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Hydrodynamic interaction with an array of porous circular cylinders
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ABSTRACT: In the present study, the wave excitation forces acting on an array of porous circular cylinders are examined
based on diffraction problems. To calculate the wave forces, the fluid domain is divided into three regions i.e. a single exterior
region, N interior regions and N beneath regions, and the diffraction in each fluid region is expressed by an eigenfunction
expansion method with using 3-dimension liner potential theory (Williams and Li, 2000). Especially, the present method is
extended to the case of an array of truncated porous circular cylinders to calculate the heave forces as well as surge and sway
forces. To verify this method, the numerical results obtained by eigenfunction are compared with these results obtained by
higher order boundary element method (Choi et al., 2000). The numerical results obtained by this study are in good agreement
with those results. By changing the numbers of porous circular cylinders, the angle of incident wave and the porosity rate of
circular cylinders, the wave excitation forces such as surge, sway and heave on an array of truncated porous circular cylinders
are investigated.

KEY WORDS: Wave excitation forces; Diffraction Problems; Eigenfunction expansion method; Truncated porous circular

cylinder.

INTRODUCTION

It is well recognized that the wave diffraction problem
about a vertical circular cylinder carried out by MacCamy
and Fuchs (1954) is a typical problem with exact analytical
solution in ocean engineering. As regarding shallow water
wave diffraction around a vertical cylinder, Isaacson (1977,
1978) was one of the pioneers to derive analytical solutionOs.
Under the assumptions of potential flow and linear wave
theory, Spring and Monkmeyer (1974) have proposed a semi-
analytical solution obtained by an eigenfunction expansion
approach firstly for impermeable cylinders and latter it has
been simplified by Linton and Evans (1990) for N bottom-
mounted circular cylinders. Kagemoto and Yue (1986) have
developed another solution that is formally exact within the
context of the linear theory. They have shown how a general
3-dimensionalwater-wave diffraction problem concerning a
structure consisting of a number of separated elements can be
solved exactly in terms of the diffraction characteristics on
each of the individual elements. In the case where the
cylinder spacing is large relative to the incident wave length,
approximate techniques may reasonably be used to quantify
the hydrodynamic interactions between the members of
multi-column structures. A popular approach, based on the

Corresponding author: Min-su Park
e-mail: mspark77@ulsan.ac.kr

wide-spacing assumption is the so-called modified plane-
wave approach firstly developed by Mclver and Evans (1984),
and later used in a number of applications by Mclver (1984),
Williams and Demirbilek (1988), Williams and Abul-Azm
(1989), and Williams and Rangappa (1994). All of the above
studies, however, assume that the cylinders are impermeable.

In case of porous cylinders, the wave motions in the
exterior and all interior fluid regions are expressed by
Williams and Li (1998, 2000). They had divided the fluid
domain into N+/ regions, a single exterior region and N
interior regions. The diffraction potential in each fluid region
was expressed with an eigenfuncition expansion method.
Wang and Ren(1994) were the earliest to study the wave
interaction with a concentric surface piercing porous outer
cylinder protecting an impermeable inner cylinder. The free
surface elevation, net hydrodynamic forces and wave induced
over turning moments on both cylinders were determined
analytically. It was reported that the outer porous cylinder is
significantly effective to reduce the hydrodynamic force and
wave run-up on the inner cylinder compared to be exposed to
direct wave impact.

In the present study, the numerical analysis method is
developed with eigenfunction expansion approach method
which is expressed by Williams and Li (2000). The analysis
method could be applied for the wave force evaluation to any
cases such as for the array of impermeable or permeable
circular cylinders. Especially, the present method could be
extended to the case of an array of truncated porous circular

Copyright © 2010 Society of Naval Architects of Korea. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC 3.0 license

( http://creativecommons.org/licenses/by-nc/3.0/ ).



http://creativecommons.org/licenses/by-nc/3.0/

Inter J Nav Archit Oc Engng (2010) 2:146~154

cylinders to calculate the heave forces as well as surge and
sway forces. Firstly, the results obtained from the present
method are compared with the results obtained from HOBEM
(Choi et al., 2000) in order to verify the developed numerical
analysis method. Moreover, the wave force and wave run-up
acting on the various cylinders are presented, and the
comparison between the impermeable cylinder and the
permeable cylinder is made for the wave force and wave run-
up in order to examine the effects of porosity. From these
results, it is suggested that the present method is very useful
to evaluate the wave force acting on the array of impermeable
or permeable truncated vertical circular cylinders. It is found
that the porosity of cylinders is remarkably effective to
reduce the wave excitation forces and wave run-up.

MATHEMATICAL FORMULATION

It is formulated by the complete boundary-value problem
in the general diffraction theory as follows. The basic flow is
assumed to be oscillatory, incompressible, and irrotational so
that the fluid velocity may be represented as the gradient of a
scalar potential, @. Under potential theory, the total velocity
potential, @, is obtained by a sum of the incident and a
scattered potential. An arbitrary array of N porous circular
cylinders is situated in water of uniform depth d and the
clearance beneath each cylinder is denoted by /4. The radius
of the jth cylinder is a; and the global Cartesian coordinate
system (x, y, z) is defined with an origin located on the still-
water level with the z-axis directed vertically upwards. The
center of each cylinder at (x; ;) is taken as the origin of a
local polar coordinate system (r;, 6,), where §; is measured
counterclockwise from the positive x-axis. The center of the
kth cylinder has polar coordinates (R, o) relative to the jth
cylinder. The coordinate relationship between the jth and kth
cylinders is shown in Fig. 1.Moreover, the fluid domain is
divided into three regions i.e. a single exterior region, N
interior regions and N beneath regions.
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Fig. 1 Coordinate system for an array of porous cylinders.
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The array of the cylindrical structure is subjected to a
train of regular waves of height H and angular frequency w
propagating at an angle S to the positive x-axis. For the

uniform geometry of the array structure, the depth
dependence of the problem can be written as follow,

D (x,y.2.0)=R,[p(x.y) f(z)e™ ] (1)
where Re[ ] denotes the real part of a complex expression
and

ig(H /2)coshk(z+d)
f(z)=- @
wcosh kd

in which g is the acceleration of gravity and the wave number
k is the positive real root of the dispersion relation,
o’=gktanhkd.

The incident plane wave potential can be expressed with
the jth local polar coordinate system by

o) =167 3)

where [, (=" i a phase factor associated with
cylinder j. This equation can be written as follow,

o -1 i J (k?’j)ein(”/z_g’+ﬁ) @

n——oo

in which J, denotes the Bessel function of the first kind of
order n.

Following boundary conditions such as the Helmholtz
equation and the usual radiation, the general form for the
scattered wave emanating from cylinder j can be written as
follow,

/= 3 AZIH, (k)" )

n—>-0

where A4,/ are the unknown complex potential coefficients,
and the factors Z; can be determined by the boundary
conditions on the cylinder surface, where for the limiting case
of cylinders being rigid leads to,

o _J;(kaj)
z)(= Z*")_H; (ka, ) ©)

here H, is the Hankel function of first kind of order »n and
J,and H', are the first derivatives of the Bessel and Hankel
function of the first kind respectively.

The total potential,which is obtained by a sum of the
incident and a scattered potential,in the exterior region can
therefore be written as follow,
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= gres(0-h) +§ i AZ'H, (krj.)emg/ 7)

j=1 Jj=1 n=—0

To account for interaction among the cylinders, it is
necessary to evaluate the scattered potential &," in terms of
the representation of the incident potential &;* at cylinder /,
j=1, 2, 3, ..., N, j#. This can be accomplished by using
Graf’s addition theorem for Bessel functions to give,

= i H, (lej )Jm (krj)eim(”fal/fe,) ®

m=—o

Hn (krl)ein(éx—al,)

for 4, j=1, 2, 3, ..., N, j#4 (Abramowitz and Stegun, 1972).
Equation (8) is valld for r;<R),;, which is true on the boundary
of the jth cylinder for all A. The exterior region potential can
be expressed as follows,

@/ (r 0. )
= Z [1 J, (e ) M) L gzl (krj)eimg’] )

+Z z AlZl Z J (kr) Hm( )eim(ﬂ/2—9,+ah)+inah

A=1 n=
A#j

in which if 7,<Rj; for all A, i.e., this expansion is valid near
cylinder j. The final term in equation (9) may be rearranged
as follow,

0

q)lj(rj’g) Z{A»{Z»{H( )

Nn=—0

Le in(z/2-) i L7 (kRM) i(m-n)ay,; J (kr) o,

A=1 m=—o0
A#£]

(10)

By the way, if the structure has some pores, it would be
treated with the fluid flow through the pore. The wall of each
cylinder is assumed to be thin with fine pores. The fluid flow
passing through the porous walls is assumed to obey Darcy’s
law. Hence, the porous flow velocity is linearly proportional
to the pressure difference across the thickness of the porous
cylinder. Now the hydrodynamic pressure p(x, y, z, t)=Re{p(x,
Yfiz)e™™'} at any point in the fluid domain may be determined
from the linearized Bernoulli equation as P(x, y)=pio®(x, y)
where p is the fluid density. Therefore it follows that
(Williams and Li, 2000)

(/) .
ob; :Zpia)[q)(zl)_q)lJ on r=a, j=123.,N
o p (11)

where u is the coefficient of dynamic viscosity and y is a
material constant having the dimension of length.
Subsequently, the porosity of the cylinder will be
characterized by the dimensionless parameter, G. The body
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boundary condition on the porous cylinder can be expressed
with the G as follow,

- =iG[ o) -, | (12)
in which, G =22~
7]

Also, the porosity parameter G, which is obtained from the
numerical analysis and the numerical model experiment, can
be expressed as follows (Cho, 2003),

G =9.172P—0.155 (13)

where P is the porosity rate of cylinder.
Following the Helmholtz equation,the potential in the jth
interior region, @5, can be written as follow,

z B}{JW( ) j=L.,N (14)
for j=1,2,....,N, where B/, are unknown potential coefficients.

Applying boundary conditions, equation (5) and (7) by means
of the properties of eigenfunctions, leads to following
relationship between the potential coefficients 4,/ and B/,

m=0

(i) e +; Z Az, (kR, )" " =B] - 4]
" (15)
1,(i) e J,(ka,)+4/ZH, ka,)
S5z, (R, ), (k)
i (16)

iJ'(ka )

=B,{[Jn(kaj)+—"G /

] j=12,.,N

Combining equation (15) and (16), and using the Wronskian
relationship for the Bessel functions results in the following
infinite systems of equations,

. 2G
4 {IJF 7rka.J' (kaA)

H, (ka.,-)}

+Z Z AmZmH ( )ei(m*n)ag, =_Ij (l)n e,inﬂ (17)
A=l m=
A#j
j=1,2,...,N,—oO<n<oo
B o 18
! ka H’(ka) (ka) (18)
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In order to calculate the potential coefficients 4,/ the
infinite system in equation (17) and (18) is truncated to a
(2M+1)N system to equation in (2M+1)N unknowns,

m=M

i n —zn/f+z Z AlZ H ( i/)ei(m—n)aw
=
- 2G
=4/ 1+ﬂkaj J; (ka; ) H) (ka, ) (19)
j=12.,N,—0<n<o

Good accuracy can be achieved by increasing M in spite
of the expense of computing time. Except for the cylinders
being very close together, taking M=I0 could achieve
accurate results to all examinations. The potential coefficients
B,/ may then be obtained from equation (18). The velocity
potentials in each fluid region may be determined in the same
manner.

The solution to a number of limiting cases may be
obtained from equation (19). If the porosity parameter G=0
(which corresponds to an impermeable cylinder), the linear
system in equation (19) becomes

l " ’”’ﬁ +Z ”Z Am m

A=l m=-M
A#j

j=12,..

kR, )" =~ 4]
oen (RR3, )¢ "0

,N,—o<n<w

which is similar to the result of Linton and Evans (1990).
Using the method of separation of variables, a physically

acceptable general solution for the beneath region can be
constructed as follow,

9 Z{ "O(FJ mz (mm/h) cos(m;r(z+d)/h)

=0 mrna, / h) 2n
cosnb
Valid for -d<z<-(d-h) and r<a; where C,,(m=0, 1, 2, ...) are

arbitrary constants. Here I,(mzr/h) is the modified Bessel
function of first kind of order n. Let us define (j/(r,z) as
follows,

g (r.z)= Czn0 (1)

a

2 c I, (mzr/h) @)

d)/h
2 Cm 7 (m”aj/h)cos(mir(z+ )/ 1)

such that at 7=a, it becomes a half range Fourier cosine series
expansion
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Cuo +Zc cos(mz(z+d)/h)

nm

G (a,z)=—2% (23)

Defined in -d<z<-(d-h). The Fourier coefficients C,,’s are
obtained from

e 24
- :%Ljd h)g,{ (a,z)cos(mz(z+d)/ h)dz @9

In addition to the boundary condition, the exterior and
beneath potentials must be matched to ensure continuity at
the interface between the exterior and beneath regions. This
results in conditions on the potential,

=¢/ on r=a,—d<z<—(d-h) (25)

By applying the boundary and matching conditions, we arrive
at the key equations,

Rk sinh kh(~1)" ] o6

4 i1
" h wkaH (ka/) (nz/z2 +h2k2)coshkd

Based on the derived velocity potentials, the wave
excitation forces can be computed. The exciting forces on the
each cylinder are obtained by the integration of the pressure
on the surface of the respective cylinder. Surge force given

by the real part of Fie™ is obtained as follows,

F = —ingJOZHIOd " Z @/ (r,z)e" acos 0dOdz 27)
ipgH [sinhkd —sinhkh] =
=— Al — 4/

* K’H)(ka,)  coshkd (4= 4) (28)

Sway force given by the real part of Fye'i‘“’ is obtained as
follows,

F, = —ing_[:”_[_O(d_h) ; @/ (r,z)e" asin0dOdz 29)
ipgH [sinhkd —sinhkn] =
F =— A+ A
" KH{(ka;)  coshkd (4 4) 30)

Heave force given by the real part of F.e™ is derived as
follows by integrating the potential around the cylinder,
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F. = ingJ.Oz” j: ni o) (r,z)e" rdrd 31)
F. =2izpgH %%zﬁL;CW%%(—I)M (32)
The free-surface elevation in general is given by

7(x3)= T 0 (x) (3)

In particular, the free-surface elevation outside the cylinders
can be calculated by substituting equation (7) into the above
equation,

n(x’y) :i eikrcos(ﬁfﬂ +i Z‘C: A;Z}{Hﬂ (krj)eing/

34
2 Jj=1 n=—x ( )
The wave run-up on the outer surface of the jth cylinder is
given by,

. ~ E 0 -2 Anj . GJn (ka/) ind;
771](‘1/’9/)_ 2 n;okﬂajH,;(kaj) o J;Z(’“’j) ‘

(35)

For the interior region of the jth cylinder, the free-surface
elevation can be calculated from equation (14) as given below,

i H - i ini
i (x,y) =?[ z BJJ, (kr,)e"" } 36)
RESULTS AND DISCUSSION

Firstly, the wave excitation forces evaluated by the
developed numerical analysis in the present study are
examined to validate the availability with some numerical
results obtained from HOBEM (Choi et al., 2000).

Fig. 2 shows the comparison of total wave forces acting
on the impermeable single cylinder for different incident
wave angle (f). In these figures, the wave excitation forces
are non-dimensionlized by pgHa’ and the abscissa denotes
the non-dimensional wave number (ka). The present results
are in good agreement with the results obtained from
HOBEM. It is shown that the surge forces decrease as the
incident wave angle increase and the sway forces present
converse pattern to the case of surge forces. The heave forces,
however, have same values for all cases. It is indicated that
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the heave forces are not influenced by the variation of
incident wave angle for the impermeable single cylinder.
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Fig. 2 Non-dimensionless total wave force on the
impermeable single cylinder with a=8.44m, d=200m, h=165m,
G=0 for different incident wave angle (5).
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Fig. 3 Non-dimensionless total wave force on the
impermeable two cylinders with a=8.44m, d=200m, h=165m,
R=86.25m, G=0 for different incident wave angle (£).

Fig. 3 shows the non-dimensionless total wave forces on
the impermeable two cylinders for different incident wave
angle. The various parameter are a=8.44m, d=200m and
h=165m. The cylinders are situated at (0,-43.125)m and
(0,43.125)m. The wave excitation forces are significantly
influenced by the interaction effects between wave and
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structure and the incident wave angle play very important
role on the interaction. It is understood that interaction effects
can be remarkably important in determining the amplitude of
the wave excitation forces. It is noted that the wave force by
the present method gives the good agreement to the results
from HOBEM. Therefore, the present method on wave
excitation force evaluation is quite useful to evaluate the
wave forces acting on the array of impermeable truncated
vertical circular cylinders.

It was reported that the porous circular cylinder is
significantly effective to reduce the hydrodynamic force and
wave run-up on the cylinder compared to the impermeable
cylinder (Williams and Li, 2000). Fig. 4 show the wave
excitation forces on the permeable three cylinders for the
different porosity rate (G). The cylinders are situated at (-
49.796, 0)m, (24.898,43.125)m and (24.898,-43.125)m. In
these figures, G=0 means an impermeable cylinder and the
wave excitation forces are non-dimensionlized by pgHa’.
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Fig. 4 Non-dimensionless total wave force on the permeable
three cylinders with a=8.44m, d=200m, h=165m, R=86.25m,
p=0° for different porosity rate(G).
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Fig.5 Non-dimensionless total wave force on the permeable
four cylinders with a=8.44m, d=200m, h=165m, R=86.25m,
p=0° for different porosity rate (G).

The abscissa denotes the non-dimensional wave number (ka).
The surge forces are slightly decreased as the porosity rate
increase when the wave number is less than 0.4, but their
decreasing rate is dramatically increased when wave number
is greater than 0.4 compared to fore cases. It is noted that the
porous cylinders are very efficient on the reduction of surge
forces as the incident wave becomes a short wave. The heave
forces are remarkably decreased by the porosity rate for all
wave numbers and the pattern of heave force is very similar
to the case of a horizontally submerged plate disk. Therefore,
the porous cylinders play very important role on the
reduction of wave excitation forces, and especially it is
significantly effective on the reduction of heave forces
compared to other forces. When the porosity rate is zero, the
present results are in good agreement with the results
obtained from HOBEM.
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To investigate the interaction effect between wave and
structure more clearly, the non dimensionless total wave
force on the permeable four cylinders is plotted in Fig. 5 and
Fig. 6 for different porosity rate and incident wave angle.
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Fig. 6 Non-dimensionless total wave force on the permeable
four cylinders with a=8.44m, d=200m, h=165m, R=86.25m,

p=22.5" for different porosity rate (G).
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The cylinders are numbered clockwise from 1 to 4, and
are situated at (-43.125, 43.125)m, (43.125, 43.125)m,
(43.125, -43.125)m and (-43.125, -43.125)m respectively. In
these figures, the present results also give the good agreement
to the results from HOBEM when the porosity rate is zero.It
can be seen that the wave excitation forces are strongly
influenced by the interaction effects caused by the variation
of incident wave angle and when the incident wave angle is

22.5°, the interaction effects clearly show as the wave number

increases compared to zero. As expected, the wave force on
the cylinder can be reduced significantly by the porosity and
the forces tend to decrease as the porosity parameter G
increases. In this case, the surge forces are also dramatically
decreased by the porosity when the incident wave becomes a
short wave compared to the cases of long wave and the heave
forces are remarkably decreased by the porosity for all wave
numbers.
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Fig. 7 Non-dimensionless wave run up on the permeable four
cylinders with a=8.44m, d=200m, h=165m, R=86.25m, ﬁ=00
for different porosity rate(G).

Fig. 7 shows the wave run-up amplitude both front and
rear cylinder for ka=0.61. The maximum wave run-up occurs
at #=180" and as porosity G increase, the maximum wave
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run-up tends to decrease. Because the reflection wave
from cylinders is rapidly decreased by the damping effect of
energy that is produced as the incident wave goes through the
permeable cylinders. It is noted that the porosity has the
significant effect to reduce the wave run-up.

CONCLUSIONS

The interaction of water waves with arrays of truncated
vertical circular cylinders has been investigated theoretically.
Under the assumptions of potential flow and linear wave
theory, a semi-analytical solution has been obtained by an
eigenfunction expansion method based on Williams and Li,
2000. Analytical expressions have been developed for the
wave motion in the three regions i.e. a single exterior region,
N interior regions and N beneath regions. Moreover, the
present method can apply to an array of truncated vertical
circular cylinders.Numerical results are compared with the
results obtained by HOBEM to verify present method and
have been presented which illustrate the effects of various
incident wave angle and structural parameters such as
impermeable or permeable cylinders on the wave excitation
forces. It has been found that the present method on wave
excitation force evaluation is quite useful to evaluate the
wave forces such as surge, sway and heave forces acting on
the array of truncated vertical circular cylinders and the
porosity of the truncated vertical circular cylinders is very
efficient on a significant reduction in both the wave
excitation forces and wave run-up.
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