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Abstract 

This paper introduces an autoregressive hidden Markov model (HMM) and demonstrates its application to the 
speech signal. In this variant of the HMM the observed signal is assumed to be Gaussian autoregressive and the 
probability density function is derived based on an approximation of the linear prediction error. A Baum-Welch 
style set of re-estimation formulas are then derived and used to infer the model parameters for a given data set, 
which correspond to linguistic structure in the context of speech data. The new set of re-estimation formulas are then 
applied to speech data and experimental results demonstrate inference of broad phonetic categories without prior 
knowledge of linguistic information. The experimental results and stability of this model are then briefly contrasted 
with historic experiments wherein phonetic information has been inferred directly from the speech signal using a 
similar autoregressive model.  
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1. Introduction 

In this paper, we seek to develop a method of inferring linguistic structure from the speech signal in an unsupervised 
manner. Given that the hidden Markov model (HMM) has been demonstrated to infer linguistic structure from text1, 
we accomplish this task by applying an HMM directly to the speech. Previously, the autoregressive HMM or hidden 
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filter model has been shown to infer broach phonetic categories from the speech signal. In the case studied by Poritz, 
linear prediction analysis was incorporated into the HMM and a set of Baum-Welch style re-estimation formulas were 
developed2,3. This approach was based on the covariance method of estimating linear prediction coefficients (LPCs)4. 
In order to extend these results, an alternative method of performing linear prediction analysis, namely the 
autocorrelation method, is incorporated into the HMM so that the inferred filter parameters carry a guarantee of 
stability. The resulting re-estimation formulas are then applied to speech data and broad phonetic and phonotactic 
information is inferred.  

In the remainder of this paper, we will develop this new autoregressive HMM and its corresponding Baum-Welch 
algorithm. This model will then be applied to a set of speech data and the results will be presented. Finally, we will 
contrast this new model with the Poritz model and suggest future applications in speech processing. 

2. Model Development 

The problem of inferring linguistic structure directly from the speech signal may be broken into two parts. Namely, 
we must model the linguistic structure within the signal as well as the spectral behavior of the signal at a given moment 
in time. In the case of this work, we will use the HMM to model linguistic structure and the all-pole filter model of 
speech to capture the spectral distribution. We will then incorporate the all-pole filter model into the observation 
probability of the HMM so as to infer the filter parameter alongside the HMM parameters.  

2.1. Hidden Markov Model  

The HMM is a mathematical model that can be used to infer sequential patterns in a set of observations by assuming 
that a given sequence of observations is generated by an unobserved sequence of states. The elements of the 
observation sequence are denoted by  and the elements of the state sequence are denoted by . In order to simplify 
the mathematics, the transitions between states are assumed to have the Markov property, in that the probability of 
state  taking a particular value is only dependent on the preceding state, . In addition, we assume that the 
probability of a given observation at any point in the sequence is only dependent on the underlying state. 

Using this structure, we can characterize the system with a set of state transition probabilities 
and state dependent observation probabilities . In 

the case that the observations come from a discrete and finite set  of size , we can characterize the conditional 
probability of observing each element of that set as where . Based on these definitions, an 
HMM with n states can be characterized by a set of parameters , where  is the  state 
transition matrix,  is the  observation matrix, and  is the  initial state vector. 
Using a set of parameters , the forward-backward algorithm as shown in (1), (2) and (3) can be used to efficiently 
compute the probability of an observation sequence of length . The forward and backward probabilities are initialized 
as  and  respectively. 

 (1) 

 (2) 

 (3) 

This in turn leads to the Baum-Welch algorithm given by the set of re-estimation formulas (4) and (5), where the 
over-bar denotes a new estimate of that parameter. 
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 (4) 

 (5) 

 
These formulas represent a contraction map such that the optimal values occur at a fixed point within the parameter 

manifold. The optimal parameter values are then determined by iterating the Baum-Welch algorithm until such a fixed 
point is reached3,5,6,7. 

2.2. All-pole Filter Model of Speech 

The speech signal is often used as a canonical example of a nonstationary signal. Fortunately, the spectrum of 
speech is largely dependent on the configuration of the vocal tract at any given point in time. Since the shape of the 
vocal tract changes at a rate much slower than the frequencies of the speech signal, we may assume that changes to 
the spectrum of the signal are negligible over a sufficiently short period of time. In practice, the short-time stationary 
assumption is applied for analysis windows up to approximately 30 ms in duration4.  

Under this assumption, we may model the vocal tract as an all pole filter as shown in (6) where the gain is denoted 
by  and the filter coefficients, or LPCs, are denoted by . 

 (6) 

     Using this model, we obtain the time domain representation of the signal , shown in the synthesis equation (7) 
where  represents the excitation signal. We can then estimate the model parameters by solving a system of at least 

 such equations, requiring at least  samples of the signal. Alternatively, the filter coefficients may be estimated 
from the autocorrelation function of the signal using the Yule-Walker equation, shown in (8) where  is the 
autocorrelation function of lag . Although the autocorrelation method generally leads to a larger error than the direct 
approach, the Toeplitz structure of the autocorrelation matrix guarantees that the resulting filter will be stable4.  

 (7) 

 (8) 

2.3. Parameter Estimation 

In its original construction, Poritz modelled the observation probability as a Gaussian autoregressive process, which 
is derived by assuming that the excitation signal  is Gaussian2. Alternatively, we can approximate the error over 
the analysis window at time  using the linear prediction residual as given by Itakura8. This approach yields the 
observation probability given by (9) where  is the set of LPCs corresponding state .  

 (9) 

Using the observation model (9), a set of Baum-Welch style re-estimation formulas may be developed via the 
procedure outlined by Baum et. al.7 or by applying the Expectation Maximization algorithm5. The resulting formulas 
are shown in (10), (11) and (12), where  and  are the autocorrelation matrix and vector corresponding to state j as 
defined by the weighted sum of autocorrelation functions shown in (10). It is significant to note that since  is a 
weighted sum of Toeplitz matrices, its symmetry is preserved and so is the stability of the resulting LPCs. In addition, 
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the Toeplitz structure of the matrices allows for the LPCs to be efficiently computed using the Levinson-Durbin 
recursion4. Lastly, it should be noted that since the state transition probabilities are independent of the observation 
model, their re-estimation formulas remain as shown in (4). These re-estimation formulas form a contraction map that 
be recursively applied to estimate filter parameters and state transition probabilities until the model parameters 
converge to a fixed point5.  

 (10) 

 (11) 

 (12) 

3. Application to Speech 

Since this observation model is derived from the formula posed by Itakura, this method is equivalent choosing filter 
parameters that minimize the LPC distance. Although this distance is not a true metric, its utility in speech recognition 
has been well established8,9,10.  With this in mind, the re-estimation formula were applied to several recordings of 
speech data taken from the TIMIT Acoustic-Phonetic Continuous Speech Corpus11.  

The set of recordings from a single speaker were collected to make up 30 seconds of speech data sampled at a rate 
of 8 kHz. The data was then segmented into overlapping analysis windows using a 30 ms Hamming window at 5 ms 
step sizes. The autocorrelation function was then computed for each windowed segment of the signal. This sequence 
of autocorrelation functions , was then used as input to the autoregressive HMM. The Baum-Welch algorithm was 
then iterated until the updated estimates for all model parameters were within 10-4 of the previous estimates. In 
addition, the state transition probabilities were smoothed using the Good-Turing estimate after each iteration of the 
algorithm so as to prevent the state transition probabilities from converging to zero incorrectly5,12.  

3.1.  Experimental Results 

An autoregressive HMM with 5 internal states and 5 filter coefficients was applied to the given speech data to 
produce the following results. In order to more clearly interpret the results, the probability of each state at each time 
step is computed by (13) and shown in Figure 1. In addition, the linguistic interpretation of each state was obtained 
via playback by grouping together segments of the data corresponding to a high probability of that state. This 
information is listed alongside the state transition probabilities in Table 1. Lastly, the frequency response of each of 
the state dependent filters is shown in Figure 2. As is evident in these results, the inferred states correspond to broad 
phonetic categories and the state probabilities give an indication of the phonotactic structure in the speech signal.    

 (13) 

These results are closely related to those produced by Poritz2, however key differences should be noted. First, the 
filter model used in this experiment contains a larger number of coefficients than the Poritz model. This is due to the 
fact that Poritz’s method was derived from a more direct estimation of the LPCs. Consequently, the state dependent 
filters were estimated more accurately but without a guarantee of stability which causes the model to be sensitive to 
initial conditions. Instead, this new model is able to estimate a set of stable filters and the margin of error may be 
arbitrarily reduced by simply adding more filter coefficients. As a result, this new model produces much more stable 
results and is able to consistently converge from a randomized initialization, provided that the model order of the state 
dependent filters is sufficiently high.  
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Figure 2: Frequency response of the inferred state dependent all-pole filters 

Figure 1: Spectrogram of the speech signal and probability histories of each state. 
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Table 1: Inferred state transition matrix and linguistic interpretation of each state. 
From \To 1 2 3 4 5 Interpretation 

1 0.930 0.013 0.000 0.056 0.000 Vowels (eh) 
2 0.007 0.944 0.008 0.040 0.000 Semivowels 
3 0.018 0.033 0.948 0.000 0.000 Vowels (ah) 
4 0.002 0.011 0.000 0.978 0.009 Plosives and Silence 
5 0.020 0.000 0.000 0.036 0.944 Fricatives 

4. Conclusion  

In this paper, we have presented a variant of the autoregressive hidden Markov model that is developed based 
on the autoregressive method of linear prediction. A set of re-estimation formulas were developed and this model was 
demonstrated to produce stable estimates of the all-pole filter model of the speech signal. The resulting Baum-Welch 
algorithm was then applied to a set of speech data and the broad phonetic categories of the data were inferred. Given 
the stability of this algorithm, this model represents a method of inferring the linguistic structure of the speech signal 
in an unsupervised manner. It is suggested that this model might be used for the purpose of detecting word or syllable 
boundaries or as a first stage of signal processing for speech recognition. Lastly, because the underlying filters within 
this model are stable, this method may also prove useful for the purpose of speech synthesis. 
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