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Abstract

In this paper we prove two existence theorems for elliptic problems with discontinuities.
The first one is a noncoercive Dirichlet problem and the second one is a Neumann problem.
We do not use the method of upper and lower solutions. For Neumann problems we assume
thatf is nondecreasing. We use the critical point theory for locally Lipschitz functionals.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we study elliptic problems with discontinuous nonlinearities. We
use the critical point theory for locally Lipschitz functionals due to Chang [3].

Many authors considered elliptic problems with no Carathéodory right-hand
side. For example, Heikkila and Lakshmikantham [7] had used the method of
upper and lower solution to obtain existence theorems for certain differential
equations with discontinuous nonlinearities involving pseudomonotone operators
but they need the existence of upper and lower solutions. On the other hand, many
authors established existence results for these problems without upper and lower
solutions using the critical point theory for smooth or nonsmooth operators. Hence
they need the differential operator to be of variational type. Some characteristic
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papers on this direction is that of Ambrosseti and Badiale [1], Stuart and Tolland
[10], and Arcoya and Carahorrano [2] and references therein.

We prove two existence theorems. The first one is for a Dirichlet noncoercive
problem. The second one is for a coercive Neumann problem in which we need the
right-hand side to be nondecreasing. This result is closely related with the work
of Stuart and Tolland [10]. It seems that this is the first result in this direction.

Let Z ⊆ RN be a bounded domain withC1-boundaryΓ . The Dirichlet
problem under consideration is{

−div
(∥∥Dx(z)∥∥p−2

Dx(z)
) = f

(
z, x(z)

)
a.e. onZ,

x|Γ = 0, 2 � p <∞.
(1)

The second problem is a Neumann elliptic boundary value problem with
multivalued nonlinear boundary conditions. LetZ ⊆ RN be a bounded domain
with aC1-boundaryΓ :{−div

(∥∥Dx(z)∥∥p−2
Dx(z)

) = f
(
z, x(z)

)
a.e. onZ,

− ∂x
∂np

∈ ∂j(z, τ (x)(z)) a.e. onΓ, 2� p <∞.
(2)

Here the boundary condition is in the sense of Kenmochi [9] and the operator
τ is the trace operator inW1,p(Z).

In the next section we recall some facts and definitions from the critical point
theory for locally Lipschitz functionals and the subdifferential of Clarke.

2. Preliminaries

Let Y be a subset ofX. A function f :Y → R is said to satisfy a Lipschitz
condition (onY ) provided that, for some nonnegative scalarK, one has∣∣f (y)− f (x)

∣∣ �K‖y − x‖
for all points x, y ∈ Y . Let f be Lipschitz near a given pointx, and letv be
any other vector inX. The generalized directional derivative off at x in the
directionv, denoted byf o(x; v) is defined as follows:

f o(x; v)= lim sup
y→x
t↓0

f (y + tv)− f (y)

t
,

wherey is a vector inX andt a positive scalar. Iff is Lipschitz of rankK nearx
then the functionv→ f o(x; v) is finite, positively homogeneous, subadditive and
satisfies|f o(x; v)| � K‖v‖. In additionf o satisfiesf o(x;−v) = (−f )o(x; v).
Now we are ready to introduce the generalized gradient which denoted by∂f (x)

as follows:

∂f (x)= {
w ∈X∗: f o(x; v)� 〈w,v〉 for all v ∈X}

.
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Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂f (x) is a nonempty, convex, weakly compact subset ofX∗ and‖w‖∗ �K

for everyw in ∂f (x).
(b) For everyv in X, one has

f o(x; v)= max
{〈w,v〉: w ∈ ∂f (x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2)⊆ ∂f1 + ∂f2.

Let us recall the (PS)-condition introduced by Chang [3].

Definition 2.1. We say that Lipschitz functionf satisfies the Palais–Smale
condition if any sequence{xn} along which |f (xn)| is bounded andλ(xn) =
Minw∈∂f (xn) ‖w‖X∗ → 0 possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see Costa and Goncalves
[6]):

(PS)∗c,+ Whenever(xn) ⊆ X, (εn), (δn) ⊆ R+ are sequences withεn → 0,
δn → 0, and such that

f (xn)→ c,

f (xn)� f (x)+ εn‖x − xn‖ if ‖x − xn‖ � δn,

then(xn) possesses a convergent subsequence:xn′ → x̂.

Similarly, we define the(PS)∗c condition from below,(PS)∗c,−, by interchanging
x and xn in the above inequality. And finally we say thatf satisfies(PS)∗c
provided it satisfies(PS)∗c,+ and(PS)∗c,−.

Note that these two definitions are equivalent whenf is locally Lipschitz
functional.

Consider the first eigenvalueλ1 of (−∆p,W1,p
o (Z)). From Lindqvist [8] we

know thatλ1> 0 is isolated and simple; that is, any two solutionsu,v of{−∆pu= −div
(‖Du‖p−2Du

) = λ1|u|p−2u a.e. onZ,
u|Γ = 0, 2 � p <∞,

(3)

satisfyu= cv for somec ∈ R. In addition, theλ1-eigenfunctions do not change
sign in Z. Finally, we have the following variational characterization ofλ1
(Rayleigh quotient):

λ1 = inf

[‖Dx‖pp
‖x‖pp

: x ∈W1,p
o (Z), x �= 0

]
.



16 N. Halidias / J. Math. Anal. Appl. 276 (2002) 13–27

Let us now recall the two basic theorems that we will use to prove the existence
results.

Theorem 2.1. If a locally Lipschitz functionalf :X→ R on the reflexive Banach
spaceX satisfies the(PS)-condition and the hypotheses

(i) there exist positive constantsρ anda such that

f (u)� a for all x ∈X with ‖x‖ = ρ;
(ii) f (0)= 0 and there a pointe ∈X such that

‖e‖> ρ and f (e)� 0,

then there exists a critical valuec� a of f determined by

c= inf
g∈G max

t∈[0,1]
f

(
g(t)

)
,

where

G= {
g ∈ C([0,1],X)

: g(0)= 0, g(1)= e
}
.

Theorem 2.2. Suppose a locally Lipschitz functionf defined on a reflexive
Banach space, satisfies the(PS)-condition and it is bounded from below. Then
c= infX f (x) is a critical value off .

In what follows we will use the well-known inequality

N∑
j=1

(
aj (η)− aj (η

′)
)(
ηj − η′

j

)
� C|η− η′|p (4)

for η,η′ ∈ RN , with aj (η)= |η|p−2ηj .

3. Dirichlet problems

In this section we prove an existence result for problem (1) using the mountain
pass theorem of Chang for locally Lipschitz functionals (i.e., Theorem 2.1).

In the following we will need some definitions. Let

f1(z, x)= lim inf
x ′→x

f (z, x ′), f2(z, x)= lim sup
x ′→x

f (z, x ′).

Definition 3.1. We say thatx ∈W1,p
o (Z) is a solution of type I of problem (1) if

there exists somew ∈W−1,q (Z) such that

w(z) ∈ [
f1

(
z, x(z)

)
, f2

(
z, x(z)

)]
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and

−div
(∥∥Dx(z)∥∥p−2

Dx(z)
) =w(z) for almost allz ∈ Z.

Definition 3.2. We say thatx ∈W1,p
o (Z) is a solution of type II of problem (1) if

−div
(∥∥Dx(z)∥∥p−2

Dx(z)
) = f (z, x(z)) for almost allz ∈ Z.

Let us state the hypothesis on the data.

H(f )1 f :Z× R → R is aN measurable function (i.e., ifx(z) is measurable so
is f1(z, x(z)), f2(z, x(z))) and moreover

(i) for almost allz ∈Z and allx ∈ R, |f (z, x)| � c1|x|p−1+ c|x|p∗−1, with
p∗ =Np/(N − p);

(ii) there existsθ > p and ro > 0 such that for all|x| � ro, and all v ∈
∂F (z, x) we have 0< θF(z, x) � vx, and moreover there exists some
a1 ∈ L1(Z) such thatF(z, x)� c3|x|θ − a1(z) for everyx ∈R;

(iii) uniformly for all z ∈Z we have

lim sup
x→0

pF(z, x)

|x|p � θ(z)� λ1

with θ(z) ∈L∞(Z) andθ(z) < λ1 on a set of positive measure.

Remark 3.1. It is easy to see that the functionf (z, x)= θ(z)|x|p−2x+|x|p∗−2x,
with θ ∈ L∞ andθ(z) < λ1 in a set with positive measure, satisfies the above
hypotheses.

Theorem 3.1. If hypothesesH(f )1 holds, then problem(1) has a nontrivial
solution of typeI.

Proof. LetΦ,ψ :W1,p
o (Z)→ R be defined as

Φ(x)= −
∫
Z

x(z)∫
o

f (z, r) dr dz= −
∫
Z

F
(
z, x(z)

)
dz

with

F(z, x)=
x∫
o

f (z, r) dr and ψ(x)= 1

p
‖Dx‖pp.

Then we set the energy functionalR =Φ+ψ . It is clear thatR is locally Lipschitz
functional.

Claim 1. R(·) satisfies the(PS)c,+-condition in the sense of Costa and Gon-
calves [6].
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Indeed, let{xn}n�1 ⊆W
1,p
o (Z) such thatR(xn)→ c and

R(xn)�R(x)+ εn‖x − xn‖ with ‖x − xn‖ � δn

with εn, δn → 0.
Let x = xn + δxn with δ‖xn‖ � δn. First we divide withδ, then in the limit

whenδ→ 0 we have that

lim
δ→0

Φ(xn + δxn)−Φ(xn)

δ
�Φo(xn;xn).

Also we have

‖Dxn + δDxn‖pp − ‖Dxn‖pp = 1

p
‖Dxn‖pp

(
(1+ δ)p − 1

)
.

Now divide this withδ, then in the limit we have that is equal to‖Dxn‖pp . Thus,
we have

Φo(xn;xn)+ ‖Dxn‖pp � −εn‖xn‖.
Note that there exists somew′

n ∈ ∂Φ(xn) such that〈w′
n, xn〉 = Φo(xn;xn). This

means that

〈wn,xn〉 − ‖Dxn‖pp � εn‖xn‖, (5)

for somewn ∈ ∂(−Φ(xn)). Note thatwn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))].
From the choice of the sequence{xn} ⊆W

1,p
o (Z), we have that

θR(xn)�M1 for someM1> 0. (6)

Adding (5) and (6) we have(
θ

p
− 1

)
‖Dxn‖pp +

∫
Z

(
wn(z)xn(z)− θF

(
z, xn(z)

))
dz� εn‖xn‖ +M1.

(7)

From hypothesesH(f )1(ii) we know that for almost allz ∈ Z and allx ∈ R we
havevx − θF (z, x)+ a(z)� 0 for somea ∈Lq∗

(Z) and for everyv ∈ ∂F (z, x).
Suppose now that‖xn‖ → ∞. Inequality (7) then becomes(

θ

p
− 1

)
‖Dxn‖pp +

∫
Z

(
wn(z)xn(z)− θF

(
z, xn(z)

))
dz+

∫
Z

a(z) dz

� εn‖xn‖ +
∫
Z

a(z) dz+M1.

Divide this inequality with‖Dxn‖pp ; we have in the limit

θ

p
− 1� 0.
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Recall that‖Dxn‖ is an equivalent norm inW1,p
o (Z). Sinceθ > p we have a

contradiction. So‖xn‖ is bounded.
From the properties of the subdifferential of Clarke, we have

∂R(xn)⊆ ∂Φ(xn)+ ∂ψ(xn)

⊆ ∂Φ(xn)+ ∂

(
1

p
‖Dxn‖pp

)
(see Clarke [4, p. 83]).

So, we have

〈wn,y〉 = 〈Axn, y〉 −
∫
Z

vn(z)y(z) dz

with wn the element with minimal norm of the subdifferential ofR (recall that
‖wn‖∗ → 0), vn ∈ [f1(z, xn(z)), f2(z, xn(z))] and A :W1,p

o (Z) → W−1,q(Z)

such that

〈Ax,y〉 =
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
RN
dz

for all y ∈ W
1,p
o (Z). But xn

w→ x in W
1,p
o (Z), so xn → x in Lp(Z) and

xn(z)→ x(z) a.e. onZ by virtue of the compact embeddingW1,p
o (Z)⊆ Lp(Z).

Note thatvn is bounded. Choosey = xn − x. Then in the limit we have that
lim sup〈Axn, xn−x〉 = 0. By virtue of the inequality (4) we have thatDxn →Dx

in Lp(Z). So we havexn → x in W1,p
o (Z). The claim is proved. With similar

arguments we prove thatR satisfies also(PS)c,−, thusR satisfies(PS)c.
Now we shall show that there existsρ > 0 such thatR(x) � η > 0 with

‖x‖ = ρ. To this end we will show that for every sequence{xn}n�1 ⊆W
1,p
o (Z)

with ‖xn‖ = ρn → 0 we haveR(xn) ↓ 0. Suppose that this is wrong. Then there
exists a sequence as above such thatR(xn) � 0. Since‖xn‖ → 0 we have that
xn(z)→ 0 a.e. onZ. So we have

‖Dxn‖pp �
∫
Z

pF
(
z, xn(z)

)
dz.

Let yn(z)= xn(z)/‖xn‖1,p. Also, fromH(f )1(iii) we have uniformly for almost
all z ∈ Z that for allε > 0 we can findδ > 0 such that for|x| � δ we have

pF(z, x)� θ(z)|x|p + ε|x|p.
On the other hand, from hypothesisH(f )1(i) we have that for almost all

z ∈ Z and allx ∈ R we have that there exists somec1, c2 such thatpF(z, x) �
c1|x|p + c2|x|p∗

. So we can say thatpF(z, x) � (θ(z) + ε)|x|p + γ |x|p∗ for
almost allz ∈ Z and allx ∈ R with γ � (c1 − θ(z)− ε)δp−p∗ + c2.
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Then we obtain

‖Dxn‖pp �
∫
Z

(
θ(z)+ ε

)∣∣xn(z)∣∣p + γ
∣∣xn(z)∣∣p∗

dz. (8)

Dividing inequality (8) with‖xn‖p1,p , we have

‖Dyn‖p �
∫
Z

(
θ(z)+ ε

)∣∣yn(z)∣∣p dz+ γ

∫
Z

|xn(z)|p∗
dz

‖xn‖p1,p
� (λ1 + ε)‖yn‖pp + γ1‖xn‖p

∗−p
1,p ;

here we have used the fact thatW1,p
o (Z) is continuously embedded onLp

∗
(Z).

Using the variational characterization of the first eigenvalue we have that

λ1‖yn‖pp � ‖Dyn‖pp � (λ1 + ε)‖yn‖pp + γ1‖xn‖p
∗−p

1,p .

Recall that‖yn‖ = 1 so yn → y weakly in W1,p
o (Z), yn(z) → y(z) a.e.

onZ. Thus, from the last inequality we have that‖Dyn‖ → λ1‖y‖p . Also, from
the weak lower semicontinuity of the norm we have‖Dy‖ � lim inf ‖Dyn‖ →
λ1‖y‖p . Using the Rayleigh quotient we have that‖Dy‖ = λ1‖y‖p . Recall

that yn → y weakly inW1,p
o (Z) and‖Dyn‖ → ‖Dy‖. So, from a well-known

argument we obtainyn → y in W
1,p
o (Z) and since‖yn‖ = 1 we have that

‖y‖ = 1. That is,y �= 0 and from the equality‖Dy‖ = λ1‖y‖p we have that
y(z)= ±u1(z). Suppose thaty(z)= u1(z) > 0.

Dividing now inequality (8) with‖xn‖p1,p we have

λ1‖yn‖pp � ‖Dyn‖pp
�

∫
Z

θ(z)
|xn(z)|p
‖xn‖p1,p

dz+ ε

∫
Z

|xn(z)|p
‖xn‖p1,p

dz+ γ

∫
Z

|xn(z)|p∗

‖xn‖p1,p
dz

⇒
∫
Z

(
λ1 − θ(z)

)∣∣yn(z)∣∣p dz� ε‖yn‖pp + γ1‖xn‖p
∗−p

1,p .

So in the limit we have

(λ1 −µ)

∫
A

u
p

1 (z) dz�
∫
Z

(
λ1 − θ(z)

)
u
p

1 (z) dz� ε‖u1‖pp for everyε > 0,

⇒ (λ1 −µ)� ε
‖u1‖pp∫

A
u
p

1 (z) dz
for everyε > 0.

Recall that we haveθ(z)� µ< λ1 onA⊆Z with |A|> 0.
Thus we have a contradiction. So, there existsρ > 0 such thatR(x) � η > 0

for all x ∈W1,p
o (Z) with ‖x‖ = ρ.
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Also, from the hypothesisH(f )1(ii), for almost all z ∈ Z and allx ∈ R we
have

F(z, x)� c|x|θ − c1, for somec, c1> 0. (9)

Then for allξ > 0, we have

R(ξu1)= ξp

p
‖Du1‖pp −

∫
Z

F
(
z, ξu1(z)

)
dz

� ξp

p
‖Du1‖pp − c2ξ

θ‖u1‖θθ (for somec2> 0)

� ξp
(
c1 − c2ξ

θ−p)
.

By virtue of hypothesis forξ big enough we have thatR(ξu1) � 0. So we
can apply Theorem 2.1 and have thatR(·) has a critical pointx ∈ W1,p

o (Z).
So 0∈ ∂(ψ(x) + Φ(x)). Let ψ1(x) = ‖Dx‖p/p. Then letψ̂1 :Lp(Z)→ R the
extension ofψ1 in Lp(Z). Then∂ψ1(x)⊆ ∂ψ̂1(x) (see Chang [3]). It is easy to
prove that the nonlinear operatorÂ :D(A)⊆ Lp(Z)→ Lq(Z) such that

〈
Âx, y

〉 = ∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
dz for all y ∈W1,p(Z),

with D(A) = {x ∈ W1,p
o (Z): Âx ∈ Lq(Z)}, satisfiesÂ = ∂ψ̂1. Indeed, first we

show thatÂ⊆ ∂ψ̂ and then it suffices to show thatÂ is maximal monotone:

〈
Âx, y − x

〉 = ∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)−Dx(z)

)
RN
dz

=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
RN
dz−

∫
Z

∥∥Dx(z)∥∥p dz

�
∫
Z

(‖Dx(z)‖q(p−2)‖Dx(z)‖q
q

+ ‖Dy(z)‖p
p

)
dz− ‖Dx‖pp

= ‖Dx‖pp
q

− ‖Dx‖p + ‖Dy‖pp
p

= ψ̂1(y)− ψ̂1(x).

The monotonicity part is obvious using inequality (4). The maximality needs
more work. LetJ :Lp(Z)→Lq(Z) be defined asJ (x)= |x(·)|p−2x(·). We will
show thatR(Â+ J )= Lq(Z). Assume for the moment that this holds. Then let
v ∈ Lp(Z), v∗ ∈ Lq(Z) such that(

Â(x)− v∗, x − v
)
pq

� 0
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for all x ∈ D(Â). Therefore there existsx ∈ D(Â) such thatÂ(x) + J (x) =
v∗ + J (v) (recall that we assumed thatR(Â + J ) = Lq(Z)). Using this in the
above inequality we have that(

J (v)− J (x), x − v
)
pq

� 0.

But J is strongly monotone. Thus we have thatv = x and Â(x) = v∗. There-
fore Â is maximal monotone. It remains to show thatR(Â + J ) = Lq(Z). But
Ĵ = J |W1,p(Z) :W

1,p(Z)→ W1,p(Z)∗ is maximal monotone, because is demi-

continuous and monotone. SoA+ Ĵ is maximal monotone. But it is easy to see
that the sum is coercive. So is surjective. Therefore,R(A+ Ĵ )=W1,p(Z)∗. Then
for everyg ∈Lq(Z), we can findx ∈W1,p(Z) such that

A+ Ĵ (x)= g ⇒ A(x)= g − Ĵ (x) ∈ Lq(Z) ⇒ A(x)= Â(x).

Thus,R(Â+ J )= Lq(Z).
So, we can say that∫

Z

w(z)y(z) dz=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
dz (10)

for somew ∈W−1,q (Z) and in factw ∈ Lq∗
(Z) such thatw(z) ∈ [f1(z, x(z)),

f2(z, x(z))] (note that∂(−Φ)(x)⊆ [f1(z, x(z)), f2(z, x(z))], see Chang [3]) for
everyy ∈W1,p

o (Z). Let y = φ ∈C∞
o (Z). Then we have∫

Z

w(z)φ(z) dz=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dφ(z)

)
dz.

But

div
(∥∥Dx(z)∥∥p−2

Dx(z)
) ∈W−1,q(Z);

then we have that

div
(∥∥Dx(z)∥∥p−2

Dx(z)
) ∈ Lq∗

(Z)

becausew ∈Lq∗
(Z). Sox is of type I. ✷

Remark 3.2. Notice that we have used an extend nonresonace hypotheses at zero
from that of Ambrosseti–Rabinowitz used (see De Figueiredo [5, p. 53]).

The question whenever problem (1) has a solution of type II remains open.

4. Neumann problems

As before we introduce two types of solutions for problem (2). Solution of
type I and of type II. The first result concerns solutions of type I.

Let us state the hypotheses for the functionf andj of problem (2).
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H(f )3 f :Z× R → R is a function such that
(i) for almost all z ∈ Z is N -measurable (i.e., ifx(·) ∈ W1,p(Z) is

measurable so isf1(z, x(z)), f2(z, x(z)));
(ii) there existsh : R → R such thath(x)→ ∞ asn→ ∞ and there exists

M > 0 such that for almost allz ∈ Z −F(z, x) � h(|x|) for |x| �M

with F(z, x)= ∫ x
o
f (z, r) dr;

(iii) for almost all z ∈ Z and allx ∈ R |f (z, x)| � a(z)+ c|x|µ−1, µ < p
with a ∈ Lq(Z).

H(j) j :Z × R → R such thatz → j (z, x) is measurable andx → j (z, x)

locally Lipschitz. Alsoj (z, ·) � 0 for almost allz ∈ Z and finally |w(z)| �
a1(z)+ c|x|θ−1 with θ < p∗ =Np/(N − p) for everyw(z) ∈ ∂j (z, x).

Remark 4.1. If hypothesisH(j) holds, then Theorem 2.7.5 of Clarke [4] is
satisfied.

Proposition 4.1. If hypothesesH(f )3,H(j) hold, then problem(2) have a
solution of typeI.

Proof. Let

Φ(x)= −
∫
Z

F
(
z, x(z)

)
dz

and

ψ(x)= 1

p
‖Dx‖pp +

∫
Γ

j
(
z, τ

(
x(z)

))
dσ.

Then the energy functional isR(x) = Φ(x)+ ψ(x). It is well known thatR is
locally Lipschitz.

Claim 1. R(·) satisfies the (PS)-condition of Chang [3].

Indeed, let{xn}n�1 ⊆W1,p such thatR(xn)→ c asn→ ∞. We shall prove
that this sequence is bounded inW1,p(Z). Suppose not. Then‖xn‖ → ∞. Let
yn(z)= xn(z)/‖xn‖. Then clearly we haveyn

w→ y in W1,p(Z). From the choice
of the sequence we have

Φ(xn)+ 1

p
‖Dxn‖pp �M (11)

(recall thatj (z, ·)� 0). Dividing with ‖xn‖ the last inequality, we have

−
∫
Z

F(z, x(z))

‖xn‖p dz+ 1

p
‖Dyn‖pp � M

‖xn‖p .
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By virtue of hypothesisH(f )3(iii) we have thatF(z, x(z))/‖xn‖pp → 0. So
lim sup‖Dyn‖pp → 0. Thus,‖Dy‖ = 0. So it arises thaty = c ∈ R. But ‖yn‖ = 1,
soc �= 0. So we have that|xn(z)| → ∞. From hypothesesH(f )3(ii) we have that
there exists somea ∈ Lq(Z) such that for allx ∈ R and for almost allz ∈ Z we
have−F(z, x)� h(|x|)− a(z). Going back to (11) and using this fact we have a
contradiction. So‖xn‖ is bounded, i.e.,xn

w→ x in W1,p(Z). It remains to show
thatxn → x in W1,p(Z). From the properties of the subdifferential of Clarke, we
have

∂R(xn)⊆ ∂Φ(xn)+ ∂ψ(xn)

⊆ ∂Φ(xn)+ ∂

(
1

p
‖Dxn‖pp

)
+

∫
Γ

∂j
(
z, τ

(
xn(z)

))
dσ

(see Clarke [4, p. 83]).

So we have

〈wn,y〉 = 〈Axn, y〉 + 〈rn, y〉Γ −
∫
Z

vn(z)y(z) dz

with rn(z) ∈ ∂j (z, xn(z)), vn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))] andwn the element
with minimal norm of the subdifferential ofR, andA :W1,p(Z)→W1,p(Z)∗ is
such that

〈Ax,y〉 =
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
RN
dz.

But xn
w→ x in W1,p(Z), soxn → x in Lp(Z) andxn(z) → x(z) a.e. onZ by

virtue of the compact embeddingW1,p(Z) ⊆ Lp(Z). Thus, rn is bounded in
Lq(Z) (see Chang [3, p. 104, Proposition 2]), i.e.,rn

w→ r in Lθ
′
(Z). Choose

y = xn− x. Then in the limit we have that lim sup〈Axn, xn − x〉 = 0 (note thatvn
is bounded). By virtue of the inequality (4) we have thatDxn →Dx in Lp(Z).
So we havexn → x in W1,p(Z). The claim is proved.

Claim 2. R(·) is bounded from below.

Indeed, suppose not. Then there exists some sequence{xn}n�1 such that
R(xn)� −n. Then we have

Φ(xn)+ψ(xn)� −n
(recall thatj (z, ·) � 0). By virtue of the continuity ofΦ + ψ we have that
‖xn‖ → ∞ (because if‖xn‖ was bounded thenΦ(xn) + ψ(xn) shall was
bounded). Dividing with‖xn‖p and letting n → ∞ we have as before a
contradiction (by virtue of hypothesisH(f )3(ii)). ThereforeR(·) is bounded from
below.
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So by Theorem 2.2 we have that there existsx ∈ W1,p(Z) such that 0∈
∂R(x). That is, 0∈ ∂Φ(x) + ∂ψ(x). Let ψ1(x) = ‖Dx‖p/p and ψ2(x) =∫
Γ j (z, τ (x)(z)) dσ . Then letψ̂1 :Lp(Z)→ R be the extension ofψ1 in Lp(Z).

Then ∂ψ1(x) ⊆ ∂ψ̂1(x) (see Chang [3]). From Theorem 3.1 we know that the
nonlinear operator̂A :D(A)⊆ Lp(Z)→Lq(Z) such that

〈
Âx, y

〉 = ∫
Z

∥∥Dx(Z)∥∥p−2(
Dx(z),Dy(z)

)
dz for all y ∈W1,p(Z),

with D(A)= {x ∈W1,p(Z): Âx ∈ Lq(Z)}, satisfiesÂ= ∂ψ̂1.
So, we can say that∫

Z

w(z)y(z)=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
dz+

∫
Γ

v(z)y(z) dσ, (12)

with w(z) ∈ [f1(z, x(z)), f2(z, x(z))] and v(z) ∈ ∂j (z, τ (x(z))), for everyy ∈
W1,p(Z). Let y = φ ∈ C∞

o (Z). Then we have∫
Z

w(z)φ(z) dz=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dφ(z)

)
dz.

But

div
(∥∥Dx(z)∥∥p−2

Dx(z)
) ∈W−1,q (Z);

then we have that

div
(∥∥Dx(z)∥∥p−2

Dx(z)
) ∈Lq(Z)

becausew(Z) ∈ Lq(Z).
Thus−div(‖Dx(z)‖p−2Dx(z)) ∈ [f1(z, x(z)), f2(z, x(z))] a.e. onZ. Going

back to (12) and lettingy = C∞(Z), and finally using the Green formula (1.6)
of Kenmochi [9], we have that−∂x/∂np ∈ ∂j (z, τ (x)(z)). Sox ∈W1,p(Z) is of
type I. ✷

Let now state the following condition onf .

H(f )4 f satisfiesH(f )3 but is independent ofz and is nondecreasing.

Theorem 4.1. If the hypothesesH(f )4,H(j) holds, then problem(2) has a
solution of typeII .

Proof. If

Φ(x)= −
∫
Z

F
(
x(z)

)
dz, ψ(x)= 1

p
‖Dx‖pp +

∫
Γ

j
(
z, x(z)

)
dz
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then the energy functional now isR =Φ +ψ .
From Proposition 4.1 we know that there existsx ∈ W1,p(Z) such that

minimizesR. So 0�R(y)−R(x) for all y ∈W1,p(Z). Thus 0�Φ(y)−Φ(x)+
ψ(y)−ψ(x) for all y ∈W1,p(Z). Then(−Φ)(y)− (−Φ)(x)�ψ(y)−ψ(x) for
all y ∈ W1,p(Z). Choose nowy = x + tv with v ∈ W1,p(Z) and divide with
t > 0. Then in the limit we have (note that−Φ is convex)

(−Φ)′(x; v)�ψ ′(x; v)�ψo(x; v).
So we infer that〈w,y〉 = 〈Ax,y〉 + 〈v, y〉Γ for all w ∈ ∂(−Φ)(x) for some

v ∈ ∂(∫Γ j (z, x(z)) dz and ally ∈W1,p(Z).
We will show thatλ{z ∈Z: x(z) ∈D(f )} = 0 withD(f )= {x ∈ R: f (x+) >

f (x−)}, that is the set of upward discontinuities.
So letw ∈ ∂(−Φ(x)) and for anyt ∈D(f ), set

ρ±(z)= [
1− χt

(
x(z)

)]
w(z)+ χt

(
x(z)

)[
f

(
x(z)±

)]
, (13)

where

χt(s)=
{

1 if s = t,

0 otherwise.
(14)

Thenρ± ∈ Lp(Z) andρ± ∈ ∂(−Φ)(x). So∫
Z

ρ±(z)y(z) dz=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dy(z)

)
RN
dz+

∫
Γ

v(z)y(z) dσ

for all y ∈W1,p(Z).
So fory = φ ∈ C∞

o (Z) we have∫
Z

ρ±(z)φ(z) dz=
∫
Z

∥∥Dx(z)∥∥p−2(
Dx(z),Dφ(z)

)
RN
dz.

Thus,ρ+ = ρ− for almost allz ∈ Z. From this it follows thatχt(x(z)) = 0 for
almost allz ∈Z. SinceD(f ) is countable and

χ
(
x(z)

) =
∑

t∈D(f )
χt

(
x(z)

)
,

it follows that χ(x(z)) = 0 almost everywhere (withχ(t) = 1 if t ∈ D(f ) and
χ(t)= 0 otherwise).

Now it is clear thatx is a solution of type II. ✷
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