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Abstract

The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental
the difference between vector and axial-vector correlators (V–A). The sum rules exhibit poor saturation up to current
below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at t
limit of integration. The method is used to determine the value of the finite remainder of the V–A correlator, and
derivative, at zero momentum:̄Π(0) = −4L̄10 = 0.0257± 0.0003,andΠ̄ ′(0)= 0.065± 0.007 GeV−2. The dimensiond = 6
andd = 8 vacuum condensates in the operator product expansion are also determined:〈O6〉 = −(0.004± 0.001)GeV6, and
〈O8〉 = −(0.001± 0.006)GeV8.

 2003 Published by Elsevier B.V.Open access under CC BY license.
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Since the pioneering work of Shifman, Vainshte
and Zakharov [1], a few thousand papers have b
published on applications of the QCD sum rule meth
in all corners of low energy hadronic physics. U
avoidably, results from different collaborations we
not always consistent [2]. The main reason for th
inconsistencies was frequently the impossibility of
timating reliably the errors in the method. With th
advent of precise measurements of the vector
and axial-vector (A) spectral functions, obtained fro
tau-lepton decay [3,4], an opportunity was opened
check the precision of the QCD sum rules in the lig
quark sector of QCD. In this Letter we would like
present a critical and conservative appraisal of ch
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sum rules of the Weinberg type [5], as they are c
fronted with experimental data for the spectral fun
tions. This kind of sum rules involve the difference b
tween the vector and the axial-vector correlators V
which vanishes identically to all orders in perturbat
QCD in the chiral limit. In fact, neglecting the ligh
quark masses, the V–A two-point function vanish
like 1/q6 in the space-like region, where the sca
O(300 MeV) is set by the quark and gluon conde
sates. In the time-like region the chiral spectral fu
tion ρV–A(q

2) should also vanish for largeQ2 ≡ −q2,
but judging from the ALEPH data [3], the asympto
regime of local duality may not have been reached
τ -decay. Under less stringent assumptions one exp
global duality to hold in the time like region; in pa
ticular, this should be the case for the Weinberg-t
sum rules. Surprisingly, these sum rules also appe
be poorly convergent. A possible source of duality
license.
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olation could be some non-perturbative contribution
the correlator (e.g., due to instantons) which falls
exponentially in the space-like region but oscillates
the time-like region. If the duality violations were du
to this source, then there would be a simple recipe
troduced 30 years ago [6]) to improve convergence

In a previous publication [7] we studied some QC
chiral sum rules of the Weinberg type, and their s
uration by the ALEPH data. In particular, we show
that a remarkable improvement of this saturation
be achieved by introducing a polynomial integrati
kernel which vanishes at the upper limit of integ
tion. However, no detailed quantitative error analy
was performed in [7]. In this Letter we reexamine t
saturation of several QCD chiral sum rules using
ALEPH [3], as well as the OPAL data [4], and payin
particular attention to the error analysis. We obtain
updated determination of̄L10, the scale-independe
part of the coupling constant of the relevant opera
in theO(p4) counterterms in the Lagrangian of chir
perturbation theory [8]. This quantity is related to t
finite remainder of the V–A correlator at zero mome
tum. We also determine the finite remainder of the fi
derivative of the V–A correlator at zero momentu
which is related to theO(p6) counterterms. Finally
we introduce combinations of QCD chiral sum ru
which allow for a determination of the V–A dimensio
d = 6 andd = 8 vacuum condensates. The former c
be extracted with reasonable precision, while the la
is affected by much larger uncertainties.

We begin by defining the vector and axial-vec
current correlators

(1)

ΠVV
µν (q

2)= i

∫
d4x eiqx〈0|T (

Vµ(x)V
†
ν (0)

)|0〉
= (−gµνq

2 + qµqν)ΠV(q
2),

(2)

ΠAA
µν (q

2)= i

∫
d4x eiqx〈0|T (

Aµ(x)A
†
ν(0)

)|0〉
= (−gµνq

2 + qµqν)ΠA(q
2)

− qµqνΠ0(q
2),

where Vµ(x) = :q̄(x)γµq(x):, Aµ(x) = :q̄(x)γµ ×
γ5q(x):, andq = (u, d). Here we shall concentrate o
the chiral correlatorΠV–A ≡ ΠV − ΠA. This corre-
lator vanishes identically in the chiral limit (mq = 0),
to all orders in QCD perturbation theory. Renorma
ambiguities are thus avoided. Non-perturbative c
tributions due to vacuum condensates contribute
this two-point function starting with dimensiond = 6
and involving the four-quark condensate. The Ope
tor Product Expansion (OPE) of the chiral correla
can be written as

Π(Q2)
∣∣
V–A =

∞∑
N=1

1

Q2N+4
C2N+4(Q

2,µ2)

(3)× 〈
O2N+4(µ

2)
〉
,

with Q2 ≡ −q2. It is valid away from the positive
real axis for complexq2, and |q2| large. Radiative
corrections to thed = 6 contribution are known [9]
They depend on the regularization scheme, imply
that the value of the condensate itself is a sche
dependent quantity. Explicitly,

Π(Q2)
∣∣
V–A = −32π

9

αs〈q̄q〉2

Q6

×
{

1+ αs(Q
2)

4π

[
247

12
+ ln

(
µ2

Q2

)]}

(4)+O(1/Q8),

in the anti-commutingγ5 scheme, and assuming va
uum saturation of the four-quark condensate. Ra
tive corrections ford � 8 are not known. To facilitate
comparison with current conventions in the literatu
it will be convenient to absorb the Wilson coefficien
including radiative corrections, into the operators, a
rewrite Eq. (3) as

(5)Π(Q2)=
∞∑

N=1

1

Q2N+4 〈O2N+4〉,

where we have dropped the subscript V–A for si
plicity. We will be concerned with Finite Energy Su
Rules of the type

(6)W(s0)≡
s0∫

0

ds f (s)ρ(s),

where f (s) is a weight function, and the hadron
spectral function ρ(s) ≡ ρV(s) − ρA(s), with
ρV,A(s) = 1

π
ImΠV,A(s) (pion pole excluded from

ρA(s)). For instance, iff (s) = sN (N = 0,1,2, . . .),
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then one obtains
s0∫

0

ds sNρ(s) = f 2
π δN0 + (−)N 〈O2N+2〉

(7)(N = 0,1,2, . . .),

where fπ = 92.4 ± 0.26 MeV [10]. For N = 0,1
Eq. (8) leads to the first two (finite energy) Weinbe
sum rules, while forN = 2,3 the sum rules projec
thed = 6,8 vacuum condensates, respectively; no
that in the chiral limit〈O2〉 = 〈O4〉 = 0. To first order
in αs , radiative corrections to the vacuum condensa
do not induce mixing of condensates of differe
dimension in a given FESR [11]. We shall al
consider the chiral correlator, and its first derivati
at zero momentum; the finite remainder of these be
given by the sum rules

(8)Π̄(0)=
s0∫

0

ds

s
ρ(s),

(9)Π̄ ′(0)=
s0∫

0

ds

s2
ρ(s),

whereρ(s) does not contain the pion pole. Eq. (
is the Das–Mathur–Okubo (finite energy) sum r
[5]. The finite remainderΠ̄(0) = −4L̄10, whereL̄10
is a counter term of theO(p4) Lagrangian of chira
perturbation theory, can be expressed as

(10)

Π̄(0)= −4L̄10 =
[

1

3
f 2
π

〈
r2
π

〉 − FA

]
= 0.026± 0.001,

where〈r2
π 〉 is the electromagnetic mean squared rad

of the pion,〈r2
π 〉 = 0.439± 0.008 fm2 [12], andFA is

the axial-vector coupling measured in radiative p
decay,FA = 0.0058± 0.0008 [10]. Similarly,Π̄ ′(0)
is related to theO(p6) counterterms.

As mentioned earlier, the saturation of the vario
chiral sum rules can be considerably improved
introducing an integration kernel that vanishes
the upper limit of integration (s = s0). We have
tested a variety of such kernels searching for opti
saturation. The following results have been obtai
using the ALEPH data forρ(s), with the errors at
each energy bin calculated from the error correlat
matrix. Use of the OPAL data [4] data leads to simi
results, albeit with much lager error bands. Start
with the first Weinberg sum rule, Fig. 1 shows the le
hand side of Eq. (7) forN = 0 (curve (a)), togethe
with the right-hand side, i.e.,f 2

π (straight line (c)), as
well as the modified sum rule (curve (b))

(11)W1(s0)=
s0∫

0

ds

(
1− s

s0

)
ρ(s).

On account of the second Weinberg sum ru
curves (a) and (b) should be identical; the improv
saturation achieved with Eq. (11) being remarka
Fig. 1 can be used to present our criterion to jud
the reliability of a QCD sum rule. The sum rule mu
be presented explicitly as a function of the upp
integration limits0. If the left-hand side is a constan
then the spectral integral must also be approximate
constant, starting from 1 to 2 GeV2 up to the maximum
s0 of the data. From Fig. 1 we would extract

(12)f 2
π = 0.008± 0.004 GeV2,

for curve (a), and

(13)f 2
π = 0.0084± 0.0004 GeV2,

for curve (b), to be compared with the experimen
valuef 2

π |EXP = 0.00854± 0.00005 GeV2. Curve (a)
demonstrates the fact that if the spectral integra
not a constant then the experimental errors are q
irrelevant in a test of duality. It is very dangerous
pick up a small stability region to obtain a predicti
(here one could choose the region around 2 GeV2).

Fig. 1. Curve (a) is the standard first Weinberg sum rule, Eq. (7) w
N = 0, curve (b) is the modified sum rule Eq. (11), and curve (c
the experimental value off 2

π .
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Fig. 2. The chiral correlator at zero momentum,Π̄(0), from the
standard sum rule Eq. (8) (curve (a)), and from the modified s
rule Eq. (14) (curve (b)), the latter leading to the prediction Eq. (
(curve (c)).

In Fig. 2 we show Eq. (8) (curve (a)) together w
the modified sum rule (curve (b))

(14)Π̄(0)= 2
f 2
π

s0
+

s0∫
0

ds

s

(
1− s

s0

)2

ρ(s).

From the optimized sum rule (14) we obtain the va
(straight line (c))

(15)Π̄(0)= −4L̄10 = 0.0257± 0.0003,

which is considerably more accurate than the lead
order chiral perturbation theory result, Eq. (10). T
agreement between Eqs. (10) and (15) may be
indication that higher-order chiral corrections to t
Das–Mathur–Okubo sum rule are indeed very sm
Fig. 3 shows Eq. (9) (curve (a)) together with t
optimized sum rule (curve (b))

(16)

Π̄ ′(0)= 3

s0
Π̄(0)− 3

f 2
π

s2
0

+
s0∫

0

ds

s2

(
1− s

s0

)3

ρ(s),

the latter giving (curve (c))

(17)Π̄ ′(0)= 0.065± 0.001 GeV−2.

We turn now to the determination of thed = 6 and
d = 8 vacuum condensates. In Fig. 4 we show〈O6〉 as
obtained from Eq. (7) withN = 2 (curve (a)), togethe
with the result from the improved sum rule (curve (b

(18)〈O6〉 = −f 2
π s

2
0 + s2

0

s0∫
ds

(
1− s

s0

)2

ρ(s),
0

Fig. 3. The first derivative of the chiral correlator at zero moment
Π̄ ′(0), from the standard sum rule Eq. (9) (curve (a)), and fr
the modified sum rule Eq. (16) (curve (b)), the latter leading to
prediction Eq. (17) (curve (c)).

Fig. 4. The dimension-six vacuum condensate from the stan
sum rule, Eq. (7) withN = 2 (curve (a)), and from the modifie
sum rule Eq. (18) (curve (b)).

which gives

(19)〈O6〉 = −(0.004± 0.001)GeV6.

This result can be compared with the vacuum sat
tion expression

(20)

〈O6〉|VS = −32

9
πᾱs

∣∣〈q̄q〉∣∣2 � −1.1× 10−3 GeV6,

to leading order inαs , and where we used〈q̄q〉 =
−0.014 GeV3, andᾱs = 0.5, at a scale of 1 GeV. Ra
diative corrections increase this estimate by a facto
two. The result Eq. (19) confirms pioneer determi
tions frome+e−, as well as tau-lepton decay data [1
14] indicating that the vacuum saturation approxim
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Fig. 5. The dimension-eight vacuum condensate from the stan
sum rule, Eq. (7) withN = 3 (curve (a)), and from the modified su
rule Eq. (21) (curve (b)).

tion underestimates thed = 6 condensate roughly b
a factor of 2–3.

Finally, for 〈O8〉 Fig. 5 (curve (a)) shows the resu
from Eq. (7) withN = 3, together with the improve
determination from the sum rule (curve (b))

〈O8〉 = 8s3
0f

2
π − 3s4

0Π̄(0)

(21)+ s3
0

s0∫
0

ds

s

(
1− s

s0

)3

(s + 3s0)ρ(s),

which gives

(22)〈O8〉 = −(0.001± 0.006)GeV8,

in the region where the condensate is approxima
constant (s0 � 1.75–2.5 GeV2), and assuming, opti
mistically, that the stability region has been reach
beyonds0 � 2.5 GeV2. It should be clear from Fig. 5
that no meaningful determination of〈O8〉 is possible
using the standard FESR, Eq. (7). As expected, w
increasing dimensionality, i.e., higher powers ofs in
the dispersive integrals, the accuracy of the deter
nation of the vacuum condensates deteriorates con
erably. It should be noticed that the results (19) a
(22) do not rely on the vacuum saturation approxim
tion. They also include all radiative corrections, a
are correct to first order inαs . At order α2

s and be-
yond, there is no longer decoupling of condensate
different dimensionality in a given FESR [11]. How
ever, one expects these higher-order radiative cor
tions to the Wilson coefficients in the OPE to be sm
There seems to be general agreement in the litera
-

on the size of thed = 6 condensate, but there exis
a number of inconsistent QCD sum rule determi
tions of the value of thed = 8 condensate. The re
sults range from〈O8〉 = −(3.5 ± 2.0) × 10−3 GeV8

[15] to 〈O8〉 = (4.4± 1.2)× 10−3 GeV8 [16]. Our re-
sult is consistent, within the large errors, with a rec
determination [17] (this reference contains a deta
comparative study of the literature).

The poor convergence of ordinary QCD chiral su
rules is rather intriguing, as one would have expec
good saturation at relatively low energies, given
very rapid fall-off of the chiral V–A correlator (se
Eq. (4)). However, extrapolating the chiral correla
from the space-like to the time-like region can produ
strong changes close to the real-axis. In fact, violati
of local duality at the 100% level have been sho
to be possible using realistic models of the he
quark chiral correlator [18]. The remarkable improv
saturation achieved by introducing weight functio
that vanish on the real axis ats = s0 could be taken
as an indication that although perturbative QCD wo
well in the space-like region, this may not be the c
in the time-like region, or near the cut, at least
energies belows0 � 3.5 GeV2. Finally, by using the
chiral V–A correlator we have been able to extract
value of thed = 6 vacuum condensate with reasona
accuracy; for thed = 8 condensate the result
affected by a large uncertainty. In contrast, were
to attempt a determination from the vector correla
and separately from the axial-vector one, the res
would be quite inconclusive. This is due to the ve
large current value ofΛQCD (ΛQCD � 400 MeV)
which makes the perturbative QCD term in the O
so big that it overwhelms the power correctio
We estimate that ifΛQCD � 330 MeV then the
FESR, and even Laplace transform sum rules, wil
unable to provide a conclusive determination of
vacuum condensates. Earlier standard extraction
these condensates from electron–positron annihila
[13] and tau-lepton decay [14] relied on past valu
ΛQCD � 100–200 MeV. With these values ofΛQCD
the perturbative QCD term in the OPE is dominant
not overwhelming, and the power corrections can
clearly discerned.

We would like to conclude with a general com
ment. Mathematically, the extraction of QCD param
ters from experiment via sum rules constitutes a
called ill posed inverse problem (analytic continuat
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of an imprecisely known function). Small changes
the input data lead to large changes in the output.
problem is stabilized by extracting only a small nu
ber of parameters. Given the present accuracy of
τ -decay data, we conclude from our analysis that o
the condensate〈O6〉 can be extracted with some d
gree of confidence, and only a rough idea of the or
of magnitude of〈O8〉can be obtained. This situatio
cannot be remedied by mathematical tricks like e
ploying Laplace or Gaussian integration kernels. O
with forthcoming more accurate data, can one exp
to extract higher-dimensional condensates.
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