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Abstract

This article studies a discrete geometric structure on triangulated manifolds and an associated curvature flow
(combinatorial Yamabe flow). The associated evolution of curvature appears to be like a heat equation on graphs,
but it can be shown to not satisfy the maximum principle. The notion of a parabolic-like operator is introduced as
an operator which satisfies the maximum principle, but may not be parabolic in the usual sense of operators on
graphs. A maximum principle is derived for the curvature of combinatorialYamabe flow under certain assumptions
on the triangulation, and hence the heat operator is shown to be parabolic-like. The maximum principle then allows
a characterization of the curvature as well was a proof of long term existence of the flow.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In [9] we introduced the combinatorialYamabe flow on three-dimensional piecewise linear complexes
as an analogue of the smooth Yamabe flow (see[11,20] for the Yamabe flow and[13] for a look at the
Yamabe problem). The complexes are geometric in the sense that each Euclidean tetrahedron is given
a metric structure by having the edge lengths determined by weightsri defined at each vertexi. The
length of an edge{i, j} is defined to beri + rj ; all such structures are called a conformal class as
they are a conformal deformation of the triangulation where all edges are of the same length. For each
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(nondegenerate) tetrahedron, we can think of the structure as coming from four mutually tangent spheres
such that the centers are connected by the edges of the tetrahedron and theith sphere has radiusri . We
showed that under sufficient long term existence conditions, the flow converges to constant curvature.

The three-dimensional combinatorial Yamabe flow was inspired by the work of Chow and Luo[3]
(see also[14]). They looked at a combinatorial Ricci flow on two-dimensional simplicial complexes
and showed that the equation satisfies a maximum principle. The maximum principle, which says that
the maximum of a solution decreases and the minimum increases, is one of the most useful concepts
in the study of the heat equation and other parabolic partial differential equations. Maximum principle
techniques have been used to great benefit in the smooth category.We are especially inspired by Hamilton’s
work on the Ricci flow (see[12,2]). It is in general very difficult to prove a maximum principle, or even
to prove short term existence of solutions, when you do not have a strictly parabolic equation.

In this paper we investigate an analytic result about the flow which leads to a long-term existence
result for some structures. We find that the evolution of curvature admits a maximum principle under
certain assumptions on the triangulation. It is especially interesting that we are able to derive a maximum
principle even in a situation where the evolution is not parabolic in the usual sense of graph Laplacians.
We thus introduce the notion of parabolic-like operators which satisfy the maximum principle for a given
function. We can then show that under sufficient assumptions the evolution of curvature is parabolic-like.

2. Parabolic-like operators

The weighted (unnormalized) Laplacian on a graphG= (V ,E), whereVare the vertices andEare the
edges, is defined as the operator

(�f )i =
∑

{i,j}∈E

aij (fj − fi)

for eachi ∈ V , where the coefficients satisfyaij = aji andaij �0 (see, for instance,[4]). The operator
� takes functions onV to functions onV . The coefficients depend on the edge{i, j} (compare[5]). The
symmetry condition is simply self-adjointness with respect to the Euclidean metric, so we can replace it
with another self-adjointness condition. That is, we can define an inner product〈f, g〉b =∑

i bifigi if
we are given coefficients{bi}. An operatorS is self-adjoint with respect tob if

〈Sf , g〉b = 〈f, Sg〉b.

It is clear that symmetry corresponds to being self-adjoint with respect to the inner product determined
by bi = 1 for all i. We shall call{bi} a (positive definite) metric ifbi >0 for all i. In order to match with
the notation in[9], we shall letS0 denote the vertices andS1 denote the edges. In later sections we will
usually consider the inner product coming from the metric{ri}i∈S0

.
We define a (discrete) parabolic operator on functions

f : S0 × [A,Z) → R, (1)

whereS0 is a discrete set of vertices and[A,Z) ⊂ R, as follows. First we shall callF the class of
functions of the form (1). We write the evaluation off at the point(i, t) asfi(t).
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Definition 1. An operator

P : F → F

of the form

(Pf )i(t) = dfi(t)

dt
−

∑
{i,j}∈S1

aij (t)(fj (t) − fi(t)),

whereaij : [A,Z) → R are self-adjoint with respect to some metrics{bi(t)}i∈S0
, is calledparabolic if

aij (t)�0 for all i, j ∈ S0 and for allt ∈ [A,Z).

Parabolic operators are of the form(d/dt) − � if � is defined to be an appropriate Laplacian with
weights. We note that it is easy to prove a maximum principle for these operators as follows.

Proposition 2. If P is parabolic and f is a solution toPf = 0, then f satisfies

dfM

dt
(t)�0,

dfm

dt
(t)�0,

whereM,m ∈ S0 such that

fM(t)� max
i∈S0

{fi(t)},
fm(t)� min

i∈S0
{fi(t)}.

Proof. SincePf = 0 we have, for a givent ,

dfM

dt
=

∑
{M,j}∈S1

aMj (t)(fj (t) − fM(t))

and sinceaMj �0 andfj (t)�fM(t) for all i ∈ S0 − {M} we see that

dfM

dt
(t)�0.

The argument forfm(t) is similar. �

We may find operators that are of the form∑
{i,j}∈S1

aij (t)(fj (t) − fi(t))

but some coefficients are negative. The argument above does not work, but it is possible that a maximum
principle still holds if the sum is positive whenfi is minimal and the sum is negative whenfi is maximal
even though each term is not positive or negative, respectively. This motivates our definition of parabolic-
like operators as operators which satisfy the maximum principle for some function.
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Definition 3. An operator

P : F → F

of the form

(Pf )i(t) = dfi(t)

dt
−

∑
{i,j}∈S1

aij (t)(fj (t) − fi(t)),

whereaij : [A,Z) → R are self-adjoint with respect to some metrics{bi(t)}i∈S0
, is calledparabolic-like

for a functiong if Pg = 0 implies

dgM

dt
�0

dgm

dt
�0

for all t ∈ [A,Z).

Parabolic-like operators formally look the same as parabolic operators, but some of the coefficients
aij may be negative. We shall show that our discrete curvature flow equation is parabolic-like for the
curvature function in a large subset of the domain. The hope is that this will be enough to prove pinching
and convergence theorems.

We note that the maximum and minimum may be done separately, definingupper parabolic-likeand
lower parabolic-likein the obvious ways. In some situations we may be interested in only one of these.

3. Combinatorial Yamabe flow

Here, we reintroduce the concepts of combinatorial Yamabe flow, based on the work on the com-
binatorial Ricci flow in two-dimensions by Chow–Luo[3] and the combinatorial scalar curvature by
Cooper–Rivin[6]. Further details can be found in[9]. Recall that ifS={S0,S1,S2,S3} is a simplicial
complex of dimension 3, whereSi is thei-dimensional skeleton, we define the metric structure as a map

r : S0 → (0,∞)

such that for every edge{i, j} ∈ S1 between verticesi andj , the length of the edge is�ij = ri + rj . The
set of all such metrics is called the conformal class since rescaling theri will deform the structure to the
metric structure with all edges of the same length. We shall useT = {T0,T1,T2,T3} to denote the
triangulation of one tetrahedron. Recall that in order for four positive numbersri, rj , rk, r� to define a
nondegenerate tetrahedron, they must satisfy the Descartes inequality

Qijk� =
(

1

ri
+ 1

rj
+ 1

rk
+ 1

r�

)2

− 2

(
1

r2
i

+ 1

r2
j

+ 1

r2
k

+ 1

r2
�

)
>0.
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We refer toQijk� as the nondegeneracy quadratic.Qijk� is related both to the volume of the tetrahedron and
the radius of the circumscripted sphere, i.e. the sphere which is tangent to all six edges of the tetrahedron.
For a given tetrahedron, the existence of a circumscripted sphere is equivalent to being able to define the
lengths by assigning weightsri to the vertices.

The curvatureKi associated to a vertexi is defined as

Ki = 4� −
∑

{i,j,k,�}∈S3

�ijk�,

where�ijk� is the solid angle vertexi in the tetrahedron{i, j, k, �}. The solid angle is the area of the
triangle on the unit sphere cut out by the planes determined by{i, j, k}, {i, j, �}, {i, k, �} wherei is the
center of the sphere. Note that�ijk� is symmetric in all permutations of the last three indices; when it is
clear which tetrahedron we are working with, we will use the simplified notation�i . The combinatorial
Yamabe flow is defined to be

dri
dt

= −Kiri .

Careful calculation shows that curvature satisfies the following evolution:

dKi

dt
=

∑
{i,j,k,�}∈S3

[�ijk�(Kj − Ki) + �ikj�(Kk − Ki) + �i�jk(K� − Ki)].

This form is gotten by using the Schläfli formula (see, for instance[17]) which can be written in the
following way in this case:

ri
��ijk�

�ri
+ rj

��ijk�

�rj
+ rk

��ijk�

�rk
+ r�

��ijk�

�r�
= 0. (2)

We computed the partial derivatives of the angles to be

��ijk�

�ri
= − 8r2

j r
2
k r

2
�

3PijkPij�Pik�Vijk�

[(
2

ri
+ 1

rj
+ 1

rk
+ 1

r�

)

+ rj

ri

(
1

ri
+ 1

rk
+ 1

r�

)
+ rk

ri

(
1

ri
+ 1

rj
+ 1

r�

)

+ r�

ri

(
1

ri
+ 1

rj
+ 1

rk

)
+ (2ri + rj + rk + r�)Qijk�

]
(3)

and

��ijk�

�rj
= 4rirj r2

k r
2
�

3PijkPij�Vijk�

(
1

ri

(
1

rj
+ 1

rk
+ 1

r�

)
+ 1

rj

(
1

ri
+ 1

rk
+ 1

r�

)

−
(

1

rk
− 1

r�

)2
)

, (4)
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wherePijk is the perimeter of the triangle{i, j, k} andVijk� is the volume of the tetrahedron{i, j, k, �}.
The coefficients�ijk� are

�ijk� = ��ijk�

�rj
rj

and are thus easily computed to be

�ijk� = 4rir2
j r

2
k r

2
�

3PijkPij�Vijk�

(
1

ri

(
1

rj
+ 1

rk
+ 1

r�

)
+ 1

rj

(
1

ri
+ 1

rk
+ 1

r�

)
−
(

1

rk
− 1

r�

)2
)

. (5)

Geometrically, we find that

∑
{i,j,k,�}∈S3

�ijk� = �∗
ij

ri�ij

,

where�∗
ij is the area of the dual faces and the sum is over allkand�, where duality comes from assigning

the geometric dual to a tetrahedron to be the center of the circumscripted sphere.The evolution of curvature
can be written compactly as

dKi

dt
= �Ki

if we define the operator� as

�fi = 1

ri

∑
{i,j}∈S1

�∗
ij

�ij

(fj − fi). (6)

Note that this operator looks like

�fi =
∑

{i,j}∈S1

aij (fj − fi),

which is a Laplacian on the graph(S0,S1) with weightsaij , except that it is possible foraij to be
negative. It can be argued that� is a discrete analogue of the Laplace–Beltrami operator. We shall see
that since�ijk� are not always positive, the maximum principle is not ensured. In the next section we
explore the maximum principle for this Laplacian.

4. Parabolicity of (�/�t) − �

The operator(�/�t) − �, where the Laplace–Beltrami operator� is defined by (6), may not form a
parabolic operator as defined in Definition 1. This is because the coefficients�ijk� = (��i/�rj )rj may, in
fact be negative. We can see this by using our explicit calculation for the coefficients in (5). If we choose,
for instance,r1 = r2 = r3 = 1 andr4 = 1

5 then we see that the tetrahedron is not degenerate since

Q1234= 8>0
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and that one coefficient is negative,

�1234= − 8

75P123P124V1234
<0.

This indicates that the maximum principle will not hold in general. However, there are several indications
that this operator is a good operator and that it might be parabolic-like for the curvature in the sense
of Definition 3. First is that the matrix��i/�rj is negative semidefinite, where the nullspace is spanned
by the vector(r1, r2, r3, r4). This is shown in Appendix A. It was originally stated in[6] but the proof
there is incorrect. It is interesting to note that the incorrect proof tried to show that the coefficients of the
Laplace–Beltrami operator are all positive, which we have shown to be false by a difficult calculation.
Clearly the case when the coefficients are all positive is a large set.

We pursue a different understanding of why the maximum principle should hold. The first evidence is
that the Schläfli formula tells us that

ri
��ijk�

�ri
+ rj

��jik�

�ri
+ rk

��kij�

�ri
+ r�

���ijk

�ri
= 0

while formula (3) for��ijk�/�ri calculated in[9] shows that

��ijk�

�ri
<0

for any tetrahedron. Together with the following lemma, we shall see that there are large restrictions on
when coefficients�ijk� can be negative.

Lemma 4. If �abcd <0 thenra, rb >min{rc, rd}.
Proof. Suppose�abcd <0, then

1

ra

(
1

rb
+ 1

rc
+ 1

rd

)
+ 1

rb

(
1

ra
+ 1

rc
+ 1

rd

)
−
(

1

rc
− 1

rd

)2

<0.

Eliminating the denominators and regrouping terms we get

rdrc[(rd + rb)rc + (rb + rc)rd ] + ra(rdrc(rd + rc) − rb(rd − rc)
2)<0,

so in particular we need

rdrc(rd + rc) − rb(rd − rc)
2 <0.

Solving forrb we get

rb >
rdrc(rd + rc)

(rd − rc)
2 �

rdrc

|rd − rc| � min{rd, rc}

sincerd + rc� |rd − rc| and max{rc, rd}� |rd − rc|. Since the initial expression is symmetric ina andb,
we getra � min{rd, rc} too. �
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Corollary 5. If {i, j, k, �} ∈ S3 andri = min{ri, rj , rk, r�} then

�ijk��0 and �jik��0

or, equivalently,

��ijk�

�rj
�0 and

��jik�

�ri
�0.

5. Monotonicity

We need some way to relate the coefficients�ijk� and the curvatures. We attempt this by trying to prove
that theK’s are monotonic as functions of ther’s. This will turn out to be true for the two cases of the
double tetrahedron and the boundary of a 4-simplex, though not in general. We consider a tetrahedron
determined by{r1, r2, r3, r4}. First we prove a lemma about the kinds of degeneracies that can develop.

Proposition 6. If Qijk� → 0 without any of theri going to0, then one solid angle goes to2� and the
others go to0.The solid angle�i which goes to2� corresponds tori being the minimum.

Proof. RewriteQijk� as

Qijk� =
(

1

ri
+ 1

rj
+ 1

rk
+ 1

r�

)2

− 2

(
1

r2
i

+ 1

r2
j

+ 1

r2
k

+ 1

r2
�

)

= 1

ri

(
1

rj
+ 1

rk
+ 1

r�
− 1

ri

)
+ 1

rj

(
1

ri
+ 1

rk
+ 1

r�
− 1

rj

)

+ 1

rk

(
1

ri
+ 1

rj
+ 1

r�
− 1

rk

)
+ 1

r�

(
1

ri
+ 1

rj
+ 1

rk
− 1

r�

)
. (7)

If ri is the minimum, then

1

ri
+ 1

rk
+ 1

r�
− 1

rj
>0,

1

ri
+ 1

rj
+ 1

r�
− 1

rk
>0,

1

ri
+ 1

rj
+ 1

rk
− 1

r�
>0.

Hence ifQijk� = 0 then

1

rj
+ 1

rk
+ 1

r�
− 1

ri
<0.



D. Glickenstein /Topology44 (2005) 809–825 817

Now we look at the partial derivative

�

�ri
Qijk� = − 2

r2
i

(
1

rj
+ 1

rk
+ 1

r�
− 1

ri

)
�0.

So if Qijk� = 0, we can always increaseri to make the tetrahedron nondegenerate.
Now we can categorize the degenerations. Notice that by the formula for volume,

Vijk� = 2AijkAij� sin�ijk�

3�ij

,

we must have that if the tetrahedron degenerates, sin�ijk� → 0 for all dihedral angles. Hence�ijk� goes
to 0 or to�. Since

��ijk�

�ri
= 2rirj r2

k r
2
�

3PijkPij�Vijk�

[
− 1

r2
k

− 1

r2
�

− 2
rj

ri

(
1

rirk
+ 1

rir�
+ 1

rkr�

(
2 + rj

ri

))

+
(

1

rj
− 1

ri

)(
2

ri
+ 1

rk
+ 1

r�

)]

(see[9]), if ri is the minimum, then��ijk�/�ri <0. When the tetrahedron first becomes degenerate, we
can increaseri to become nondegenerate again. But this indicates that in this case�ijk� would decrease,
so if �ijk� = 0, �ijk� would become negative in a nondegenerate tetrahedron. This is a contradiction, so
we cannot have�ijk� = 0 in the limit. Hence

�ijk� = �ikj� = �i�jk = �

and�ijk� = 2�. Since�ijk� + �jik� + �kij� + ��ijk �2� in any tetrahedron (see proof in[8]), we must have

�jik� = �kij� = ��ijk = 0. �

Now we can prove a monotonicity formula for angles in a given simplex as follows.

Lemma 7. ri �rj if and only if�ijk���jik�.

Proof. It is equivalent to prove that the strict inequalityri < rj implies �ijk� > �jik� and thatri = rj
implies�ijk� = �jik�. The second statement is clear. Since we are only looking at one tetrahedron, we can
use�i instead of�ijk� without causing confusion.

Consider the path�(s) = (�1(s), �2(s), �3(s), �4(s)) defined by�(s) = (ri, rj , (1− s)rk + sr�, srk +
(1 − s)r�), whererk < r�. We can think of� as a function of four variables, where�(ri, rj , rk, r�) = �i .
Let �3(x, y, z, w) = �(z, x, y,w) and�4(x, y, z, w) = �(w, x, y, z).

Consider the function

A�
∑
i∈T0

ri�i . (8)

By the Schläfli formula, we find that

dA =
∑
i∈T0

�i dri
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so

�A

�ri
= �i ,

�2A

�ri�rj
= ��j

�ri
= ��i

�rj
.

More details can be found in[9]. Now, consider

D(s)�
d

ds
A(�(s)) = [�3(�(s)) − �4(�(s))](r� − rk).

The path is constructed so thatD(1
2)=0. Since the solid angles are between 0 and 2�, D(s)�2�(r� − rk)

if the tetrahedron is nondegenerate for�(s). Consider the derivative

d

ds
D(s) = d2

ds2A(�(s)) = [�3�3(�(s)) − 2�4�3(�(s)) + �4�4(�(s))](r� − rk)
2.

If the tetrahedron is nondegenerate, then(d/ds)D(s)<0 since the Hessian ofA is negative definite (see
Appendix A) and none of the�i are equal to zero. Now, as we move along the path starting ats = 0,
either the tetrahedron degenerates for somes0 ∈ (0, 1

2) or the tetrahedron is nondegenerate up tos = 1
2.

Suppose the first degeneracy is ats = s0. Then either

�3(s0) = min
i=1,...,4

{�i(s0)}

or not. If it is the minimum, then at the degeneracy,�3 = 2� and the other angles are 0. This cannot
happen, however, since thenD(s0) = 2�(r� − rk), the maximum possible, but the derivative is negative,
since(d/ds)D(s0)�0 implies thatD(s) must have been larger than its maximum for somes < s0, a
contradiction. If�3(s) is not the minimum, then at a degenerate point,�3 = �4 = 0. So there exists a first
points1 ∈ (0, 1

2] where�k=�� such that the tetrahedron is nondegenerate fors ∈ [0, s1). HenceD(s1)=0.
Since the tetrahedron is nondegenerate on[0, s1), we have(d/ds)D <0 for s ∈ [0, s1). Together with
D(s1) = 0 we haveD(s)>0 for s ∈ [0, s1). In particular,D(0)>0, i.e.�k > ��.

The reverse inequality must be true as well since the argument is symmetric.�

The lemma has the following interesting geometric consequence for a conformal tetrahedron which is
an analogue of the fact that in any triangle the longest side is opposite the largest angle. The author does
not know if this statement is true for a general tetrahedron.

Corollary 8. For a conformal tetrahedron with metric structure{r1, r2, r3, r4}, the side with the largest
area is opposite the largest solid angle, and the side with the smallest area is opposite the smallest solid
angle.

Proof. This follows from the fact that the angle�ijk� is opposite the side with area
√

rj rkr�(rj+rk+r�).
�

The lemma can be used to show monotonicity of curvature for small triangulations as follows.
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Corollary 9. In the case of the double tetrahedron, ri �rj if and only ifKi �Kj .

Proof. This follows from the fact thatKi = 4� − 2�ijk�. �

Corollary 10. In the case of the boundary of a4-simplex, ri �rj if and only ifKi �Kj .

Proof. Once again it is sufficient to show thatri < rj impliesKi <Kj andri = rj impliesKi =Kj . The
latter is trivial. Let us number the vertices{1, . . . ,5}. Supposer1 <r2. Then

K1 = 4� − �1234− �1235− �1245− �1345,
K2 = 4� − �2134− �2135− �2145− �2345.

We know by Lemma 7 that�2134< �1234, �2135< �1235 and �2145< �1245. We thus need only show
�2345< �1345. Consider the path

�(s) =
(

r1r2

(1 − s)r2 + sr1
, r3, r4, r5

)
.

We notice that the nondegeneracy quadraticQ(�(s)) is a polynomial inswith highest term

−
(

1

r1
− 1

r2

)2

s2.

Since the quadraticQ(�(s)) is concave the minimum fors ∈ [0,1] must occur ats = 0 or s = 1. But
sinceQ(�(0)) = Q1345>0 andQ(�(1)) = Q2345>0,Q(�(s))>0 for all s ∈ [0,1]. Furthermore,

d

ds
�(�(s)) = �1�(�(s))

r1r2(r2 − r1)

((1 − s)r2 + r1s)
2

which is negative for alls ∈ [0,1] by formula (3) sincer2 >r1. Hence�(�(0))> �(�(1)), or �1245>

�2145. �

Proving a similar statement about larger complexes would be much harder, since we cannot pair up
angles which are in the same or bordering tetrahedra as we do here. We shall call this condition the
monotonicity conditionfor a tetrahedron{i, j, k, �}:

ri �rj if and only if Ki �Kj . (MC)

The condition is true for an open set of triangulations. Unfortunately, MC is not necessarily preserved
under the flow. For instance, ifri = rj but Ki <Kj then dri/dt = −Kiri > − Kjrj = drj /dt . The
monotonicity will counteract some of the potential degenerations of the flow, and thus allows proof of
the maximum principle and long term estimates.

6. Proof of the maximum principle

Suppose we have a complex such that each tetrahedron{i, j, k, �} satisfies the monotonicity condition
MC. Assume thatri �rj , rk �r�. We shall first look at the minimum. By Corollary 5,�ijk�,�ikj�,�i�jk
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are all nonnegative, so sinceKi is the minimum curvature among{i, j, k, �},
�ijk�(Kj − Ki) + �ikj�(Kk − Ki) + �i�jk(K� − Ki)�0.

Now for the entire triangulation, we get that ifKm = mini∈S0{Ki}, then

d

dt
Km =

∑
{m,j,k,�}∈S3

[�mjk�(Kj − Km) + �mkj�(Kk − Km) + �i�jk(K� − Km)]

must be a sum of nonnegative numbers since in any tetrahedron containingm, ri = rm is the smallest
weight.

We now look at the maximum. We want to show that

��ijk(Ki − K�) + ��jik(Kj − K�) + ��kij (Kk − K�)�0.

This is certainly true if��ijk,��jik,��kij are all nonnegative sinceK� is the largest curvature. Again
using Lemma 4 we see that if�abcd <0 thenb �= i, so��ijk �0. We are then left with the case that both
��jik,��kij are negative or only one is negative. First consider the case when both are negative. In this
case it is sufficient to show that

��ijk + ��jik + ��kij �0

since in this case we have

��ijk � − ��jik − ��kij ,

��ijk(Ki − K�)� − (��jik + ��kij )min{(Kj − K�), (Kk − K�)},
� − ��jik(Kj − K�) − ��kij (Kk − K�)

since

(Ki − K�)� min{(Kj − K�), (Kk − K�)}
� max{(Kj − K�), (Kk − K�)}

which is nonpositive and��ijk,−��jik,−��kij �0. So

��ijk(Ki − K�) + ��jik(Kj − K�) + ��kij (Kk − K�)�0

and we are done. The inequality��ijk + ��jik + ��kij �0 follows from the Schläfli formula, since

��ijk + ��jik + ��kij = ���ijk

�ri
ri + ���ijk

�rj
rj + ���ijk

�rk
rk

= − ���ijk

�r�
r�.

This is nonnegative by formula (3) for���ijk/�r�.
Now suppose that only one is negative, say��kij <0, then similarly it is enough to show

��ijk + ��kij �0
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since then

��ijk � − ��kij ,
��ijk(Ki − K�)� − ��kij (Kk − K�)

and��jik(Kj − K�)�0. We argue from our explicit calculations. The sum��ijk + ��kij is equal to

4r�r2
j r

2
k r

2
i

3P�ikP�ijVijk�

(
1

r�

(
1

rj
+ 1

rk
+ 1

ri

)
+ 1

ri

(
1

r�
+ 1

rj
+ 1

rk

)
−
(

1

rj
− 1

rk

)2
)

+ 4r�r2
j r

2
k r

2
i

3P�jkP�ikVijk�

(
1

r�

(
1

rj
+ 1

rk
+ 1

ri

)
+ 1

rk

(
1

r�
+ 1

rj
+ 1

ri

)
−
(

1

rj
− 1

ri

)2
)

which, when simplifying and multiplying by a positive factor, has the same sign as

(P�jk + 2P�ij )
1

rirj
+ (P�jk + P�ij )

1

rirk
+ (P�ij + 2P�jk)

1

r�ri

+ (2P�jk + P�ij )
1

rj rk
+ (P�ij + P�jk)

1

r�rj
+ (2P�ij + P�jk)

1

r�rk

− P�ij

1

r2
i

− (P�jk + P�ij )
1

r2
j

− P�jk

1

r2
k

.

This is greater than or equal to

P�ijQijk� + P�jk

(
1

rirj
− 1

r2
j

)
+ (P�jk − P�ij )

(
1

rirk
− 1

r2
k

)

which is nonnegative sinceri �rj and{i, j, k, �} is nondegenerate.
Thus we have proven the following.

Theorem 11. On a complex with a metric structure which satisfies the monotonicity conditionMC, if
Km is the minimum curvature,KM is the maximum curvature, and we satisfy the combinatorial Yamabe
flow

d

dt
ri = −Kiri

then

d

dt
Km�0

and

d

dt
KM �0,

i.e. the combinatorial Yamabe flow is parabolic-like forK.
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Corollary 12. On the double tetrahedron and the boundary of a4-simplex the combinatorial Yamabe
flow is parabolic-like for the curvature function K, i.e.

d

dt
KM �0,

d

dt
Km�0.

Proof. This follows from Corollaries 9 and 10 which say that the monotonicity condition is satisfied in
these cases.�

The maximum principle has been used by Hamilton and others to prove many pinching results for
geometric evolution equations (e.g.[10,12]). The most basic use is to show preservation of positive or
negative curvature, which is an easy corollary.

Corollary 13. On a complex with a metric structure which satisfies the monotonicity conditionMC for
t ∈ [0, T ), then nonnegative curvature is preserved, i.e. ifKi �0 for all i for t = 0, thenKi �0 for all i
for all t ∈ [0, T ). Similarly, nonpositive curvature is preserved.

Proof. If Ki �0 for all i, then in particular the minimum is nonnegative and increasing.�

7. Long term existence

The monotonicity condition (MC) also gives us a way to show long-term existence. The maximum
principle will allow us to bound the growth or decay of the lengthsri .

In order to show long-term existence, we must show thatQijk� >0 for every{i, j, k, �} ∈ S3 and
thatri does not go to zero or infinity in finite time for anyi ∈ S0. Since we are only working with one
tetrahedron, we can useQ = Qijk� without fear of confusion. We calculate

�Q

�ri
= − 2

r2
i

(
1

rj
+ 1

rk
+ 1

r�
− 1

ri

)
(10)

and hence using formula (7) we see

2Q = −
(

�Q

�ri
ri + �Q

�rj
rj + �Q

�rk
rk + �Q

�r�
r�

)
.

If Q = 0, then we have

�Q

�ri
ri + �Q

�rj
rj + �Q

�rk
rk + �Q

�r�
r� = 0. (11)

Write the evolution ofQ as

dQ

dt
= − �Q

�ri
Kiri − �Q

�rj
Kj rj − �Q

�rk
Kkrk − �Q

�r�
K�r�

= − �Q

�rj
rj (Kj − Ki) − �Q

�rk
rk(Kk − Ki) − �Q

�r�
r�(K� − Ki)
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using (11). Notice that ifri is the minimum, then�Q/�rj �0 for j �= i by (10). If the monotonicity
condition MC is satisfied, then we must have

dQ

dt
�0

if Q = 0 sinceKj �Ki and hence the tetrahedra do not degenerate.
Now we can show that the maximum principle gives bounds on growth and decay of theri .

Proposition 14. If dKM/dt �0 anddKm/dt �0 and then there is a constant C such that

ri(0)e
−Ct �ri(t)�ri(0)e

Ct .

Proof. Let C(t) = max{KM(t),−Km(t)}�0. Then

−Cri � − Kiri �Cri

for eacht . Since dKM/dt �0 and dKm/dt �0, we must haveC(t)�C(0). So if we look at the evolution

−C(0)ri �
dri
dt

�C(0)ri

we get

ri(0)e
−C(0)t �ri(t)�ri(0)e

C(0)t . �

Thus the solution exists for all time. Convergence to constant curvature now follows from[9].

8. Further remarks

In this paper we have seen two large sets of possible metric structures within which the maximum
principle holds: the set where the coefficients�ijk� are positive and the set where the monotonicity
condition MC is satisfied. Unfortunately, neither of these conditions is obviously preserved by the flow. It
would be highly desirable to find a set which is preserved by the flow within which the curvature satisfies
the maximum principle.

Numerical data suggests that the maximum principle holds in much greater generality, even for large
simplicial complexes that do not satisfy monotonicity. Numerical simulation of the flow requires a true
simplicial complex; a CW decomposition will not work because there are not enough vertices to allow the
different tetrahedra in the complex to evolve independently. Thus the current numerical work has been
limited to certain small triangulations (fewer than 15 vertices) of the 3-sphere, the direct product of the
2-sphere with the circle, the twisted product of the 2-sphere with the circle, and the 3-torus. Some of the
small triangulations are due to Lutz (see[16,15]). The condition of monotonicity is not particularly well
understood for large complexes either, though it is known not to hold in general even for triangulations
of S3.

The maximum principle is closely connected to the fact that the operator� is negative semi-definite in
the smooth case, but it is not clear that the definition of maximum principle for graph Laplacians which
we use here is the right maximum principle to correspond to the definiteness. This may also be related to
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the fact that the principle eigenfunction in the smooth case is positive, while in the discrete case here the
principle eigenvector usually will not have all positive (or all negative) entries. Perhaps a kind of ‘refined
maximum principle’ is needed, as in[1,18]. Also integral type maximum principles have been successful
in studying discrete Laplacians as in[7].
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Appendix A

In this appendix we prove that the 4× 4 symmetric matrix(��i/�rj ) has three negative eigenvalues
and one zero eigenvalue. The proof in[6] is incorrect; Igor Rivin has given a new proof in[19]. We do not
understand part of Rivin’s proof, but we can complete Rivin’s arguments by a calculation given below.
The complete argument is given here.

The zero eigenvalue comes from the vector(r1, r2, r3, r4) by the Schläfli formula (2). Recall that the
(n − 1)-dimensional minorM (i, j) of a matrixM is the matrix with theith row and thejth column
removed. LetA be the matrix of partial derivatives, soAij = ��ijk�/�rj . We take as the domain ofA the
set of(r1, r2, r3, r4) such that the associated tetrahedron is nondegenerate, i.e.ri >0 for i = 1, . . . ,4 and
Qijk� >0.

Proposition A1. The minorsA(i, j) have determinant

detA(i, j) = (−1)i+j+1 288Vijk�

rirjPijkPij�Pik�Pjk�

and hence is nonzero if the tetrahedron{i, j, k, �} is nondegenerate.
Proof. We can do a rather lengthy calculation using (3) and (4). Note that we need only compute the
minorsA(i, j) wherei �= j since detA=0. The minorsA(i, i) on the diagonal are slightly more difficult
to calculate because there are three entries of the more complicated form��i/�ri instead of only two for
the off-diagonalA(i, j) wherei �= j . �

Corollary A2. The matrix A is negative semidefinite, rank3,and the nullspace is the span of the vector
(r1, r2, r3, r4).

Proof. The rank follows from Proposition A1. The nullspace condition follows from the Schläfli formula
(2). Since the domain is connected and the rank is always 3, the eigenvalues must always have the same
sign. We need only compute the matrix at one point, sayri =1 for i =1, . . . ,4. The matrixAat this point
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is easily computed to be

1

3
√

2




−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3


 ,

which has eigenvalues 0,−2
3

√
2,−2

3

√
2,−2

3

√
2. �
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