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Abstract

We discuss questions of eigenvalue conditioning. We study in some depth relationships between the classical
theory of conditioning and the theory of the zero-structured conditioning, and we derive from the existing theory
formulae for the mathematical objects involved. Then an algorithm to compare the zero-structured individual
condition numbers of a set of simple eigenvalues with the traditional ones is presented. Numerical tests are reported
tohighlight how thealgorithmprovides interesting informationabouteigenvaluesensitivitywhen theperturbations in
thematrix haveanarbitrarily assignedzero-structure.Patternedmatrices (Toeplitz andHankel)will be investigated in
a forthcomingpaper (Eigenvaluepatternedconditionnumbers:Toeplitz andHankel cases,Tech.Rep. 3,Mathematics
Department, University of Rome ‘ La Sapienza’ , 2005.).
© 2005 Elsevier B.V. All rights reserved.

MSC:primary 65F15; 65F30; 65F50; secondary 65K10

Keywords:Eigenvalues; Conditioning; Structured matrices

1. Introduction

It is well known[3,4,19]that the worst perturbation which may affect a simple eigenvalue� of a given
matrixA ∈ Cn×n arises under the action of the matrix

W� := yxH.
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Herex andy, respectively, are the right and the left eigenvector associated with� and‖x‖2 = ‖y‖2 = 1.
To be more rigorous, one has (see e.g.[4]), for �>0 small enough,

(A + �E)x(�) = �(�)x(�), ‖E‖2 = 1,

wherexand� are differentiable functions such that�(0)= �, x(0)= x. The function� can be represented
as follows:

�(�) = � +
[
d�

d�

]
�=0

� +O(�2),

and it can be shown that
∣∣∣∣d�d�

∣∣∣∣
�=0

=
∣∣∣∣y

HEx

yHx

∣∣∣∣ �
‖y‖2‖E‖2‖x‖2

|yHx| = 1

|yHx| , (1)

where the eigenvectorsx andy are normalized as above. The upper-bound

�(�) := 1

|yHx|
is attained ifE = W� and it is the individual condition number of�. In the sequel, we shall refer to�(�)
as thetraditional condition number of� and toW� as theWilkinson perturbationin A.
Even though the maximum rate of change in (1) is attained for infinitely many perturbationsE [4, p.

586; 20, p. 250], not all perturbationsE produce the effects of the Wilkinson one. (More on this matter
can be found in[10,11].)
In addition, in most cases it does not make sense to consider an arbitrary norm-one perturbationE.

In fact, only perturbations satisfying specific requirements should be considered. As an example, this
happens whenA is a structured matrix and the machine perturbations are considered. In such situations,
the traditional conditionnumber results veryoften inapessimistic estimate since it takes into consideration
all the unit normmatricesE, includingW�, which is typically a full matrix since right and left eigenvectors
are usually full vectors.On the contrary, the so-called structured condition number[7,14], which considers
only theE’s belonging to a suitable subspace, offers a more realistic evaluation of the conditioning of the
problem.
Taking account of the above considerations, in this paper we consider matrix perturbationsE that

belong to a subspaceS formed by the matrices having an assigned zero-structure and we allow the
zero-structure, that is the subspaceS, to be arbitrarily chosen.

Remark 1.1. Note thatSmight not containA. This allows the study of the effects on the eigenvalues of
perturbations inA that are of some particular interest (not machine perturbations, for instance).

Remark 1.2. Up to now, we have used the 2-norm since this is the norm used to state the just outlined
theory in most books and articles we cite. On the other hand, results from[14] that we need (see Eqs.
(4), (5) below) and arguments that we are going to develop, require the Frobenius norm. This causes no
complications since only formal changes occur in the above theory if the Frobenius norm replaces the
2-norm everywhere. Thus, we use the Frobenius norm in this paper.
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We start with the following definition of the absolute and relativezero-structuredcondition numbers
of �, respectively denoted bys�(�) andrs�(�). To extend in the most direct way the procedure that leads
to the traditional condition number, we put

s�(�) := max

{∣∣∣∣y
HEx

yHx

∣∣∣∣ , ‖E‖F = 1, E ∈ S

}
, (2)

and, consequently,

rs�(�) := s�(�)‖A‖F
|�| . (3)

Then, using results from[14], we derive new expressions fors�(�) andrs�(�) that are advantageous
both from a theoretical and a computational point of view. Subsequently, we find one of the unit norm
matricesE that belongs toS andmaximize the ratio|yHEx/yHx|. Such amatrix will be referred to as the
S-structured analogueof the Wilkinson perturbationW�. In fact, it is defined in terms of the Wilkinson
perturbationW�. Finally, we present an algorithm that uses the outlined theoretical results to compare the
absolute and relative traditional condition numbers of selected simple eigenvalueswith the zero-structured
ones. The number� of the selected eigenvalues, the� eigenvalues, and the zero-structure, i.e. the subspace
S, can be chosen arbitrarily. Moreover, the user is allowed to modify the zero-structure as he desires and
as many times as he wants. Each time, the analysis of the results obtained can be completed visualizing
the moduli of bothW� and of itsS-structured analogue. The MATLAB code is available upon request.

Remark 1.3. Note that obviously one hass�(�)��(�) andrs�(�)�r�(�), r�(�) denoting the relative
traditional condition number of�.

The outline of the paper is as follows.
In Section 2 we tell more about structured conditioning. Section 3 describes our algorithm. Finally,

significant numerical tests can be found in Section 4. They have been run on an Intel Pentium 4 PC, using
MATLAB 6.5 (R13).

2. More on the zero-structured condition number

We start with Eq. (4.2) in[14]. We apply it to the zero-structured case, assumingS = SA. We regard
the parameter� that appears therein as the Frobenius norm ofA and, using our notation, we get

s�(�) = ‖yH(xT ⊗ I )B‖2
|yHx| , (4)

rs�(�) = ‖yH(xT ⊗ I )B‖2‖A‖F
|yHx||�| . (5)

Here⊗ denotes the Kronecker product andB = B(S) is a suitable matrix[6,14].
A few details onB are opportune. It belongs toCn2×m,m = m(S) being the number of the structure-

positions in the matrices inS (m = n2 if S = Cn×n; m = 3n − 2 if S is the subspace ofCn×n formed
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by the tridiagonal matrices, and so on), and it is the unique matrix such that

vec(E) = B�, for eachE ∈ S. (6)

In (6), � = �(E) is anm-length column vector whose components are them entries ofE located in the
above-mentionedm structure-positions inE, arranged by columns, and vec is the operator that stacks the
columns of a matrix into one long column vector (see e.g.[8, Chapter 12, Section 1]). It is easy to see that
B is a full rank matrix and that it depends only onS and not onE [on �]. Its structure can be described as
follows. If the ith (i = 1 : n2) component of vec(E) comes from an entry inE that is out of the structure
of the matrices inS, theith row ofB is a row of zeros. The remaining rows ofB are those of the identity
matrix Im. If the zero-rows were omitted, the resulting submatrix ofBwould beIm.

Remark 2.1. Note that, no matter whatS is, and even ifS does not containA, it is always possible to
construct the relevant matrixB.

Now, we propose an improvement of (4), (5) by representing the vectoryH(xT ⊗ I )B in a form which
is theoretically more significant and cheaper from a computational point of view.

Proposition 2.1. One has

yH(xT ⊗ I )B =
(
vec
S
(W�|S)

)T

,

wherevecS is the restriction of thevecoperator to the positions in the zero-structure of the matrices in
S andW�|S denotes the restriction ofW� toS.

Proof. We first observe thatyH(xT ⊗ I ) is a row vector of lengthn2 whose components are the entries
ofW� arranged by columns:

(yH(xT ⊗ I ))i+n(j−1) = yixj , i = 1 : n, j = 1 : n.
In other words,

yH(xT ⊗ I ) = (vec(W�))
T.

Then, we take the structure ofB into account. This leads us to see that post-multiplyingyH(xT ⊗ I )

byB results in deleting the componentsyixj of y
H(xT ⊗ I ) whose indices locate the positions out of the

structure of the matrices inS.
The proof easily follows. �

Corollary 2.2. One has

‖yH(xT ⊗ I )B‖2 = ‖W�|S‖F.
Proof. Of course, we have∥∥∥∥vecS

(W�|S)
∥∥∥∥
2
= ‖vec(W�|S)‖2,
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and, by virtue of Proposition 2.1,

‖yH(xT ⊗ I )B‖2 = ‖vec(W�|S)‖2.
Using the Frobenius norm (see Remark 1.2) leads to the equalities

‖vec(W�|S)‖2 = ‖W�|S‖F = ‖W�|S‖F,
and this concludes the proof.�

Corollary 2.2 leads to our improved formulae, which are as follows:

s�(�) = ‖W�|S‖F
|yHx| , (7)

rs�(�) = ‖W�|S‖F‖A‖F
|yHx||�| . (8)

The expressions in (7) and (8) are interesting from several points of view.

• Theoretical. They show how matrixW� affects the conditioning.
• Computational. The computation of‖W�|S‖F is much less expensive than that of‖yH(xT ⊗ I )B‖F .
• Storage requirement.It is less than that required by thematrices(xT⊗I ) andBwhich have dimensions
n × n2 andn2 × m, respectively.

• Predictability. A significant information on‖W�|S‖F is promptly yielded by MATLAB’s imagesc
function applied to|W�|.
But the role played byW�|S is fully highlighted by the following:

Proposition 2.3. TheS-structured analogue of theWilkinson perturbationW� is given by

W�|S
‖W�|S‖F . (9)

Proof. We can write

yHW�|Sx =
n∑

i=1

yi

n∑
j=1

(W�|S)ij xj =
∑
S

yiyixjxj =
∑
S

|yi |2|xj |2 =
∑
S

|yixj |2 = ‖W�|S‖2F

and, consequently,

yH
W�|S

‖W�|S‖F x = ‖W�|S‖F.

Dividing by |yHx| leads to the structured condition number in (7) and, as a consequence, the matrix in
(9) is one of the unit norm matrices that yield the maximum in (2). The proof is concluded.�

2.1. A particular case

Tisseur[15] brought to our attention an issue in[2] that concerns the traditional condition number
for a complex eigenvalue of a real matrix under real perturbations. Such an issue can be of interest for
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instance when machine perturbations are considered (as a matter of fact,W� is nonreal in such cases) or,
in general, each time it is appropriate to consider only real perturbationsE. In [2] it is proved that

�(�)√
2

��R(�)��(�),

�R(�) being thetraditional condition number with respect to only real perturbations.
A question naturally arises. Lets�R(�)be thezero-structuredcondition numberwith respect to only real

perturbationsE. Can similar inequalities be proved even in the case of the zero-structured conditioning?
The answer is positive.

Proposition 2.4. One has

s�(�)√
min(2,m)

�s�R(�)�s�(�).

Proof. We start with Eq. (2.5) in[2]. Using the definition of� — which implies‖E‖F = ‖vec(E)‖F =
‖�‖2 for eachE ∈ S — allows us to write sup�∈Rm,‖�‖2=1 instead of supE∈Rn×n,‖E‖F=1 and instead of
supE∈Rn×n,‖vec(E)‖F=1. Then we take (6) into account and we rewrite the matrix in an equivalent form.
Eq. (2.5) in[2] becomes

s�R(�) = 1

|yHx| sup
�∈Rm,‖�‖2=1

∥∥∥∥
[
Re(yH(xT ⊗ I ))

Im(yH(xT ⊗ I ))

]
B�

∥∥∥∥
2

= 1

|yHx| sup
�∈Rm,‖�‖2=1

∥∥∥∥
[
Re(yH(xT ⊗ I )B)

Im(yH(xT ⊗ I )B)

]
�

∥∥∥∥
2

= 1

|yHx|
∥∥∥∥
[
Re(yH(xT ⊗ I )B)

Im(yH(xT ⊗ I )B)

]∥∥∥∥
2
.

Now, taking account of the equality∥∥∥∥
[
Re(yH(xT ⊗ I )B)

Im(yH(xT ⊗ I )B)

]∥∥∥∥
F

= ‖yH(xT ⊗ I )B‖F,

of the definition in (4) ofs�(�), and of the well-known relations between the 2-norm and the Frobenius
norm, it follows that

s�(�)√
min(2,m)

= ‖yH(xT ⊗ I )B‖F√
min(2,m)|yHx| �s�R(�)�

‖yH(xT ⊗ I )B‖F
|yHx| = s�(�),

and this concludes the proof.�

3. The algorithm

Our algorithm computes the traditional and zero-structured condition numbers— absolute and relative
— of simple eigenvalues of a given matrixA ∈ Cn×n. The zero-structure of the perturbationsE (the
subspaceS) can be chosen arbitrarily.
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Functionstructures(seeSection 3.2) allows us to select one of thebasic zero-structures, i.e. tridiagonal,
tridiagonalwith zerodiagonal, upperbidiagonal, lowerbidiagonal, upperHessemberg, lowerHessemberg,
pentadiagonal and full. Any other zero-structure can be chosen. In particular, the user can obtain sub-
structures of each of the preceding ones by annihilating in it a properly selected sub-set ofp, 0<p<m

entries (see Section 2 for the definition ofm). An additional way to select any kind of zero-structure is
shown in Section 3.1.2.
A particularly useful tool to forecast structures that will yield small [large] zero-structured condition

numbers is theimagescfunction. It permits the user to examine the weight distribution of Wilkinson
perturbationsW� related to the selected eigenvalues and to try, if possible, a zero-structure (i.e. a subspace
S) matching a light part [a heavy part] of the involvedW�’s. (Here and in the sequel a light part/entry [a
heavy part/entry] of a matrix stands for a part/entry that affects little [much] the Frobenius norm of the
matrix.) A similar idea can be derived from the analysis of the matricesW�|S/‖W�|S‖F too. In fact, as
we saw at the end of Section 2, these matrices are theS-structured analogues of theW�’s and such an
analysis might locate entries to be annihilated in order to select a sub-structure yielding better [worse]
zero-structured condition numbers.
The MATLAB code consists of a script (strcnd) and of a function (structures). A brief description of

both of them is given here below.

3.1. Script strcnd

We divide this section into two parts.

3.1.1. User’s interactions
Scriptstrcndasks the user to

1. enter the matrixA,
2. select�, 1���n, eigenvalues ofA,
3. choose whether to examine some [all] of the� Wilkinson perturbationsW� or not,
4. make the following choices:

4.1. specify the zero-structure of the perturbation matricesE,
4.2. choose whether to examine some [all] of theS-structured analogues (9) of the� Wilkinson

perturbationsW� or not,
5. decide whether to return to point 4 or not.

3.1.2. Detail
After point 1, MATLAB’s eig function computes the eigenvalues as well as the right and left eigenvec-

tors.We disabled the default MATLAB’sbalancefunction—which implements the balancing procedure
in [12] — to avoid possible changes in the traditional and structured conditioning of the� eigenvalues.
The full vector of the eigenvalues is listed bystrcnd.
To select the� eigenvalues, the user is allowed to enter their relevant indices as they appear in the list

displayed bystrcnd.
After point 2, the traditional absolute and relative condition numbers and the Wilkinson perturbations

W� related to the chosen eigenvalues are computed. The condition numbers are printed.
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A first choice of the zero-structure of the matricesE, that is to say a first choice of the subspaceS,
happens at point 4.1. To define that structure, the user enters one of the following strings: ‘trid’, ‘trizd’,
‘ubid’, ‘lbid’, ‘uhess’, ‘lhess’, ‘penta’, ‘full’ and ‘others’. The first eight stand for the above-mentioned
basic zero-structures: tridiagonal, tridiagonal with zero diagonal, upper bidiagonal, lower bidiagonal,
upper Hessemberg, lower Hessemberg, pentadiagonal and full, respectively. The last one offers the above-
mentioned additional feature to choose any kind of zero-structure. This can be done by entering them
relevant couples of indices.
Then, functionstructuresis called and returns the current matricesW�|S.
It is possible to eliminatep of them structure entries, entering their relevantp couples of indices. Of

course, this opportunity is not given in the case of ‘others’.
Now, the structure [the subspaceS] is settled and, in the case ofp>0, the final matricesW�|S are

constructed. Except for the caseS=Cn×n (i.e. if the basic structure ‘full’has been chosen, andp=0), the
zero-structured absolute and relative condition numbers in (7), (8) are computed. Then they are printed
together with the traditional ones to make the comparison easier.

3.2. Function structures

It carries out the restriction of the� Wilkinson perturbationsW� to the selected subspaceS. To save
computational cost, if one of the four basic structures: tridiagonal, tridiagonal with zero diagonal, upper
bidiagonal and lower bidiagonal is selected, functiontridiag in MATLAB’s toolbox “gallery — Higham
test matrices” is used.
Along with the matricesW�|S, functionstructuresalso returns two flags (see the Output arguments

below).

Input arguments
n = dimension ofA
choice = index vector of the� eigenvalues
wlambda = tridimensional matrix of the� matricesW�

kind = string denoting the selected zero-structure
entries = index vector of them structure entries(if kind = ‘others′)

Output arguments
wlambdas = tridimensional matrix of the� matricesW�|S
strf lag = flag equal to 0 ifkind = full’ , to 1 otherwise
bsstf lag = flag equal to 0 if kind= ‘others’, to 1 otherwise

4. Numerical tests

To better document how the chosen structure [the selected subspaceS] influences the conditioning
of the eigenvalues, we have taken from the literature matrices that are renowned to have seriously ill-
conditioned eigenvalues and we have always included the worst of them in the list of the� selected
ones.
Such a strategy often implies restrictions on the choice of the structure since most entries in the

matrices in the literature are usually machine numbers and, on the other hand, the main practical interest
is of course of considering only the machine perturbation matricesE. However, also investigating the
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Table 1
Lesp matrix of dimension 50. ‘others’ structure: machine perturbations

� �(�) r�(�) s�(�) rs�(�)

�33 2.0774e+ 13 1.4451e+ 14 1.4304e+ 1 9.9500e+ 1
�34 2.8325e+ 13 1.9148e+ 14 2.0099e+ 1 1.3588e+ 2
�35 3.8126e+ 13 2.5068e+ 14 1.3433e+ 1 8.8323e+ 1
�36 4.8100e+ 13 3.0783e+ 14 2.2461e+ 1 1.4374e+ 2
�37 4.4881e+ 13 2.7977e+ 14 1.6873e+ 1 1.0517e+ 2
�38 6.0638e+ 13 3.6841e+ 14 1.4400e+ 1 8.7487e+ 1
�39 4.3754e+ 13 2.5927e+ 14 3.6849e+ 1 2.1835e+ 2
�40 5.4537e+ 13 3.1538e+ 14 8.2579e+ 0 4.7754e+ 1
�41 3.8445e+ 13 2.1709e+ 14 9.7468e+ 1 5.5037e+ 2
�42 1.6353e+ 13 9.0219e+ 13 1.1027e+ 1 6.0837e+ 1

effects of perturbations that are not due to the floating-point representation might answer to theoretical
motivations and this argument leads to treat any kind of zero-structure.
In this section we follow both the ideas.We report examples which treat only the machine perturbation

matricesE (Sections 4.1 and 4.2), as well as examples which treat even matrices whose entries are all
machine numbers (Sections 4.3 and 4.4).
In the tables, the indices of the� selected eigenvalues are in accordance with the list displayed by

strcnd. In the figure titles,Wi stands forW�i .

4.1. Lesp matrix

The Lesp matrices are real tridiagonal matrices with real, negative, sensitive simple eigenvalues,
smoothly distributed in the interval approximately [−2n − 3.5,−4.5] [9,16]. Roughly speaking, the
sensitivities of the eigenvalues increase as the eigenvalues grow more negative.
Here the Lesp matrix of dimensionn = 50 is considered. The command to enter it was taken from

MATLAB’s toolbox ‘gallery — Higham test matrices’.
We selected the eigenvalues whose indices range from 33 to 42 since they are the ten worst conditioned

ones. Then we observed that, besides the zeros, most entries are machine numbers: the upper-diagonal
ones, the diagonal ones, and five of the sub-diagonal entries (2−k, k = 1 : 5). Thus, to know the actual
condition numbers, we strictly considered only the machine perturbation matrices to simulate the errors
introduced just from storing the matrix in the computer. To do so, we chose ‘others’ and then we entered
the indices of the remaining sub-diagonal entries.Table 1reports the results we got.
The gain in the conditioning is remarkable. This means that, actually, the eigenvalues can be regarded

as quite well-conditioned.
Visualizing the involvedW�’s (see Section 3.1.1) yields interesting information. In fact, a quick look

at their weight distributions points out that each of them is essentially confined in very few (six, at most)
adjacent entries in the last row, that slightly shift to the right as the relevant eigenvalue grows more
negative. This suggests choosing as a new structure the one formed by the whole set of these entries
and to conjecture that the resulting zero-structured condition numbers do not differ too much from the
traditional ones. The set is that formed by the entries in the columns of indices from 20 to 30 and the
results we report inTable 2confirm the conjecture.
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Table 2
Lesp matrix of dimension 50. ‘others’ structure: heavy entries

� �(�) r�(�) s�(�) rs�(�)

�33 2.0774e+ 13 1.4451e+ 14 1.4897e+ 13 1.0363e+ 14
�34 2.8325e+ 13 1.9148e+ 14 2.1527e+ 13 1.4553e+ 14
�35 3.8126e+ 13 2.5068e+ 14 3.0583e+ 13 2.0108e+ 14
�36 4.8100e+ 13 3.0783e+ 14 3.9895e+ 13 2.5531e+ 14
�37 4.4881e+ 13 2.7977e+ 14 3.8457e+ 13 2.3972e+ 14
�38 6.0638e+ 13 3.6841e+ 14 5.3479e+ 13 3.2492e+ 14
�39 4.3754e+ 13 2.5927e+ 14 3.8922e+ 13 2.3064e+ 14
�40 5.4537e+ 13 3.1538e+ 14 4.9679e+ 13 2.8728e+ 14
�41 3.8445e+ 13 2.1709e+ 14 3.4352e+ 13 1.9398e+ 14
�42 1.6353e+ 13 9.0219e+ 13 1.4527e+ 13 8.0144e+ 13

Table 3
Lesp matrix of dimension 50. ‘uhess’ structure (light entries)

� �(�) r�(�) s�(�) rs�(�)

�33 2.0774e+ 13 1.4451e+ 14 1.4418e+ 1 1.0029e+ 2
�34 2.8325e+ 13 1.9148e+ 14 2.0116e+ 1 1.3599e+ 2
�35 3.8126e+ 13 2.5068e+ 14 1.3444e+ 1 8.8392e+ 1
�36 4.8100e+ 13 3.0783e+ 14 2.2477e+ 1 1.4385e+ 2
�37 4.4881e+ 13 2.7977e+ 14 1.6884e+ 1 1.0525e+ 2
�38 6.0638e+ 13 3.6841e+ 14 1.4410e+ 1 8.7551e+ 1
�39 4.3754e+ 13 2.5927e+ 14 3.6875e+ 1 2.1851e+ 2
�40 5.4537e+ 13 3.1538e+ 14 8.2675e+ 0 4.7810e+ 1
�41 3.8445e+ 13 2.1709e+ 14 9.7547e+ 1 5.5082e+ 2
�42 1.6353e+ 13 9.0219e+ 13 1.1034e+ 1 6.0872e+ 1

Note that if we had used ‘uhess’we would have gotTable 3, that is essentially the same asTable 1. The
results in the three tables confirm that it is not so much how largem is (see Section 2 for the definition
of m) that influences the value of the zero-structured condition numbers, but how much the structure
matches the weight distribution of the Wilkinson perturbationW�.

Remark 4.1. The results obtained in the case ‘uhess’ are of interest even with reference to the backward
error analysis applied to the QR algorithm (eig). In fact, just because ‘uhess’ has been used, they indicate
that not only will the inherent error be favorably bounded, but also the algorithmic one. The user can
easily check such an assertion by perturbing the Lesp matrix with theS-structured analogues of the
Wilkinson perturbationsW� and observing the induced errors in the ten eigenvalues. A strictly similar
argument applies to the case of ‘trid’ and of the HR algorithm. In fact, after a slight modification, the
tridiagonal form of a real matrix is preserved by the HR algorithm[1, p. 156], and using ‘trid’ will yield
zero-structured condition numbers less than or equal to the ones inTable 3.
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Table 4
Bessel matrix of dimension 25. ‘trizd’ structure (machine perturbations)

� �(�) r�(�) s�(�) rs�(�)

�25 3.9408e+ 12 9.3612e+ 13 2.0839e+ 12 4.9659e+ 13

Fig. 1. Weight distribution of the Wilkinson perturbationW�25 related to the Bessel matrix.

4.2. Bessel matrix

The Bessel matrices are real tridiagonal matrices associated with the Ordinary Bessel Polynomials
(OBPs), in the sense that their eigenvalues are the zeros of the OBPs[5]. Even though they differ from
skew-symmetric tridiagonalmatricesonlyby the rank-onematrix−e1e

T
1 , theyhaveverybadly conditioned

eigenvalues[13].Their spectra lie in the left half of the complexplane[5].Here theBesselmatrix of dimen-
sion 25 is considered. It can be entered with the commandA= full(gallery(‘tridiag’,1./sqrt(4*(1:24).̂2-
1),[-1 zeros(1,24)],-1./sqrt(4*(1:24).̂2-1))).
We selected the unique real eigenvalue (25th), which is the worst conditioned one.
As before, we restricted ourselves to consider only the machine perturbations. To do so, we chose

the zero-diagonal tridiagonal structure ‘trizd’. This time we bring an example of a situation completely
different from the previous one. In fact, the zero-structured condition numbers are just a bitmore favorable
than the traditional ones (seeTable 4). Again, the reason for this can be found by looking at the weight
distribution ofW�25 (seeFig. 1) and comparing it with the structure defined by ‘trizd’.
Fig. 2represents theS-structured analogue ofW�25. It suggests trying the substructure of ‘trizd’defined

by the fourteen entries which are appreciable in the figure to verify if, as expected, the relevant zero-
structured condition numbers do not differ essentially from the traditional ones. The results reported in
Table 5confirm the conjecture. On the contrary, if we try the substructure of ‘trizd’defined by the fourteen
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Fig. 2. Weight distribution of theS-structured analogue of theW�25 related to the Bessel matrix. ‘trizd’ structure.

Table 5
Bessel matrix of dimension 25. ‘others’ structure: heavy entries

� �(�) r�(�) s�(�) rs�(�)

�25 3.9408e+ 12 9.3612e+ 13 2.0800e+ 12 4.9567e+ 13

Table 6
Bessel matrix of dimension 25. ‘others’ structure: light entries

� �(�) r�(�) s�(�) rs�(�)

�25 3.9408e+ 12 9.3612e+ 13 1.5999e+ 5 3.8127e+ 6

entries counterdiagonally symmetric with respect to the above ones — whose weight is practically
zero — we get the results inTable 6. The gain amounts to seven orders of magnitude.

4.3. Wilkinson matrix

This is one of the famous matrices introduced by Wilkinson for theoretical purposes[19, p. 90]. It is
an upper bidiagonal machine matrix of dimension 20 with ill-conditioned simple eigenvalues. It can be
entered with the commandA= diag(20:-1:1)+diag(20*ones(19,1),1).
In this case we selected all the eigenvalues. The reason for this choice is that all theW�i , i = 1 : 20,

share interesting properties. They have the heavy entries contained in their strictly triangular lower parts
and, in all the cases, the(20,1) entry is by far the heaviest one. In fact, the unique nonzero entry in
the matrix perturbation considered in examples in[19, p. 90; 17, p. 467], is the(20,1) entry. So did
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Table 7
Wilkinson matrix of dimension 20. ‘others’ structure: the heaviest entry(20,1)

� �(�) r�(�) s�(�) rs�(�)

�1 8.4482e+ 7 4.3222e+ 8 4.3100e+ 7 2.2051e+ 8
�2 1.4550e+ 9 7.8359e+ 9 8.1889e+ 8 4.4101e+ 9
�3 1.2065e+ 10 6.8587e+ 10 7.3702e+ 9 4.1897e+ 10
�4 6.3888e+ 10 3.8454e+ 11 4.1761e+ 10 2.5136e+ 11
�5 2.4185e+ 11 1.5467e+ 12 1.6707e+ 11 1.0685e+ 12
�6 6.9407e+ 11 4.7346e+ 12 5.0112e+ 11 3.4184e+ 12
�7 1.5650e+ 12 1.1438e+ 13 1.1692e+ 12 8.5456e+ 12
�8 2.8368e+ 12 2.2328e+ 13 2.1729e+ 12 1.7103e+ 13
�9 4.1802e+ 12 3.5644e+ 13 3.2545e+ 12 2.7751e+ 13
�10 5.0770e+ 12 4.7227e+ 13 3.9852e+ 12 3.7070e+ 13
�11 5.0706e+ 12 5.1884e+ 13 3.9797e+ 12 4.0722e+ 13
�12 4.1830e+ 12 4.7557e+ 13 3.2570e+ 12 3.7030e+ 13
�13 2.8369e+ 12 3.6285e+ 13 2.1730e+ 12 2.7793e+ 13
�14 1.5643e+ 12 2.2866e+ 13 1.1687e+ 12 1.7083e+ 13
�15 6.9440e+ 11 1.1842e+ 13 5.0137e+ 11 8.5502e+ 12
�16 2.4178e+ 11 4.9479e+ 12 1.6702e+ 11 3.4181e+ 12
�17 6.3896e+ 10 1.6345e+ 12 4.1766e+ 10 1.0684e+ 12
�18 1.2065e+ 10 4.1151e+ 11 7.3700e+ 9 2.5137e+ 11
�19 1.4550e+ 9 7.4442e+ 10 8.1890e+ 8 4.1896e+ 10
�20 8.4482e+ 7 8.6444e+ 9 4.3100e+ 7 4.4101e+ 9

Fig. 3. Weight distribution of the Wilkinson perturbationW�8 related to the Frank matrix.

we, choosing ‘others’ and then entering[20,1]. The results are reported inTable 7. As expected, the
zero-structured condition numbers are practically the same as the traditional ones.
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Fig. 4. Weight distribution of the Wilkinson perturbationW�9 related to the Frank matrix.

Fig. 5. Weight distribution of the Wilkinson perturbationW�10 related to the Frank matrix.

4.4. Frank matrix

This is a famous upper Hessenberg matrix of dimension 12[18; 4, Section 13; 20, Section 5]. The
command to enter it was taken fromMATLAB’s toolbox “gallery — Higham test matrices”.We selected
the eigenvalues�i , i = 8 : 11, since they are the four worst conditioned ones. Also in this case all the
entries are machine numbers. Taking the weight distributions of theW�i , i = 8 : 11, into account (see
Figs. 3–6), we chose ‘uhess’ and ‘lhess’.Tables 8 (‘uhess’) and 9(‘lhess’) report the results, which fully
confirm the expectation.
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Fig. 6. Weight distribution of the Wilkinson perturbationW�11 related to the Frank matrix.

Table 8
Frank matrix of dimension 12. ‘uhess’ structure

� �(�) r�(�) s�(�) rs�(�)

�8 1.8283e+ 7 3.1579e+ 10 1.8283e+ 7 3.1579e+ 10
�9 3.8774e+ 7 4.1972e+ 10 3.8774e+ 7 4.1972e+ 10
�10 2.6646e+ 7 1.7580e+ 10 2.6646e+ 7 1.7580e+ 10
�11 6.7014e+ 6 2.5001e+ 9 6.7014e+ 6 2.5001e+ 9

Table 9
Frank matrix of dimension 12. ‘lhess’ structure

� �(�) r�(�) s�(�) rs�(�)

�8 1.8283e+ 7 3.1579e+ 10 6.6138e+ 0 1.1423e+ 4
�9 3.8774e+ 7 4.1972e+ 10 3.6994e+ 0 4.0045e+ 3
�10 2.6646e+ 7 1.7580e+ 10 2.6031e+ 0 1.7175e+ 3
�11 6.7014e+ 6 2.5001e+ 9 2.2663e+ 0 8.4550e+ 2
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