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Note

On a conjecture about the Randić index
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Abstract

A conjecture of Delorme, Favaron and Rautenbach [On the Randić index, Discrete Math. 257 (2002) 29–38] about the Randić
index of a graph, in relation to its order and minimum degree, is refuted by the AutoGraphiX 2 system. Moreover, a modified
conjecture is derived from presumably extremal graphs obtained with that system.
© 2006 Elsevier B.V. All rights reserved.
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Let G = (V , E) denote a simple connected graph, of order n = |V |, with vertex degrees d1, d2, . . . , dn. The Randić
(or connectivity) index [10] R(G) is defined by

R(G) =
∑
ij∈E

1√
didj

. (1)

This index was extensively studied in mathematical chemistry. More recently study of its mathematical properties has
progressed, spurred by a paper of Bollobas and Erdös [2]. These authors showed that for a connected G

R(G)�
√

n − 1, (2)

the bound is tight if and only if G is a star. A stronger result, due to Delorme, et al. [6], holds if the minimum degree
is greater or equal to 2:

R(G)� 2n − 4√
2n − 2

+ 1

n − 1
, (3)

and the bound is tight if and only if G ≡ SK2.n−2, i.e., a complete split graph is obtained by joining all vertices of a
clique K2 to all vertices of an independent set Sn−2. The proof uses graph theoretic arguments. For another proof using
a linear programming technique, introduced in [3], see Pavlović [7].
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Fig. 1. The smallest counter-example (left) found and its complement (right).

Fig. 2. The expression of the left-hand side of (4) for 5�n�24 and 1���n − 1.

Delorme et al. [6] also formulated a conjecture which includes (2) and (3) as particular cases. Setting R =R(G) and
� = �(G), for a connected graph G,

R(G) − �(n − �)√
�(n − 1)

− �(� − 1)

2

1

n − 1
�0, (4)

and the bound is tight if and only if G ≡ SK�,n−�.
Using again linear programming, Pavlovic [8] proved that (4) holds when � = (n − 1)/2 or � = n/2 (see also [9] for

further results proved by quadratic programming).
In this note, we show that (4) does not hold in general and propose a modified conjecture.
First, counter-examples were sought for, by minimizing heuristically the left-hand side of (4) using the AutoGraphiX

2 (AGX 2) system [1,4,5] in automated mode. For several graphs, negative values were obtained. The smallest counter-
example found is represented in Fig. 1. It has n = 7 vertices, minimum degree � = 5, R = 3.49089 and a value for the
left-hand side of (4) of −0.00151829.

Then the interactive mode of AGX 2 was used to obtain families of graphs with (presumably) minimum R, taking
n and � as parameters. Values of the difference are represented in Fig. 2 and some extremal graphs for which (4) does
not hold in Fig. 3.

It is then easy to see that for given n and ���n, the graph that minimizes the left-hand side of (4) is the complement
of a graph Gn,p,� composed of a (n − � − 1)-regular graph on p vertices together with n − p isolated vertices,
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Fig. 3. Counter-examples (left) and their complements (right) for n = 12 and 7���10.

where

�n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n + 2

2
if n ≡ 0[4]

n + 3

2
if n ≡ 1[4]

n + 4

2
if n ≡ 2[4]

n + 3

2
if n ≡ 3[4]

and p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n − 2

2
if n ≡ 2[4] and � is even,⌈n

2

⌉
if n ≡ 3[4],⌊n

2

⌋
otherwise.

(5)

For such a graph, we have

R = (n − p)(n − p − 1)

2(n − 1)
+ p(p + � − n)

2�
+ p(n − p)√

�(n − 1)
.

Using these results the conjecture of Delorme, et al. becomes the following:

Conjecture. Let G = (V , E) be a graph of order n with Randić index R and minimum degree �. Then,

R�

⎧⎪⎨
⎪⎩

�(n − �)√
�(n − 1)

+ �(� − 1)

2
· 1

n − 1
if � < �n,

(n − p)(n − p − 1)

2(n − 1)
+ p(p + � − n)

2�
+ p(n − p)√

�(n − 1)
if �n ���n − 2

where �n and p are given in (5), with equality if and only if G is a complete split graph SK�,n−� for � < �n, and if and
only if G is the complement of Gn,p,� (described above) for ���n.
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