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Abstract

The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on
the difference between vector and axial-vector correlators (V-A). The sum rules exhibit poor saturation up to current energies
below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at the upper
limit of integration. The method is used to determine the value of the finite remainder of the V-A correlator, and its first
derivative, at zero momentunif (0) = —4L 10 = 0.0257 0.0003, and 7’ (0) = 0.065=+ 0.007 GeV-2. The dimensionl = 6
andd = 8 vacuum condensates in the operator product expansion are also deteritigled: —(0.004+ 0.001) Ge\®, and
(Og) = —(0.001+ 0.006) Ge\B.

0 2003 Published by Elsevier B.@pen access under CC BY license.

Since the pioneering work of Shifman, Vainshtein sum rules of the Weinberg type [5], as they are con-
and Zakharov [1], a few thousand papers have beenfronted with experimental data for the spectral func-
published on applications of the QCD sum rule method tions. This kind of sum rules involve the difference be-
in all corners of low energy hadronic physics. Un- tween the vector and the axial-vector correlators V-A,
avoidably, results from different collaborations were which vanishes identically to all orders in perturbative
not always consistent [2]. The main reason for these QCD in the chiral limit. In fact, neglecting the light
inconsistencies was frequently the impossibility of es- quark masses, the V-A two-point function vanishes
timating reliably the errors in the method. With the like 1/4® in the space-like region, where the scale
advent of precise measurements of the vector (V) O(300 MeV) is set by the quark and gluon conden-
and axial-vector (A) spectral functions, obtained from sates. In the time-like region the chiral spectral func-
tau-lepton decay [3,4], an opportunity was opened to tion py—a(¢2) should also vanish for largg? = —¢2,
check the precision of the QCD sum rules in the light- but judging from the ALEPH data [3], the asymptotic
quark sector of QCD. In this Letter we would like to regime of local duality may not have been reached in
present a critical and conservative appraisal of chiral t-decay. Under less stringent assumptions one expects

global duality to hold in the time like region; in par-
ticular, this should be the case for the Weinberg-type
"0 Work supported in part by the Volkswagen Foundation., sum rules. Surprisingly, these_ sum rules also appear to
E-mail address: cad@science.uct.ac.za (C.A. Dominguez). be poorly convergent. A possible source of duality vi-
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olation could be some non-perturbative contribution to
the correlator (e.g., due to instantons) which falls off
exponentially in the space-like region but oscillates in
the time-like region. If the duality violations were due
to this source, then there would be a simple recipe (in-
troduced 30 years ago [6]) to improve convergence.

In a previous publication [7] we studied some QCD
chiral sum rules of the Weinberg type, and their sat-
uration by the ALEPH data. In particular, we showed
that a remarkable improvement of this saturation can
be achieved by introducing a polynomial integration
kernel which vanishes at the upper limit of integra-
tion. However, no detailed quantitative error analysis
was performed in [7]. In this Letter we reexamine the
saturation of several QCD chiral sum rules using the
ALEPH [3], as well as the OPAL data [4], and paying
particular attention to the error analysis. We obtain an
updated determination a1, the scale-independent
part of the coupling constant of the relevant operator
in the O(p*) counterterms in the Lagrangian of chiral
perturbation theory [8]. This quantity is related to the
finite remainder of the V-A correlator at zero momen-
tum. We also determine the finite remainder of the first
derivative of the V-A correlator at zero momentum,
which is related to thé(p®) counterterms. Finally,
we introduce combinations of QCD chiral sum rules
which allow for a determination of the V-A dimension
d = 6 andd = 8 vacuum condensates. The former can
be extracted with reasonable precision, while the latter
is affected by much larger uncertainties.

We begin by defining the vector and axial-vector
current correlators

W2 =i / d*x 9 (01T (V,, (1) V1 (0))10)

= (—guwq+ qug) v (g?), 1)
M g2 =i / d*x 9 (0IT (A, (1) AT(0))10)
= (—guwq? + 9.9 IA(g?)
— quqvo(g®), (2

where V, (x) = :g(x)yuq(x):;, Ap(x) = :q(x)yu X

y5q (x):, andg = (u, d). Here we shall concentrate on
the chiral correlatodly—a = I1y — I1a. This corre-
lator vanishes identically in the chiral limit«, = 0),

to all orders in QCD perturbation theory. Renormalon
ambiguities are thus avoided. Non-perturbative con-
tributions due to vacuum condensates contribute to
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this two-point function starting with dimensiah= 6

and involving the four-quark condensate. The Opera-
tor Product Expansion (OPE) of the chiral correlator
can be written as

o0

1
Q= WCZNH(QZ, 1%
N=1

x (O2n+a(u®)), 3)

with 0% = —42. It is valid away from the positive
real axis for complexs?, and |¢?| large. Radiative
corrections to thel = 6 contribution are known [9].
They depend on the regularization scheme, implying
that the value of the condensate itself is a scheme-
dependent quantity. Explicitly,

327 a5 (Gq)?
H(Q2)|V—A=_?a 06
as(Q?) [ 247 u?
e [ ()]
+0(1/0%), (4

in the anti-commutings scheme, and assuming vac-
uum saturation of the four-quark condensate. Radia-
tive corrections foe/ > 8 are not known. To facilitate
comparison with current conventions in the literature
it will be convenient to absorb the Wilson coefficients,
including radiative corrections, into the operators, and
rewrite Eq. (3) as

o0

1
me*»=>y" govea (Ozv+a).

N=1

®)

where we have dropped the subscript V-A for sim-
plicity. We will be concerned with Finite Energy Sum
Rules of the type

S0

W(so) = /ds F$)p(s),
0

(6)

where f(s) is a weight function, and the hadronic
spectral function p(s) = pv(s) — pa(s), with
pv.A(s) = %ImHV,A(s) (pion pole excluded from
oa(s)). For instance, iff (s) = sV (N =0,1,2,...),



C.A. Dominguez, K. Schilcher / Physics Letters B 581 (2004) 193-198 195

then one obtains results, albeit with much lager error bands. Starting
5o with the first Weinberg sum rule, Fig. 1 shows the left-

N 2 N hand side of Eq. (7) fov = 0 (curve (a)), together
/dss p(s) = frdno+ ()" {Oan+2) with the right-hand side, i.e ;2 (straight line (c)), as

0 well as the modified sum rule (curve (b))
(N=0,1,2,..)), )
S0
where f =924+ 026 MeV [10]. ForN =01 () Zfds <1_ i)p(s)_ (11)
Eq. (8) leads to the first two (finite energy) Weinberg 50

sum rules, while forN = 2, 3 the sum rules project

thed = 6, 8 vacuum condensates, respectively; notice ~ On account of the second Weinberg sum rule,
that in the chiral limit(O) = (O4) = 0. To first order ~ curves (a) and (b) should be identical; the improved
in o, radiative corrections to the vacuum condensates saturation achieved with Eq. (11) being remarkable.
do not induce mixing of condensates of different Fig. 1 can be used to present our criterion to judge
dimension in a given FESR [11]. We shall also the reliability of a QCD sum rule. The sum rule must
consider the chiral correlator, and its first derivative, be presented explicitly as a function of the upper
at zero momentum; the finite remainder of these being integration limitso. If the left-hand side is a constant,
given by the sum rules then the spectral integral must also be approximately a

5 constant, starting from 1 to 2 GéWp to the maximum

_ ds so of the data. From Fig. 1 we would extract
11(0) = / ~ PG, (8) ,
) f2=0.008+0.004 Ge\#, (12)
i 50 ds for curve (a), and
o= [ %00, ©
s f2=0.0084+ 0.0004 Ge\, (13)

0

where p(s) does not contain the pion pole. Eq. (8) for curvze (b), to be compared with the experimental
is the Das-Mathur—Okubo (finite energy) sum rule Value fr|exp = 0.00854: 0.00005 GeV. Curve (a)

[5]. The finite remaindei7(0) = —4L10, whereL1o demonstrates the fact that if the spectral integral is
is a counter term of thé)(p*) Lagrangian of chiral not a constant then the experimental errors are quite
perturbation theory, can be expressed as irrelevant in a test of duality. It is very dangerous to

pick up a small stability region to obtain a prediction
1(0) = —4L10= [}fZ(r2> _ FA] — 0.026+ 0.001 (here one could choose the region around 2 eV

3 T\
(10) 0.020 T

where(r?) is the electromagnetic mean squared radius 221: i -'"";! 1
of the pion,(r2) = 0.4394 0.008 fn? [12], and Fa is ooral (@ * 5 i
the axial-vector coupling measured in radiative pion & | ) %
decay, Fo = 0.00584+ 0.0008 [10]. Similarly,I1’(0) 2 wwnl " ®) : ) i
is related to the)(p®) counterterms. A . IO L PP PP

As mentioned earlier, the saturation of the various £ | - & I i i
chiral sum rules can be considerably i o008 . IIHHH{H

y improved by 0.004 | . ]

introducing an integration kernel that vanishes at 0.002 b ‘- 1
the upper limit of integration s(= sg). We have T - , ‘
tested a variety of such kernels searching for optimal 0 1 2 3

saturation. The following results have been obtained ol

using the ALEPH data fop(s), with the errors at Fig. 1. Curve (a) is the standard first Weinberg sum rule, Eq. (7) with
each energy bin calculated from the error correlation N =0, curve (b) is the modified sum rule Eq. (11), and curve (c) is
matrix. Use of the OPAL data [4] data leads to similar the experimental value ofZ.
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Fig. 2. The chiral correlator at zero momentufi(0), from the
standard sum rule Eq. (8) (curve (a)), and from the modified sum
rule Eq. (14) (curve (b)), the latter leading to the prediction Eq. (15)
(curve (c)).

In Fig. 2 we show Eg. (8) (curve (a)) together with
the modified sum rule (curve (b))

_ fjf Sods s\ 2
17(0):2—+/—<1——> o(s).
50 s 50

0

From the optimized sum rule (14) we obtain the value
(straight line (c))

I1(0) = —4L19= 0.0257+ 0.0003, (15)

which is considerably more accurate than the leading-
order chiral perturbation theory result, Eq. (10). The

(14)

agreement between Eqgs. (10) and (15) may be an

indication that higher-order chiral corrections to the
Das—Mathur—Okubo sum rule are indeed very small.
Fig. 3 shows Eq. (9) (curve (a)) together with the
optimized sum rule (curve (b))

2 fd 3

S S
—72T+/—2<1——) p(s),
SO 5 S S0

(16)

_ 3 _
70 = 517(0) -

the latter giving (curve (c))

I7'(0) = 0.065+ 0.001 GeV 2. (7)

We turn now to the determination of the= 6 and

d = 8 vacuum condensates. In Fig. 4 we shd¥) as
obtained from Eq. (7) wittv = 2 (curve (a)), together
with the result from the improved sum rule (curve (b))

S0

2
(O6) = — f252 +s§/ds(1— si) 0(s), (18)
0
0

IT'(0) (Gev-2)
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Fig. 3. The first derivative of the chiral correlator at zero momentum,
IT'(0), from the standard sum rule Eq. (9) (curve (a)), and from
the modified sum rule Eq. (16) (curve (b)), the latter leading to the
prediction Eq. (17) (curve (c)).
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Fig. 4. The dimension-six vacuum condensate from the standard
sum rule, Eq. (7) withNV = 2 (curve (a)), and from the modified
sum rule Eq. (18) (curve (b)).

which gives

(Og) = —(0.004=+ 0.001)Ge\~. (19)

This result can be compared with the vacuum satura-
tion expression
32 _ ., _ 2 _

(O6)lvs = —gnas’(qq” ~-11x 1073 Ge\’,

(20)
to leading order inxg, and where we usedjq) =
—0.014 Ge\?, anda, = 0.5, at a scale of 1 GeV. Ra-
diative corrections increase this estimate by a factor of
two. The result Eqg. (19) confirms pioneer determina-
tions frome*e™, as well as tau-lepton decay data [13,
14] indicating that the vacuum saturation approxima-
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Z:;Z i ' by on the size of the/ = 6 condensate, but there exists
ol Tl18/] a number of inconsistent QCD sum rule determina-
o W11 tions of the value of the/ = 8 condensate. The re-
€ ooz} ) Hﬂﬂ i sults range fromOg) = —(3.5:5 2.0) x 1073 Ge\®
0. ...w.,..“fﬂﬂ{{ﬂﬂ””m [15] to (Og) = (4.4+ 1.2) x 10~° Ge\P [16]. Our re-
3 ool wﬁﬂ‘”” i sult is consistent, within the large errors, with a recent
7 ~o.04k N determination [17] (this reference contains a detailed
o005 (@ i comparative study of the literature).
o6k y The poor convergence of ordinary QCD chiral sum
B . \ rules is rather intriguing, as one would have expected

o 1 2 3 good saturation at relatively low energies, given the
Soilbew) very rapid fall-off of the chiral V—A correlator (see
Fig. 5. The dimension-eight vacuum condensate from the standard EQ- (4)). However, extrapolating the chiral correlator
sum rule, Eq. (7) withv = 3 (curve (a)), and from the modified sum  from the space-like to the time-like region can produce
rule Eg. (21) (curve (b)). strong changes close to the real-axis. In fact, violations
of local duality at the 100% level have been shown
tion underestimates thé = 6 condensate roughly by to be possible using realistic models of the heavy
a factor of 2-3. quark chiral correlator [18]. The remarkable improved
Finally, for (Og) Fig. 5 (curve (a)) shows the result saturation achieved by introducing weight functions
from Eq. (7) withN = 3, together with the improved  that vanish on the real axis at= so could be taken

determination from the sum rule (curve (b)) as an indication that although perturbative QCD works
3.0 4- well in the space-like region, this may not be the case
(Og) = 8sg fr — 3s011(0) in the time-like region, or near the cut, at least at

50

energies belowg ~ 3.5 Ge\2. Finally, by using the

3
+ sS/ ﬁ (1 _ i) (s + 3s0)p(s), (21) chiral V=A correlator we have been able to extract the
2 § S0 value of thed = 6 vacuum condensate with reasonable
) ) accuracy; for thed = 8 condensate the result is
which gives affected by a large uncertainty. In contrast, were one

to attempt a determination from the vector correlator,
and separately from the axial-vector one, the results
in the region where the condensate is approximately would be quite inconclusive. This is due to the very
constant {op >~ 1.75-25 Ge\#), and assuming, opti- large current value ofAgcp (Agcp =~ 400 MeV)
mistically, that the stability region has been reached which makes the perturbative QCD term in the OPE
beyondsg ~ 2.5 Ge\~. It should be clear from Fig. 5 so big that it overwhelms the power corrections.
that no meaningful determination ¢®g) is possible We estimate that ifAgcp 2 330 MeV then the
using the standard FESR, Eq. (7). As expected, with FESR, and even Laplace transform sum rules, will be
increasing dimensionality, i.e., higher powerssoih unable to provide a conclusive determination of the
the dispersive integrals, the accuracy of the determi- vacuum condensates. Earlier standard extractions of
nation of the vacuum condensates deteriorates consid-these condensates from electron—positron annihilation
erably. It should be noticed that the results (19) and [13] and tau-lepton decay [14] relied on past values
(22) do not rely on the vacuum saturation approxima- Aqcp 2~ 100—-200 MeV. With these values ofgcp
tion. They also include all radiative corrections, and the perturbative QCD term in the OPE is dominant but

(Og) = —(0.001+ 0.006) Ge\f, (22)

are correct to first order im,. At orderaf and be- not overwhelming, and the power corrections can be
yond, there is no longer decoupling of condensates of clearly discerned.
different dimensionality in a given FESR [11]. How- We would like to conclude with a general com-

ever, one expects these higher-order radiative correc-ment. Mathematically, the extraction of QCD parame-
tions to the Wilson coefficients in the OPE to be small. ters from experiment via sum rules constitutes a so-
There seems to be general agreement in the literaturecalled ill posed inverse problem (analytic continuation
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of an imprecisely known function). Small changes in  [4] OPAL Collaboration, K. Ackerstaff, et al., Eur. Phys. J. C 7
the input data lead to large changes in the output. The ~ (1999) 571;
problem is stabilized by extracting only a small num- G. Abbiendi, et al., Eur. Phys. J. C 13 (2000) 197.

. [5] S. Weinberg, Phys. Rev. Lett. 18 (1967) 507;
ber of parameters. Given the present accuracy of the T.Das, V.S, Mathur, S. Okubo, Phys. Rev. Lett. 19 (1967) 859:

t-decay data, we conclude from our analysis that only T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low, J.E. Young,
the condensatéDg) can be extracted with some de- Phys. Rev. Lett. 18 (1967) 759.

gree of confidence, and only a rough idea of the order [6] N.F. Nasrallah, N.A. Papadopoulos, K. Schilcher, Phys. Lett.
of magnitude of(Og)can be obtained. This situation B 126 (1983) 379.

. . . . [7] C.A. Dominguez, K. Schilcher, Phys. Lett. B 448 (1999) 93.
cannot be remedied by mathematical tricks like em- [8] J. Gasser, H. Leutwyler, Nucl. Phys. B 250 (1985) 465;

ploying Laplace or Gaussian integration kernels. Only G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321
with forthcoming more accurate data, can one expect (1989) 311.
to extract higher-dimensional condensates. [9] L.V. Lanin, V.P. Spiridonov, K.G. Chetyrkin, Sov. J. Nucl.
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L.-E. Adam, K.G. Chetyrkin, Phys. Lett. B 329 (1994) 129;
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