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Abstract

This article studies a discrete geometric structure on triangulated manifolds and an associated curvature flow
(combinatorial Yamabe flow). The associated evolution of curvature appears to be like a heat equation on graphs,
but it can be shown to not satisfy the maximum principle. The notion of a parabolic-like operator is introduced as
an operator which satisfies the maximum principle, but may not be parabolic in the usual sense of operators on
graphs. A maximum principle is derived for the curvature of combinatorial Yamabe flow under certain assumptions
on the triangulation, and hence the heat operator is shown to be parabolic-like. The maximum principle then allows
a characterization of the curvature as well was a proof of long term existence of the flow.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In [9] we introduced the combinatorial Yamabe flow on three-dimensional piecewise linear complexes
as an analogue of the smooth Yamabe flow (84¢20] for the Yamabe flow aniL3] for a look at the
Yamabe problem). The complexes are geometric in the sense that each Euclidean tetrahedron is given
a metric structure by having the edge lengths determined by weighlsfined at each vertex The
length of an edgdi, j} is defined to be; + r;; all such structures are called a conformal class as
they are a conformal deformation of the triangulation where all edges are of the same length. For each
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(nondegenerate) tetrahedron, we can think of the structure as coming from four mutually tangent spheres
such that the centers are connected by the edges of the tetrahedron ghdtere has radius. We
showed that under sufficient long term existence conditions, the flow converges to constant curvature.

The three-dimensional combinatorial Yamabe flow was inspired by the work of Chow anfB].uo
(see alsd14]). They looked at a combinatorial Ricci flow on two-dimensional simplicial complexes
and showed that the equation satisfies a maximum principle. The maximum principle, which says that
the maximum of a solution decreases and the minimum increases, is one of the most useful concepts
in the study of the heat equation and other parabolic partial differential equations. Maximum principle
techniques have been usedto great benefitin the smooth category. We are especially inspired by Hamilton’s
work on the Ricci flow (se§l2,2)). It is in general very difficult to prove a maximum principle, or even
to prove short term existence of solutions, when you do not have a strictly parabolic equation.

In this paper we investigate an analytic result about the flow which leads to a long-term existence
result for some structures. We find that the evolution of curvature admits a maximum principle under
certain assumptions on the triangulation. It is especially interesting that we are able to derive a maximum
principle even in a situation where the evolution is not parabolic in the usual sense of graph Laplacians.
We thus introduce the notion of parabolic-like operators which satisfy the maximum principle for a given
function. We can then show that under sufficient assumptions the evolution of curvature is parabolic-like.

2. Parabolic-like operators

The weighted (unnormalized) Laplacian on a gréps (V, E), whereV are the vertices anflare the
edges, is defined as the operator

A=Y ai(fj—f)

{i.j}eE

for eachi € V, where the coefficients satisfy; = a;; anda;; >0 (see, for instancg4]). The operator

A takes functions ol to functions onV. The coefficients depend on the edgej} (compard5]). The
symmetry condition is simply self-adjointness with respect to the Euclidean metric, so we can replace it
with another self-adjointness condition. That is, we can define an inner profugt, = >, b; f;g; if

we are given coefficientd; }. An operatoiSis self-adjoint with respect tb if

(va g)b = (f’ Sg)b

It is clear that symmetry corresponds to being self-adjoint with respect to the inner product determined
by b; = 1 for all i. We shall callb;} a (positive definite) metric ib; > O for all i. In order to match with
the notation irf9], we shall let#o denote the vertices ard; denote the edges. In later sections we will
usually consider the inner product coming from the metti§; c -

We define a (discrete) parabolic operator on functions

f:Po0x[A,Z) > R, 1)

where % is a discrete set of vertices afd, Z) C R, as follows. First we shall call¥ the class of
functions of the form (1). We write the evaluationfadt the point(i, r) as f; (¢).
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Definition 1. An operator

P.:7 -7
of the form
dfi()
(Pf)i(6) = ’;I — > a0 — fi@),

{i.j}es1
wherea;; : [A, Z) — R are self-adjoint with respect to some metriégs(t)};c «,. is calledparabolicif
a;j(t)>0foralli, j € ¥oand forallz € [A, Z).

Parabolic operators are of the for@/dt) — 4 if 4 is defined to be an appropriate Laplacian with
weights. We note that it is easy to prove a maximum principle for these operators as follows.

Proposition 2. If P is parabolic and f is a solution t@ f = 0, then f satisfies

ddL;W(I)SO,

dfm
F(Z) >0,

whereM, m € % such that
fm(@)=max{f; (1)},
€90
Jm ()= min{f; (0)}.
€Yo
Proof. SincePf = 0 we have, for a given,
d
S a0 — )
{M,jles1
and sincery; >0 andf; (1)< fu(¢) foralli € 9 — {M} we see that

i

The argument forf,, (¢) is similar. O

We may find operators that are of the form

D a0 = f;(0)

{i,jles1

but some coefficients are negative. The argument above does not work, but it is possible that a maximum
principle still holds if the sum is positive whefy is minimal and the sum is negative whéns maximal

even though each term is not positive or negative, respectively. This motivates our definition of parabolic-
like operators as operators which satisfy the maximum principle for some function.
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Definition 3. An operator

P77 — 7
of the form
dfi ()
(Pf)i(t) = ];t — Z aij()(fj(t) — fi(®)),

{i,jles1

wherea;; : [A, Z) — R are self-adjoint with respect to some metifibs()}, < ., is calledparabolic-like
for a functiong if Pg =0 implies
dgm
dt
dem
dr
forallr € [A, Z).

<0

>0

Parabolic-like operators formally look the same as parabolic operators, but some of the coefficients
a;; may be negative. We shall show that our discrete curvature flow equation is parabolic-like for the
curvature function in a large subset of the domain. The hope is that this will be enough to prove pinching
and convergence theorems.

We note that the maximum and minimum may be done separately, defippey parabolic-likeand
lower parabolic-likein the obvious ways. In some situations we may be interested in only one of these.

3. Combinatorial Yamabe flow

Here, we reintroduce the concepts of combinatorial Yamabe flow, based on the work on the com-
binatorial Ricci flow in two-dimensions by Chow—LU8] and the combinatorial scalar curvature by
Cooper—Rivir6]. Further details can be found[@®]. Recall that if¥ ={%o, 1, ¥2, ¥3} is a simplicial
complex of dimension 3, wher#; is thei-dimensional skeleton, we define the metric structure as a map

r: %9 — (0, 00)

such that for every edge, j} € .1 between verticesandj, the length of the edge &; =r; +r;. The
set of all such metrics is called the conformal class since rescaling wi# deform the structure to the
metric structure with all edges of the same length. We shallzise {7 o, 71, 7 2, 7 3} to denote the
triangulation of one tetrahedron. Recall that in order for four positive numbers, r, r, to define a
nondegenerate tetrahedron, they must satisfy the Descartes inequality

1 1 1 1)\? 1 1 1 1
t J

ri Tk re ri rerg o rg
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We refer toQ; jx¢ as the nondegeneracy quadrafi¢; is related both to the volume of the tetrahedron and
the radius of the circumscripted sphere, i.e. the sphere which is tangent to all six edges of the tetrahedron.
For a given tetrahedron, the existence of a circumscripted sphere is equivalent to being able to define the
lengths by assigning weightsto the vertices.

The curvatureK; associated to a vertexs defined as

Ki=dn— > s,
i, k.tyess

whereq; ¢ is the solid angle vertekin the tetrahedrori, j, k, £}. The solid angle is the area of the
triangle on the unit sphere cut out by the planes determingd, hyk}, {i, j, ¢}, {i, k, £} wherei is the
center of the sphere. Note thaj,, is symmetric in all permutations of the last three indices; when it is
clear which tetrahedron we are working with, we will use the simplified notatiomhe combinatorial
Yamabe flow is defined to be

dr;

E = —K,'r,'.

Careful calculation shows that curvature satisfies the following evolution:
dk;
o - Z [Qijre(Kj — K;i) + Qirje(Kr — Ki) + Qigji (Ke — Ki)].
{i,j.k,0}es3

This form is gotten by using the Schlafli formula (see, for instgddg) which can be written in the
following way in this case:

0 jke 00 jke 00 jke 00 jke
r—e = e g — =
or; ar; ory oryp

0. )

We computed the partial derivatives of the angles to be

Ojke _ 8rjriri [(E PR l)
Orj 3Pijk Pije PikeVijke L\ri — rj —re 1
ff1 1 1\ m(l 1 1
+Ll(Z+ =+ )+ (2+ =+ =
ri ri Ik re ri ri I’j ry
re (1 1 1
+ = (— +—+ —> + @ri +rj+ri +r€)Qiij] 3)
ri ri I’j Ik

and

oot bririr2r? (1/1 1 1 1/1 1 1
ke Tkl —<—+—+—)+—(—+—+—>
orj 3P;jkPijeVijke \ri \rj & Te ri \ri Ttk Tt

2
-(-2))
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whereP; ;i is the perimeter of the trianglg, j, k} andV;;. is the volume of the tetrahedrdn j, k, £}.
The coefficientg; ., are
0 jike

Qijke = — =
J

rj

and are thus easily computed to be

drir?rzry (1,1 1 1\ 1/1 1 1 1 1)\?
Qipp—=— ikt [ 2, = iy (T T NP . 5
ke 3Pijk Pije Vijke (ri (rj * Tk * re) * rj (ri - Tk " I’g) (rk rﬁ) ©)

Geometrically, we find that
0

ij
Z Qijke = ,

{i.).k.t}es

where(?; is the area of the dual faces and the sum is ovératid¢, where duality comes from assigning
the geometric dual to a tetrahedron to be the center of the circumscripted sphere. The evolution of curvature
can be written compactly as

dK; AK
d —
if we define the operatot as
1 i
Afi== > i1 6)
" ijyerr Y

Note that this operator looks like

Afi= Z aij(fj — fi

{i.j}es1

which is a Laplacian on the graplvo, #'1) with weightsa;;, except that it is possible far;; to be
negative. It can be argued thatis a discrete analogue of the Laplace—Beltrami operator. We shall see
that sinceQ; ;x, are not always positive, the maximum principle is not ensured. In the next section we
explore the maximum principle for this Laplacian.

4. Parabolicity of (0/0t) — 4

The operatol©/ot) — 4, where the Laplace—Beltrami operatois defined by (6), may not form a
parabolic operator as defined in Definition 1. This is because the coeffidgpts= (0x; /0r;)r; may, in
fact be negative. We can see this by using our explicit calculation for the coefficients in (5). If we choose,
forinstancer; =ro=rz3=1andrs = % then we see that the tetrahedron is not degenerate since

01234=8>0
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and that one coefficient is negative,

8
Q1234= — <0.

75P123P124V1234

This indicates that the maximum principle will not hold in general. However, there are several indications
that this operator is a good operator and that it might be parabolic-like for the curvature in the sense
of Definition 3. First is that the matri&x; /or; is negative semidefinite, where the nullspace is spanned
by the vector(r1, r2, r3, r4). This is shown in Appendix A. It was originally stated [B] but the proof
there is incorrect. It is interesting to note that the incorrect proof tried to show that the coefficients of the
Laplace—Beltrami operator are all positive, which we have shown to be false by a difficult calculation.
Clearly the case when the coefficients are all positive is a large set.

We pursue a different understanding of why the maximum principle should hold. The first evidence is
that the Schlafli formula tells us that

0 jke 00jjke Ootkjje 00tgjjk
L L e — L g — =

T j 0
or; or; or; or;

while formula (3) fordw; jx¢ /0r; calculated irf9] shows that

0cj jke
—_— <<
ar,-

0

for any tetrahedron. Together with the following lemma, we shall see that there are large restrictions on
when coefficients; ;;, can be negative.

Lemma 4. If Q,pcq <0thenry, rp > min{re, rq}.
Proof. Supposeé2,,.q <0, then
1/1 1 1 1/1 1 1 1 1)
) ) () <o
Eliminating the denominators and regrouping terms we get
rarcl(ra + ro)re + (rp + re)ral + ra(rare(ra + re) — rp(ra — re)?) <0,
S0 in particular we need
rare(ra +re) — rp(rg — re)? <O.

Solving forr, we get

rare(ra +re) rqre
> 5 >
(rg —re) lra —rel

> mln{rd’ r()}

sincery +re>|rg — re|l and mare, rq} > |rg — rc|. Since the initial expression is symmetricamandb,
we getr, > min{ry, r.} too. O
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Corollary 5. If {i, j, k, ¢} € 3 andr; =min{r;, r;, ri, r¢} then
Qijke<0 and Qjire=0

or, equivalently

0ot ife 0ot jike
<0 and —I&=

>0.
or; or;

5. Monotonicity

We need some way to relate the coefficietg, and the curvatures. We attempt this by trying to prove
that theK’s are monotonic as functions of this. This will turn out to be true for the two cases of the
double tetrahedron and the boundary of a 4-simplex, though not in general. We consider a tetrahedron
determined by{r1, r2, r3, r4}. First we prove a lemma about the kinds of degeneracies that can develop.

Proposition 6. If Q;;x, — 0 without any of the; going to0, then one solid angle goes Bx and the
others go td). The solid angle; which goes t&@r corresponds te; being the minimum

Proof. Rewrite Q;ji¢ as

1 1 1 1)\? 1 1 1 1
Qijk£= I’_+_+_+_ -2 —2+—2+—2+—2
t J

ri Tk re reoor e
1(1 1 1 1\ 1/1 1 1 1
== (Z+=+=-Z )+ (2+=+=-=
ri }"j 'k re ri Vj r; Ik re l’j
161 1 1 1\ 1/1 1 1 1
+(Z+=+ - )+ =+ 2+ 22 ). 7)
Ik ri I"j re 'k re ri I"j Ik re

1 1 1 1
i )
ri 145 re l’j
1 1 1 1

Hence ifQ;x¢, = 0 then

1 1 1 1
—4+=+=—-=<0.
rj Ik ry ri
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Now we look at the partial derivative

IS 2 O S S B A
ari ijkt = 712 = VU.

; r j Ik ry ri

So if Q;jxe = 0, we can always increaseto make the tetrahedron nondegenerate.
Now we can categorize the degenerations. Notice that by the formula for volume,

2AijkAije SINBi kg

3£ij '
we must have that if the tetrahedron degenerates; gin— 0 for all dihedral angles. Hengg;,, goes
to O or tox. Since

OBijke 2rirjrer? 1 1 rif 1 1 1 rj

Vijke =

or; 3P;jiPijeVijke T r; ri \rirk  Frire Ykl T

(1 1)(2 1 1)}
+(==-Z)(=+=+=
I"J’ ri ri ' re

(see[9]), if r; is the minimum, themp;;;,/dr; < 0. When the tetrahedron first becomes degenerate, we
can increase; to become nondegenerate again. But this indicates that in thiggaseould decrease,

so if B;jxe = 0, B;jxe Would become negative in a nondegenerate tetrahedron. This is a contradiction, so
we cannot havg; ., = 0 in the limit. Hence

Bijke = Bixje = Piejk =™
ando;jre = 2m. Sincew;jre + o jike + okije + i jk < 2m in any tetrahedron (see proof[i8]), we must have
Ujike = okije = ogijk = 0. O
Now we can prove a monotonicity formula for angles in a given simplex as follows.
Lemma 7. r;<r; ifand only ifo; ;e > o jike.

Proof. It is equivalent to prove that the strict inequality< r; implies «; k¢ > ojixe and thatr; = r;
implieso; jxe = ojike. The second statement is clear. Since we are only looking at one tetrahedron, we can
useo; instead ofy; ;. without causing confusion.

Consider the path(s) = (o1(s), 62(s), 03(s), 04(s)) defined bys(s) = (r;, rj, (L — s)ri + sre, sri +
(1 — s)re), wherer, < rg. We can think ofx as a function of four variables, whe«ér;, r;, ri, r¢) = o;.
Letos(x, y,z, w) = a(z, x, y, w) andea(x, y, z, w) = a(w, x, v, 2).

Consider the function

A= Z rio. (8)
€70
By the Schlafli formula, we find that

dA= )" odr

€79
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SO
oA
a—ri =
?A  du;  Ou
ar,-ar_,- - a_r, B a

i,

More details can be found {®]. Now, consider
d
D(S)ia A(a(s)) = [03(a(s)) — aa(a(s)](re — ri).

The path is constructed so th!a(%) =0. Since the solid angles are between 0 andXs) < 2xn(r; — r¢)
if the tetrahedron is nondegenerate #dr). Consider the derivative

d d?
— D(s) = @A(G(S)) = [0303(0(5)) — 20403(0(s)) + Dg2a(a(s)1(re — 1),

ds
If the tetrahedron is nondegenerate, tki@érds) D(s) < 0 since the Hessian éfis negative definite (see
Appendix A) and none of the; are equal to zero. Now, as we move along the path starting=a0,
either the tetrahedron degenerates for segne (0, %) or the tetrahedron is nondegenerate upie%.
Suppose the first degeneracy is at so. Then either

i=

03(s0) = TI.I:]’L].{O-I (s0)}
or not. If it is the minimum, then at the degeneragy—= 2z and the other angles are 0. This cannot
happen, however, since thén(sg) = 2r(r; — rr), the maximum possible, but the derivative is negative,
since (d/ds)D(sg) <0 implies thatD(s) must have been larger than its maximum for somesg, a
contradiction. Ifa3(s) is not the minimum, then at a degenerate poigit- o4 = 0. So there exists a first
pointsy € (0, %]whereock:ag such that the tetrahedron is nondegenerate (0, s1). HenceD (s1) =0.
Since the tetrahedron is nondegenerat¢®n1), we have(d/ds)D <0 for s € [0, s1). Together with
D(s1) = 0we haveD(s) >0 fors € [0, s1). In particular,D(0) > 0, i.e.oy > oy.

The reverse inequality must be true as well since the argument is symmeiric.

The lemma has the following interesting geometric consequence for a conformal tetrahedron which is
an analogue of the fact that in any triangle the longest side is opposite the largest angle. The author does
not know if this statement is true for a general tetrahedron.

Corollary 8. For a conformal tetrahedron with metric structufer, r»2, r3, r4}, the side with the largest
area is opposite the largest solid angénd the side with the smallest area is opposite the smallest solid
angle

Proof. This follows from the fact that the angig;j., is opposite the side with arq;érjrkrg (rj+ri+re).
O

The lemma can be used to show monotonicity of curvature for small triangulations as follows.
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Corollary 9. In the case of the double tetrahedyon<r; if and only if K; <K ;.
Proof. This follows from the fact thak; = 4n — 20 5. O
Corollary 10. Inthe case of the boundary ofdasimplexr; <r; if and only ifK; <K ;.

Proof. Once again itis sufficient to show that< r; impliesK; < K; andr; =r; impliesK; = K ;. The
latter is trivial. Let us number the verticgs, . . ., 5}. Suppose; < r2. Then

K1 =4n — 01234 — 21235 — 01245 — %1345
K2 = 4n — 02134 — 02135 — 02145 — %2345

We know by Lemma 7 thai134< 21234, 02135< 21235 and ao145< a1245 We thus need only show
02345 < 21345 Consider the path

©) riro
o(§)=———"—",r3,74,75 | .
A —s)ro+sr1 3 Ts

We notice that the nondegeneracy quadrétie(s)) is a polynomial ins with highest term

1 1)\?
()

reor
Since the quadrati®(a(s)) is concave the minimum far € [0, 1] must occur ak = 0 ors = 1. But
sinceQ(a(0)) = Q1345> 0 andQ(a(1)) = Q2345> 0, Q(a(s)) > 0 for all s € [0, 1]. Furthermore,

rira(ra —r1)

(L= s)rz+ris)?
which is negative for alk € [0, 1] by formula (3) since > r1. Hencex(a(0)) > a(a(1)), Or x1245>
02145 U

d
o a(a(s)) = 0qa(a(s))

Proving a similar statement about larger complexes would be much harder, since we cannot pair up
angles which are in the same or bordering tetrahedra as we do here. We shall call this condition the
monotonicity conditiorfior a tetrahedroii, j, k, £}:

r;<rj if and only if K; <K;. (MC)

The condition is true for an open set of triangulations. Unfortunately, MC is not necessarily preserved
under the flow. For instance, if = r; but K; < K; then d;/dt = —K;r; > — K;r; = dr;/dt. The
monotonicity will counteract some of the potential degenerations of the flow, and thus allows proof of
the maximum principle and long term estimates.

6. Proof of the maximum principle

Suppose we have a complex such that each tetrahédrark, ¢} satisfies the monotonicity condition
MC. Assume that; <r;, ri <r¢. We shall first look at the minimum. By Corollary 8;i¢, Qixje, Qicjik
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are all nonnegative, so sinég is the minimum curvature among j, k, ¢},
Qijke(Kj — Ki) + Qixje(Kr — K;) + Qiejk (K¢ — K;) >0.
Now for the entire triangulation, we get thatkf, = min;co,{K;}, then
d
o Km= 2 [k (K) = Kn) + Qutje(Kk = Kn) + Qitji(Ke = K]
{(m,j.k L}ess

must be a sum of nonnegative humbers since in any tetrahedron containing= r,, is the smallest
weight.
We now look at the maximum. We want to show that

Quijk(Ki — K¢) + Qujin(Kj — Kg) + Qi j (K — K¢) <O0.

This is certainly true ifQ;x, Q¢ ik, Quri; are all nonnegative sinck, is the largest curvature. Again
using Lemma 4 we see that(¥,,.; <0 thenb # i, s0Qy;;r >0. We are then left with the case that both

Q¢ jik, Quiij @re negative or only one is negative. First consider the case when both are negative. In this
case it is sufficient to show that

Quijk + Qujik + Qeij =0
since in this case we have
Quijk = — Qujik — Lokij

Qeiji(Ki — Ko) < — (Qejik + Qerij) min{(K; — Ky), (K — Kp)},
< — Qi (Kj — Kg) — Qi j (K — Ky)

since

(Ki — K¢) <min{(K; — Ky), (Ki — K¢)}
<max{(K; — K¢), (K — K¢)}

which is nonpositive an@y; jx, —Q¢ ik, —Qekij >0. SO
Quijk(Ki — K¢) + Qujin(Kj — Kg) + Qi j (K — K¢) <0

and we are done. The inequali®y; i + Q¢jix + Q¢ij >0 follows from the Schlafli formula, since

Oougijk Oaugijk Oaugijk
J ij ij
Qoijk + Qejik + Qekij = ri rj Tk
or; or; org
Oatgjjk
= — re.
ory

This is nonnegative by formula (3) ft; jx /0.
Now suppose that only one is negative, shy;; <0, then similarly it is enough to show

Qeijk + Qekij =0
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since then

Qijk = — Qukij
Quijk(Ki — K¢) < — Qukij (Kx — Ke)

andQy;ix(K; — K¢)<0. We argue from our explicit calculations. The s@;; + Q;; is equal to

bror2rir? 161,11 1) 1/1 1 1 1 1\2
=l e e I P e el I e
3Pk PoijVijke \re \rj e T ri \re rj Ik rj Tk
Arorérer? 1/1,1 1\ 1/1 1 1 1 1\2
bt e Rl (o el Rl Pt
3Pk Peix Vijie \ re e o T Fe \re rj ri rj o ri

which, when simplifying and multiplying by a positive factor, has the same sign as

1
rer,

i

1 1 1
+(2P€jk+P€U) +(Ple+P€jk)_+(2P€tj+PEjk)_k

1 1 1
— Puj — — (Pij + Puij) 5 — Pejk —
ri rj A

This is greater than or equal to

tijLijke Lk it I’jz Lik — I¢ij Vﬂ’k rkz

which is nonnegative sinog<r; and{i, j, k, £} is nondegenerate.
Thus we have proven the following.

Theorem 11. On a complex with a metric structure which satisfies the monotonicity conditonif
K, is the minimum curvaturek ,, is the maximum curvature, and we satisfy the combinatorial Yamabe
flow

— 71 =—Kir;

dr
then

— K, >0
dr ="

and

d
— Ky <0,
da M

i.e. the combinatorial Yamabe flow is parabolic-like for
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Corollary 12. On the double tetrahedron and the boundary ef-simplex the combinatorial Yamabe
flow is parabolic-like for the curvature function K, i.e.

d
— Ky <0,
d M

d

—K,;, >0.

dr
Proof. This follows from Corollaries 9 and 10 which say that the monotonicity condition is satisfied in
these cases.J

The maximum principle has been used by Hamilton and others to prove many pinching results for
geometric evolution equations (e[@0,12])). The most basic use is to show preservation of positive or
negative curvature, which is an easy corollary.

Corollary 13. On a complex with a metric structure which satisfies the monotonicity conditi®for
t € [0, T), then nonnegative curvature is preseryed. if K; >0 for all i for t = 0, thenK; >0 for all i
forall € [0, T). Similarly, nonpositive curvature is preserved

Proof. If K; >0 for all i, then in particular the minimum is nonnegative and increasing.

7. Long term existence

The monotonicity condition (MC) also gives us a way to show long-term existence. The maximum
principle will allow us to bound the growth or decay of the lengths

In order to show long-term existence, we must show tgj, > O for every{i, j, k, ¢} € ¥3 and
thatr; does not go to zero or infinity in finite time for anye %o. Since we are only working with one
tetrahedron, we can uge = Q;;«¢ without fear of confusion. We calculate

%__E<i+i+l_l) (10)

ori rl.2 ri rk  re T

and hence using formula (7) we see

0 0 0 0
or; ar,-
If 0 =0, then we have

30 a3 30 30

D T =5, =0. 11
or; rl+8rj rJ+6rk rk+6rg " (11)
Write the evolution ofQ as
dQ 00 00 00 0Q
— = ——Kiri— — Kjrj — — Kyry — — Kyry
dr or; orj ory ory
00

(K K;) 00 (K K;) 00 (K K;)
=——rj(K;—K;)——r —-K)——r - K;
ar.,- J J i ore k\ Ak i al"g JARAYS i
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using (11). Notice that if; is the minimum, the®Q/or; <0 for j # i by (10). If the monotonicity
condition MC is satisfied, then we must have
do
dr
if 0 =0 sinceK; > K; and hence the tetrahedra do not degenerate.
Now we can show that the maximum principle gives bounds on growth and decayrpf the

>0

Proposition 14. If dK;/dt <0 anddK,,/dr >0 and then there is a constant C such that
ri(0)e” " <ri(t) <ri (0)e",
Proof. Let C(r) = max{K(t), —K,,(t)} >0. Then
—Cri< — Kiri<Cr;
for eachr. Since &K, /dr <0 and &K, /dt >0, we must have (1) < C(0). So if we look at the evolution

dr;
—CO)yr; <—/—<CO)r;
O)r s O)r

we get

ri(0)e “ V<< (0. O

Thus the solution exists for all time. Convergence to constant curvature now followgdtom

8. Further remarks

In this paper we have seen two large sets of possible metric structures within which the maximum
principle holds: the set where the coefficiests,, are positive and the set where the monotonicity
condition MC is satisfied. Unfortunately, neither of these conditions is obviously preserved by the flow. It
would be highly desirable to find a set which is preserved by the flow within which the curvature satisfies
the maximum principle.

Numerical data suggests that the maximum principle holds in much greater generality, even for large
simplicial complexes that do not satisfy monotonicity. Numerical simulation of the flow requires a true
simplicial complex; a CW decomposition will not work because there are not enough vertices to allow the
different tetrahedra in the complex to evolve independently. Thus the current numerical work has been
limited to certain small triangulations (fewer than 15 vertices) of the 3-sphere, the direct product of the
2-sphere with the circle, the twisted product of the 2-sphere with the circle, and the 3-torus. Some of the
small triangulations are due to Lutz (§46,15]). The condition of monotonicity is not particularly well
undgrstood for large complexes either, though it is known not to hold in general even for triangulations
of S°.

The maximum principle is closely connected to the fact that the opefasonegative semi-definite in
the smooth case, but it is not clear that the definition of maximum principle for graph Laplacians which
we use here is the right maximum principle to correspond to the definiteness. This may also be related to
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the fact that the principle eigenfunction in the smooth case is positive, while in the discrete case here the
principle eigenvector usually will not have all positive (or all negative) entries. Perhaps a kind of ‘refined
maximum principle’is needed, as|ib,18]. Also integral type maximum principles have been successful

in studying discrete Laplacians as[ifi.
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Appendix A

In this appendix we prove that thex44 symmetric matrixdo; /0r ;) has three negative eigenvalues
and one zero eigenvalue. The proof6iis incorrect; Igor Rivin has given a new proof[it9]. We do not
understand part of Rivin's proof, but we can complete Rivin’s arguments by a calculation given below.
The complete argument is given here.

The zero eigenvalue comes from the veciar r2, r3, r4) by the Schlafli formula (2). Recall that the
(n — 1)-dimensional minoM (i, j) of a matrixM is the matrix with theith row and thgth column
removed. LeAA be the matrix of partial derivatives, sfy; = 0u; ¢ /0r ;. We take as the domain éfthe
set of(r1, r2, 3, r4) such that the associated tetrahedron is nondegeneratesi.@fori =1,...,4 and
Qijke > 0.

Proposition A1. The minorsA(i, j) have determinant

288V ke
rirj Pijk Pije Pike Pjke

detA(, j) = (—1)i+/+1

and hence is nonzero if the tetrahedrenyj, k, £} is nondegenerate

Proof. We can do a rather lengthy calculation using (3) and (4). Note that we need only compute the
minorsA(i, j) wherei £ j since detdA =0. The minorsA(i, i) on the diagonal are slightly more difficult

to calculate because there are three entries of the more complicatetbigim instead of only two for

the off-diagonalA (i, j) wherei £ j. O

Corollary A2. The matrix A is negative semidefinitank 3, and the nullspace is the span of the vector
(r1,r2,r3, ra).

Proof. The rank follows from Proposition ALl. The nullspace condition follows from the Schlafli formula
(2). Since the domain is connected and the rank is always 3, the eigenvalues must always have the samge
sign. We need only compute the matrix at one pointygayl fori =1, ..., 4. The matrixA at this point
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is easily computed to be

-3 1 1 1
1 1 -3 1 1
1

3/2| 1 1 -3
1 1 1 -3

which has eigenvalues 6-3+v/2, —3v2, —3v2. O
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