since \(S = FS(0, 1, xy, x \lor y, \bar{x}y, \bar{x} \lor y) \) and \(f_S \not\in S \) is a linear function, we can obtain either \(0 \) or \(1 \) from \(f_S \). If we have 0 then from \(f_0 \not\in T_0 = FS_0(1) \) we construct 1. If we have 1 then from \(f_1 \not\in T_1 = FS_1(0) \) we construct 0. Thus, from \(f_0, f_1 \) and \(f_S \) it is possible to obtain \([0, 1]\). Substitution of 0 in the linear function \(f \not\in O \) gives either \(x \oplus y \) or \(x \oplus y \oplus 1 \). The set \([1, x \lor y]\) is complete in \(L \), since from \(x \lor y \) we can obtain any linear function with constant coefficient 0. Then, by substitution of 1, we may obtain any linear function. Finally, \([0, x \lor y \oplus 1] = [1, x \lor y]^d = L^d = L \).

(C5) From \(f_1 \not\in T_1 = FS(0, \bar{x}) \) we can obtain 0, since \(\bar{x} \not\in L_0 \). From \(f \not\in O \) by substitution 0 we can obtain a linear function of \(f \), namely, \(x \oplus y \) (since \(x \oplus y \oplus 1 \not\in L_0 \)). It is easy to see that \([x \oplus y] = L_0 \).

(C6) From \(f \neq x \) by identifying variables we can obtain \(x \oplus y \oplus z \), which generates \(L_{01} \).

(C7) A linear function belongs to \(L_S \) if and only if the number of its essential variables is odd. From \(f_0 \not\in T_0 = FS(1, \bar{x}) \) we obtain \(\bar{x}, \) since \(1 \not\in L_2 \). From \(f \not\in O \) by substitution of \(\bar{x} \) and identification of variables we construct \(x \oplus y \oplus z \oplus 1 \). It is easy to show that \([x \oplus y \oplus z \oplus 1] = L_S \).

(C8) Since \(T_0 = FS(1, \bar{x}) \) and \(1 \not\in S, \bar{x} \in [f_0] \). The set \(Z_L \) contains exactly four self-dual functions, namely, \(\bar{\phi}_0, \bar{\phi}_2, \bar{\phi}_0 \) and \(\bar{\phi}_2 \). Therefore from \(\bar{x} \) and \(f_L \) it is possible to obtain \(\bar{\phi}_0 \) or \(\bar{\phi}_2 \). Since \(\bar{\phi}_2 = \bar{\phi}_0(x, y, \bar{z}) \), it is sufficient to show that \([\bar{\phi}_2] = S \) each function \(f \in S \) can be represented in the following form:

\[
f(x_1, x_2, \ldots, x_n) = x_1 f(1, x_2, \ldots, x_n) \lor \bar{x}_1 \bar{f}(1, \bar{x}_2, \ldots, \bar{x}_n).
\]

Indeed, it holds for \(x_1 = 1 \). If \(x_1 = 0 \) then \(f(0, x_2, \ldots, x_n) = f(0, x_2, \ldots, x_n) = \bar{f}(1, \bar{x}_2, \ldots, \bar{x}_n) \).
By the criterion of completeness in T, any Boolean function $f(1, x_2, \ldots, x_n)$ is generated by $p(x, y) = \overline{xy}$. Let $E(p)$ be an expression for $f(1, x_2, \ldots, x_n)$ in terms of p. ($E(p)$ is determined by a rooted tree T_E directed from the root. Pendant nodes are labelled with Boolean variables. Each non-pendant node corresponds to an occurrence of $p(x, y)$, and it is incident to two outgoing arcs labelled with x and y. Given a function $p' = p'(\ldots, x, \ldots, y, \ldots)$, we may use T_E to construct the corresponding expression $E(p')$ just considering non-pendant nodes of T_E as corresponding to p'. Note that in $E(p')$, we may substitute subexpressions for x and/or y only.) We denote $q(x, y) = \overline{p(x, y)} = \overline{xy}$. Clearly, $E(q)$ is an expression for $\overline{f}(1, x_2, \ldots, x_n)$. We define $r(x_1, x, y) = x_1(xy) \lor x_1(xy) = \overline{p2}(x, y, x_1)$. Since $E(r) = E(p)$ if $x_1 = 0$, and $E(r) = E(q)$ if $(x_1 = 1, (4)$ implies that $E(r)$ is an expression for f. Thus, f is generated by $r(x_1, x, y) = \overline{p2}(x, y, x_1)$.

(C9) From $f_M \notin M$ we obtain either ϕ_1 or ϕ_2, both are in $Z_M \cap S_{01}$. From $f_L \notin L$ we obtain either ϕ_0 or ϕ_2; both are in $Z_L \cap S_{01}$. Thus, we have constructed either $\{\phi_0, \phi_1\}$ or $\{\phi_2\}$. We represent an arbitrary Boolean function $f \in S_{01}$ in the form (4). By the criterion of completeness in T_1, any function $f(1, x_2, \ldots, x_n) \in T_1$ is generated by $p_1(x, y) = x \lor y$ and $p_2(x, y) = x \land y$. Let $E(p_1, p_2)$ be an expression for $f(1, x_2, \ldots, x_n)$ in terms of p_1 and p_2. We denote $q_1(x, y) = \overline{p_1(x, y)} = xy$ and $q_2(x, y) = \overline{p_2(x, y)} = x \lor y$. Clearly, $E(p_1, p_2)$ is an expression for $f(1, x_2, \ldots, x_n)$. We define $r_1(x_1, x, y) = x_1(x \lor y) \lor x_1x_2$ and $r_2(x_1, x, y) = x_1(x \land y) \lor x_1x_3$. Since $E(r_1, r_2) = E(p_1, p_2)$ if $x_1 = 0$, and $E(r_1, r_2) = E(q_1, q_2)$ if $x_1 = 1$, (4) implies that $E(r_1, r_2)$ is an expression for f. Thus, f is generated by $r_1(x_1, x, y) = \phi_0(x_1, x, y)$ and $r_2(x_1, x, y) = \phi_1(x_1, x, y)$, i.e., $[\phi_0, \phi_1] = S_{01}$. Finally, $\phi_0 = \phi_2(x, y, \phi_2(x, y, z))$ and $\phi_1 = \phi_2(x, z, y, \phi_2(y, z, x), z)$ imply $[\phi_2] = S_{01}$.

(C10) First we show that from $f_O \neq x$ it is possible to construct ϕ_0. If there exists an x in which exactly one coordinate a_i is 0 and such that $f_O(x) = 0$, then $f_O(\beta) = 0$ for each $\beta \prec x$ (by monotonicity). Clearly, the number of such β is a half of all $(0, 1)$-points of length n. By self-duality, f_O equals 1 on other sequences. But then $f_O = x_i$, a contradiction. Thus, f_O satisfies the following condition II: $f_O(x) = 1$ for each x having exactly one 0. If $1 < \text{ess}(f_O) \leq 3$ then it is easy to check that $f_O = \phi_0$.

Let $\text{ess}(f_O) \geq 4$. If x has at most one 0 then $f_O(x) = 1$. By self-duality, $f_O(x) = 0$ if x has at most one 0. So there exists $x = (a_1, a_2, \ldots, a_n)$ having at least two 0 and at least two 1, and such that $f_O(x) = 1$. We put $x = x_i$ if $a_i = 0$. We obtain a function $g \in SM$ with $\text{ess}(g) < \text{ess}(f_O)$ satisfying II. Therefore $\text{ess}(g) > 1$. Repeating this process, we obtain a function g' with $1 < \text{ess}(g') \leq 3$, i.e., ϕ_0.

It remains to show that $[\phi_0] = SM$. Let $f \in SM$. When $\text{ess}(f) \leq 3$ there exist exactly two monotone self-dual functions, namely, $x = \phi_0(x, x, x)$ and ϕ_0. Let $\text{ess}(f) > 4$. Suppose that every Boolean function with a smaller number of essential variables is generated by ϕ_0. We define $f_1 = f(x_1, x_2, x_3, x_4, x_5)$. $f_2 = f(x_1, x_2, x_3, x_4, x_5)$, and $f_3 = f(x_1, x_2, x_3, x_4, x_5)$. Let us show that $f = \phi_0(f_1, f_2, f_3)$. We consider an arbitrary point $x = (a_1, a_2, \ldots, a_n)$. We denote by f_i^x the corresponding values of f_i, $i = 1, 2, 3$.

Among a_1, a_2, a_3 at least two are equal, say $a_1 = a_2$. In other words, $f(x) = f_1^x$. If $a_1 = a_2 = 0$ then $f_2^x \leq f(x) \leq f_1^x$ and $\phi_0(f_1^x, f_2^x, f_3^x) = f(x) \\ f_2^x + f(x) \\ f_3^x = f(x)$ (by monotonicity). Indeed, if $f(x) = 0$ then $f_2^x = 0$, while if $f(x) = 1$ then $f_2^x = 1$. If $a_1 = a_2 = 1$ then $f_3^x \leq f(x) \leq f_2^x$ and $\phi_0(f_1^x, f_2^x, f_3^x) = f(x) \\ f_2^x + f(x) \\ f_3^x = f(x) \\ f_2^x + f(x) \\ f_3^x = f(x)$
(by monotonicity). Indeed, if $f(x) = 0$ then $f_x^z = 0$, while if $f(x) = 1$ then $f_x^z = 1$. By inductive hypothesis, f_1, f_2, f_3 are generated by ϕ_0. Thus, f is generated by ϕ_0.

(C11) From f_A and f_x we obtain $x \lor y$ and xy, respectively (the other functions in Z_A and Z_{la} do not belong to M_{01}). We show that $[xy, x \lor y] = M_{01}$. Let $f \in M_{01}$. Recall that $\min T(f)$ is the set of all minimal true points of f. For $x = (a_1, a_2, \ldots, a_n) \in \min T(f)$, we construct a conjunction $K_x = x_1 x_2 \ldots x_k$ of all variables x_i such that $a_i = 1$. It is well-known and easy to see that $f = \bigvee_{x \in \min T(f)} K_x$. So $M_{01} = [xy, x \lor y]$.

(C12) From $f_1 \notin T_1$, $f_A \notin A^2$ and $f_x \notin P^d$ we can obtain $0, x \lor y$ (the other functions in Z_A do not belong to M_{01}) and xy (the other functions in Z_{pd} either do not belong to M_0, or they can be transformed to xy by substitution of $z = 0$). Since $M_{01} = [xy, x \lor y]$ and $M_0 = M_{01} \cup \{0\}$, $M_0 = [0, xy, x \lor y]$.

(C13) From $f_0 \notin T_0 = FS(1, \bar{x})$, $f_1 \notin T_1 = FS(0, \bar{x})$, $f_2 \notin P = FS(1, x \lor y)$ and $f_3 \notin P^d = FS(0, x \lor y)$, we can obtain $1, 0, x \lor y$ and xy, respectively, because $\bar{x} \notin M$. Since $M_{01} = [xy, x \lor y]$, we have $M = M_{01} \cup \{0, 1\} = [0, 1, xy, x \lor y]$.

(C14) From $f_1 \notin T_1 = FS(0, \bar{x})$ it is possible to obtain 0, because $\bar{x} \notin A^\infty$. From $f_M \notin M = FS(\bar{x}, x \lor y, xy)$ it is possible to obtain $x \lor y$, because $x, x \lor y \notin A^\infty$. We show that $[x \lor y] = A^\infty$. Clearly, $f \in A^\infty$ if and only if f is of the form $f = xig$, where $g \in T$. The criterion of completeness in T implies that g is generated by $p(x, y) = \bar{x}y$. Let $E(p)$ be an expression for g in terms of p. We define $r(x_1, x, y) = x_1(\bar{x}y)$. Since $E(r) \in E(\bar{p})$ if $x_1 = 1$, and $E(r) = 0$ if $x_1 = 0$, we see that $E(r)$ is an expression for f. Thus, f is generated by $x_1(\bar{x}y)$. It remains to note that $x \lor y$ generates $xy = x \lor y$ and $x_1 y$.

(C15) From $f_M \notin M$ we can obtain either ϕ_3 or ϕ_4, since $Z_M \cap A^\infty = \{\phi_3, \phi_4\}$. An arbitrary function $f \in A^\infty$ is of the form $f = x_1g$, where $g \in T_1$. By the criterion of completeness in T_1, $T_1 = [x \sim y, x \lor \bar{y}]$. Using arguments as in (C9), we can show that f is generated by $x_1(x \sim y)$ and $x_1(x \lor \bar{y})$, i.e., by ϕ_3 and ϕ_4. Since $\phi_4 = \phi_3(x, \phi_3(y, y, z), z)$ and $\phi_3 = \phi_4(\phi_4(x, y, z), z, y)$,

$$[\phi_3] = [\phi_4] = A^\infty_1. \tag{5}$$

(C16) From $f_P \notin P$ we can obtain ϕ_9, since $Z_P \cap MA^\infty = \{\phi_9\}$. An arbitrary function $f \in MA^\infty$ is of the form $f = x_1g$, where $g \in M_1$. According to the criterion of completeness in M, $M = \{1, xy, x \lor y\}$. Using arguments as in (C9), we can show that f is generated by the functions $x_i, x_i xy$ and $x_1(x \lor y)$ which can be obtained from ϕ_9, since $xy = \phi_9(x, y, y)$.

(C17) From $f_1 \notin T_1 = FS(0, \bar{x})$ we can obtain 0, since $\bar{x} \notin MA^\infty$. From $f_P \notin P$ it is possible to obtain ϕ_9, since $Z_P \cap MA^\infty = \{\phi_9\}$. Since $MA^\infty = MA^\infty_1 \cup \{0\}$ and $[\phi_9] = MA^\infty_1$, $[0, \phi_9] = MA^\infty$.

(C18) From $f_M \notin M$ we can obtain either ϕ_3 or ϕ_4, since $Z_M \cap A^\infty_1 = \{\phi_3, \phi_4\}$. By (5), $[\phi_3] = [\phi_4] = A^\infty_1$. Since $f_A \notin A^{k+1}$, there exist $x_i = (a_{i1}, a_{i2}, \ldots, a_{in}), i = 1, 2, \ldots, k + 1$, such that $f(x_i) = 1$, and for each $j = 1, 2, \ldots, n$ the sequence $(a_{ij}, a_{2j}, \ldots, a_{k+1j})$ contains 0. For every $j = 1, 2, \ldots, n$ we define $g_j(x_1, x_2, \ldots, x_{k+1})$ which

- equals 0 on any point with at least two 0’s,
- equals a_{ij} on any point with exactly one 0 (in the ith position), and
- equals 1 on 1 = (1, 1, \ldots, 1).
Thus, putting $x(y \lor z), h_k = h_k$, see (3). If z has at least one 0 then $g_j(z) = 0$. We have $f_A(0) = 0$ (since $f_A \in A^k \subseteq T_0$) and $h_k(z) = 0$. Also, $f_A(1) = h_k(1) = 1$. If z has exactly one 0 (say, in the ith position), then $g_j(z) = a_{ij}$ and $f_A(a_{i1}, a_{i2}, \ldots, a_{in}) = 1 = h_k(z)$.

The set $\{f_M, f_A\}$.

We show that both Boolean functions $f \in A^k$ is generated by ϕ_4 and h_k. Let m be the number of points z such that $f(z) = 1$. If $m \leq k + 1$ then $f \in A^\infty$ and f is generated by ϕ_4. Let $m \geq k + 2$. Suppose that the statement holds for smaller m. We denote by $\{x_1, x_2, \ldots, x_m\}$ the set of all true points of f. We may assume that $x_1 = 1$. For $i = 2, 3, \ldots, m$, let $\psi_i = f$ on all x_i, except $\psi_i(x_i) = 0$. Clearly, $\psi_i \in A^{k+1}$. Obviously, $h_k(\psi_2, \psi_3, \ldots, \psi_{k+2}) = f$.

We show that $\psi_i \in [\phi_4, h_k]$. Thus, $f \in [\phi_4, h_k]$.

We construct 0 from $f_M \notin M = FS_0(\overline{x}, x \oplus y, x \overline{y})$, since $\overline{x}, x \oplus y \notin A^k$. As for A^k, from f_A we obtain h_k, changing values of g_j on 1 only: $g_j(1) = a_{ij}$. By the criterion of completeness in A^∞, $g_j \in A^\infty = [x \overline{y}]$.

Thus, $[x \overline{y}, h_k] = A^k$. Let $f \in A^k$. If $g \in A^k$, then f is generated by $x(y \lor z)$ and h_k. Since $x(y \lor z) = x\overline{y} \lor \overline{z}$, $f \in [x \overline{y}, h_k]$. Let $f \notin A^k$. If $f = 0$ then $f = x\overline{y}$. If $f \neq 0$ then we construct a function $\psi(x_1, x_2, \ldots, x_{n+1}) = x_1 x_2 \cdots x_{n+1} \lor f(x_1, x_2, \ldots, x_n)$. It follows from $\psi \in A^{k+1}$ that ψ is generated by $x\overline{y}$ and h_k. We substitute $0 = x\overline{y}$ for x_{n+1} in ψ and obtain f. Again, $f \in [x \overline{y}, h_k]$.

We show that ψ_i satisfies the property II: $f_A(x) = 1$ for each $x = (a_1, a_2, \ldots, a_n)$ having exactly one 0. Indeed, if $a_1 = 0$ and $f_A(x) = 0$ then, by monotonicity, $f_A(\beta) = 0$ for any $\beta = (b_1, b_2, \ldots, b_n)$ with $b_1 = 0$. But then $f_A \in A^\infty \subseteq A^{k+1}$, a contradiction to $f_A \notin A^{k+1}$.

Since $f_A \notin A^{k+1}$, there exist $x_i = (a_{i1}, a_{i2}, \ldots, a_{in}), i = 1, 2, \ldots, k+1$, such that $f_A(x_i) = 1$ and there are no all-1 sequences among $\gamma_j = (a_{j1}, a_{j2}, \ldots, a_{j+1}), j = 1, 2, \ldots, n$. Since $f_A \in A^k$, among γ_j there are all points of length $k + 1$ with exactly one 0. Hence $n \geq k + 1$.

Suppose that there exists $\delta = (d_1, d_2, \ldots, d_n)$ such that $f_A(\delta) = 1$ and $|\delta| < k$, where $I = \{i : d_i = 1\}$. We consider points $d_i, i \in I$, having exactly one 0 (in the ith position). The points δ and d_i, for all $i \in I$, must have a common 1, since $f_A \in A^k$. By the construction, it does not hold, a contradiction. Hence $f_A(\delta) = 0$ for any δ having less than k coordinates 1. It follows that if $n = k + 1$ then $f_A = h_k$.

Let $n \geq k + 2$. Since $f_A \notin A^{k+1}$, there exists $\delta = (d_1, d_2, \ldots, d_n)$ such that δ has at least two coordinates 0, at least k coordinates 1, and $f_A(\delta) = 1$. Putting $x_i = x$ if $d_i = 0$, we obtain a function g_A satisfying II. Since δ has at least k coordinates 1, g_A has at least $k + 1$ variables.

Continuing this process, we construct a function g of $k + 1$ variables which satisfies II, i.e., $g = h_k$. Thus, $h_k \in [f_A]$.

When $k = 2$, from $f_A \notin S = FS(0, 1, x\overline{y}, x \lor y, \overline{x \lor y})$ it is possible to obtain xy, since $0, 1, x\overline{y}, x \lor y, \overline{x \lor y} \notin MA_1^k$. By substituting xz for z in $h_2 = xy \lor xz \lor yz$, we construct $x(y \lor z)$. Putting $x = x_1$, $y = x_2$ and $z = x_3 = x_4 = \cdots = x_n$ in h_k, we obtain $x(y \lor z)$.

We show that $[x(y \lor z), h_k] = MA_1^k$. Let $f \in MA_1^k$. Since $f \in M_{k+1}$, $f = K_1 \lor K_2 \lor \cdots \lor K_m$, where K_i consists of conjunctions corresponding to all minimal true points of f. If $m \leq k$
then it follows from \(f \in A^k \) that all minimal true points have a common 1. By the criterion of completeness in \(MA_1^\infty \), \(f \in MA_1^\infty = [x(y \lor z)] \).

We show that the statement holds for \(f \) with \(m \geq k + 1 \) minimal true points. Suppose that it holds for all functions with smaller values of \(m \). We define \(f_j = K_1 \lor K_2 \lor \cdots \lor K_{j-1} \lor K_{j+1} \lor \cdots \lor K_m \) for any \(j = 1, 2, \ldots, m \). Clearly, \(f_j \in M_1 \). If \(f_j(x) = 1 \) then \(f(x) = 1 \). So \(f_j \in A^k \). We obtain \(f_j \in MA_1^k \). By the inductive hypothesis, \(f_j \in [x(y \lor z), h_k] \). Since \(f = h_k(f_1, f_2, \ldots, f_{k+1}) \), we have \(f \in [x(y \lor z), h_k] \).

(C21) From \(f_j \notin T_1 \) we obtain 0. Since \(MA^k = MA_1^k \cup \{0\} \) and \(f_A \neq 0 \), \(f_A \in MA_1^k \). As we have seen, \(h_k \in [f_A] \). When \(k = 2 \), from \(h_2 \) it is possible to construct \(xy \notin S \) (by substitution of 0). By (C20), \(MA_1^k = [xy, h_k] \). Thus, \(MA^k = [0, xy, h_k] \). □

5. Post theorem

Characterizations of Post classes in terms of forbidden subfunctions (Theorem 2) are useful for proving criteria of completeness in these classes (Theorem 3). In turn, it gives a possibility to easily prove the following Post theorem.

Theorem 4 (Post [26,25]). A class of Boolean functions is closed if and only if it is a Post class.

Proof. Necessity. Let \(\Phi \) be a closed class. It is easy to see that if either \(\Phi \subseteq O \) or \(\Phi \subseteq P \), or \(\Phi \subseteq P^d \) then \(\Phi \) is a Post class of type either \(E \), \(O \), \(P \) or \(P^d \). Therefore we assume that \(\Phi \nsubseteq O \), \(P \), \(P^d \). Now we check that \(\Phi \) coincides with a Post class using criteria of completeness (Theorem 3).

Case 1. \(\Phi \subseteq L \).

- If \(\Phi \subseteq T_0 \) and \(\Phi \subseteq T_1 \), then \(\Phi = L_{01} \).
- If \(\Phi \subseteq T_0 \) and \(\Phi \nsubseteq T_1 \), then \(\Phi = L_0 \).
- If \(\Phi \nsubseteq T_0 \) and \(\Phi \subseteq T_1 \), then \(\Phi = L_1 \).
- If \(\Phi \nsubseteq T_0 \) and \(\Phi \nsubseteq T_1 \) and \(\Phi \subseteq S \), then \(\Phi = L_S \).
- If \(\Phi \nsubseteq T_0 \) and \(\Phi \nsubseteq T_1 \) and \(\Phi \nsubseteq S \), then \(\Phi = L \).

Case 2. \(\Phi \nsubseteq L \) and \(\Phi \subseteq S \).

- If \(\Phi \subseteq M \) then \(\Phi = SM \).
- If \(\Phi \nsubseteq M \) and \(\Phi \subseteq T_0 \), then \(\Phi = S_{01} \) (\(\Phi \subseteq T_0 \cap S \) implies \(\Phi \subseteq T_1 \)).
- If \(\Phi \nsubseteq T_0 \) then \(\Phi = S \) (\(\Phi \nsubseteq T_0 \) and \(\Phi \subseteq S \) imply \(\Phi \nsubseteq M \)).

Case 3. \(\Phi \nsubseteq L \), \(S \) and \(\Phi \subseteq A^2 \).

- If \(\Phi \subseteq M \) and \(\Phi \subseteq T_1 \), then either \(\Phi = MA_1^k \), \(k \geq 2 \), or \(\Phi = MA_1^\infty \).
- If \(\Phi \subseteq M \) and \(\Phi \nsubseteq T_1 \), then either \(\Phi = MA^k \), \(k \geq 2 \), or \(\Phi = MA^\infty \).
- If \(\Phi \nsubseteq M \) and \(\Phi \subseteq T_1 \), then either \(\Phi = A_1^k \), \(k \geq 2 \), or \(\Phi = A_1^\infty \).
If $\Phi \not\subseteq M$ and $\Phi \not\subseteq T_1$, then either $\Phi = A^k$, $k \geq 2$, or $\Phi = A^\infty$.

Case 4. $\Phi \not\subseteq L, S$ and $\Phi \subseteq a^2$. It is dual to Case 3.

Case 5. $\Phi \not\subseteq L, S, a^2$ and $\Phi \subseteq M$.

- If $\Phi \subseteq T_0$ and $\Phi \subseteq T_1$, then $\Phi = M_{01}$.
- If $\Phi \subseteq T_0$ and $\Phi \not\subseteq T_1$, then $\Phi = M_0$.
- If $\Phi \not\subseteq T_0$ and $\Phi \subseteq T_1$, then $\Phi = M_1$.
- If $\Phi \not\subseteq T_0$ and $\Phi \not\subseteq T_1$, then $\Phi = M$.

Case 6. $\Phi \not\subseteq L, S, a^2, M$.

- If $\Phi \subseteq T_0$ and $\Phi \subseteq T_1$, then $\Phi = T_{01}$.
- If $\Phi \subseteq T_0$ and $\Phi \not\subseteq T_1$, then $\Phi = T_0$.
- If $\Phi \not\subseteq T_0$ and $\Phi \subseteq T_1$, then $\Phi = T_1$.
- If $\Phi \not\subseteq T_0$ and $\Phi \not\subseteq T_1$, then $\Phi = T$.

Sufficiency is stated in Proposition 2.

Different proofs of the Post theorem were proposed by Kuntzmann [16], Yablonsky et al. [36], Mukhopadhyay [22], Ugolnikov [33], Marchenkov and Ugol’nikov [21], Reschke et al. [28], Reschke and Denecke [27], Pelletier and Martin [23], and Marchenkov [19,20]; see also discussions on the topic in the following monographs: Davio et al. [4], Gavrilov and Sopozhenko [8], Gindikin [9], Glushkov et al. [10], Karpov and Moshchenskii [12], Pippenger [24], and Yablonsky [35]. Ugolnikov [33] used “finite basibility” structure that was first developed by Gavrilov [6,7] and Marchenkov [17]. The method of Reschke and Denecke [27] is based on universal algebra results.

Benzaken [1–3] considered Post classes of monotone Boolean functions and their relation to hypergraph colorings. Many interesting properties of clones were investigated in Shestopal [31,30], Gorlov [11], Rosenberg [29], Yablonsky [34], Gavrilov [7,6], Marchenkov [17,18], Korshunov [13–15], Stetsenko [32], and Foldes and Pogosyan [5]. There is also an extensive bibliography on closed classes in multi-valued logic which has a gap of difficulty even for 3-valued logic.

References

