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Kolmogorov in 1965 proposed two related measures of information 
content (alternately, measures of complexity) based on the size of 
a program which when processed by a suitable algorithm (machine) 
yields the desired object. The main emphasis was placed on a con- 
ditional complexity measure. In this paper a simple variation of 
the (restricted) conditional complexity measure investigated by 
Martin-LSf is noted because of interesting characteristics not shared 
by the measures proposed by Kolmogorov. The characteristics sug- 
gest situations in which this variant is the most desirable measure 
to employ. The interpretation of the measure offers some desirable 
general qualities; also the measure is relatively advantageous when 
working with entities of low complexity and maintains the important 
properties of the Kolmogorov conditional complexity measure when 
concerned with high complexity. 

1. We consider the measures of complexity introduced by  Kolmogorov 
[3]. The domain of entities of concern here is the domain X of finite 
binary sequences. A finite (binary) sequence of length n is denoted by  x ~ 
with subscripts employed when i t  is necessary to distinguish among  
sequences of length n. Likewise, p denotes a finite binary sequence (we 
omit  the length denotation here) and l (p) = length of p, so l(x ~) = n. 
The capital letters A and B denote effectively computable  functions f rom 
X to X (or X X N to X in proper context, where N is the set of positive 
integers). I t  is convenient to regard A as either a recursive function 
having as an argument  a suitable encoding of p, or as a computing 
machine with input  sequence p; the choice is determined by  context. 

The Kolmogorov complexity of x ~ with respect to algorithm A is given 
by  

K~(x  n) = man l(p),  
A ( ~a ) ~ x  n 

* The author was partially supported by Air Force grant AF-AFOSR-995-67 
during the writing of this paper. 
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if there exists a program p such that A (p) = x ~; otherwise 

K~(z  ~) = ~ .  

Likewise, the (restricted) Kolmogorov conditional complexity (or, simply, 
the conditional complexity) of x ~ with respect to algorithm A is given by 

g ~ ( ~ " [ n )  = m ~  t(~),  
A ( ~ , n ) = $  n 

if there exists a program p such that A (p, n) = x'; otherwise 

Kolmogorov suggested that the finite sequences of relatively high com- 
plexity should be considered random sequences (if the algorithm A is of 
a suitable "universal" class, see below) and that this identification con- 
forms to our intuitive concept of the phrase "random sequence". In 
an important paper Martin-LSf [4] outlined a mechanism using what 
we shall call Martin-LSf tests whereby many important properties of 
randomness could be shown to hold for finite sequences of sufficiently 
high conditional complexity. We shall assume the leader is familiar 
with the Martin-LSf paper [4] which shall be sufficient background for 
reading this paper. Other than in the brief discussion below, we will not 
consider further (nor does Martin-L5f) the (nonconditional) Kol- 
mogorov complexity measure. (A complexity measure similar to the 
Kolmogorov complexity measure is independently introduced and 
studied by Chaitin ([1] and [2])). 

We recall a key property, here stated for the conditional complexity 
but true for all variants to be discussed. There exists a universal algorithm 
A such that for arbitrary algorithm B 

K~ (x ~ I n) <_ K .  (z ~ I n) + c. 

where c, is a constant independent of x" and n. A proof of this is given in 
Kolmogorov [3]. As a corollary, we have 

I g ~ ( x ~ l n )  - g , ( x ' l n )  [ <= c 

for any two universal algorithms A and B, where c is dependent only on 
A and B. Because the complexity of x ~ with respect to an algorithm A is 
sensitive to the choice of A only up to a constant, we follow the con- 
vention of Martin-LSf by choosing a fixed universal aIgorithm as standard 
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and dropping notational reference when convenient; thus, we write 
K (x n I n)  for K~ (x n I n).  

A secondary corollary of the stated key property is the existence of a 
constant c such tha t  

K ( x n l n )  <= n + c 

for all x ~. This follows from the existence of an algorithm A such that  
A (x n, n)  = x ~. By a counting argument we derive the other basic rela- 
tionship: sequences of length n for which 

K ( x ~ l n )  < n - c  

are less than 2 n-c in number. 
I f  i, j are positive integers then by x ~ < x j we mean that  i < j and x ~ 

consists of the first i bits of x(  x ~ is then the i prefix of x j. We now intro- 
duce the modified conditional complexity which we shall label the uniform 
complexity. 

The uniform complexity of x ~ with respect to A is given by 

KA(x~; n)  = man l(p),  
D ( A , $  n ) 

w h e r e D ( A , x  ~) = {p l A (p, i)  = x *, x ~ < x ~, all i 6 n } i f D ( A , x  ~) is  
non-empty; otherwise, 

K~(x~; n)  = ~ .  

This type of "uniformity" condition is a frequent condition in mathe- 
matical definitions. Before discussing the interpretation of this modifica- 
tion, we note several basic properties. 

The key property, the existence of a universal algorithm A such tha t  
for any algorithm B 

Ka(x  ~ ;n )  =< KB(x ~ ;n )  + c B ,  

where cB is independent of x and n, is still valid. The essential point of 
Kolmogorov's proof of this property for conditional complexity measures 
is the existence of a universal algorithm A which can simulate any algo- 
ri thm B given a proper "translat ion" program. Thus to a sequence (or 
orogram) p such that  B (p, n)  = x n there corresponds a sequence of form 
bp, that  is, a (binary) sequence b followed by p, such that  A (bp, n )  = x ~. 
Here b depends only on A and B. Because b does not depend on p or n, 
there is a fixed sequence q, which is bp, such tha t  B (p, i)  - - A  (q, i) = x ~, 
i _ - < n s o q E D ( A , x  ~ ) i f p E D ( B , x  ~ )and l (q )  =<l(p) WcB. 
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Again, it follows as a corollary that the choice of universal algorithm 
alters the uniform complexity measure by at most an added constant. 
From the manner of construction of a universal algorithm just outlined, 
it is clear that an algorithm universal with respect to both the conditional 
complexity and the uniform complexity exists. We choose one such algo- 
i~thm as standard for both complexity measures. Again, in the complexity 
notation we wilt in general omit reference to the underlying algorithm. 
Because the underlying universal algorithm is the same for both the 
conditional and uniform complexity measures, the inequality 

K ( x  ~ f n) <_ K(z~; n) 

holds. This follows from the definitions. Moreover, there exists a constant 
c such that K (x~; n) < n + c for all x~; this follows as before as the 
pertinent program satisfies the uniformity condition. The analog to the 
last basic property stated for conditional complexity, that less than 
2 ~-~ sequences x" have K ( x  ~ - n )  < n - -  c, follows from the sameprop- 
erty for conditional complexity using the above inequality. 

Each of the three variant measures expresses a slightly different qual- 
ity of the sequence x ~ in assessing its information content. The quantity 
K ( x ~ ) ,  measured with respect to some universal algorithm, gives the 
(minimum) length of programs for x = which must contain in addition to 
the distribution of characters, here O's and l's, in 2 also information 
about the length n. The integer n can generally be expected to use about 
length logs n of the binary sequence p which is a "program" for x ~. How- 
ever, for values of n quite easy to compute the requirement is much less. 
(Hereafter, we write Log n for logs n. ) The quantity K (x n [ n) reports the 
minimum length of a program which need not contain information on the 
length n but "merely" determine the distribution of O's and 1 'sin x ~. 
K (x ") has appeal intuitively because it reports the "entire information 
content" necessary to generate x ~ (with respect to the given standard 
algorithm). I t  must then suffer this property as a disadvantage when 
concern centers on the distribution (of O's and l 's) and when for reasons 
determined by context the length n can be assumed known. This distinc- 
tion is dramatic at the Iow complexity end of the scale where the infor- 
mation needed to determine the distribution is less than Log n. Compari- 
son between x, ~ and x2 ~ as to distributions may then be lost by K (x ~) 
in the need to "report" that each is of length n. This aspect should be far 
less troublesome in the higher complexity region. Also, for mathematical 
reasons it is interesting to consider infinite sequences, either for their 
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own sake or as an "approximation" ~o very large finite sequences. I f  we 
denote by  x an infinite binary sequence and let x n denote its n prefix, then 
we can discuss the information content of x using the measures introduced 
by  associating with the information content Of x the function K (x n) 
[K( x~ I n) or K(x~; n), respectively] viewed as a function of n. In  this 
instance we are clearly interested solely in the distribution of O's and l ' s  
(the "pa t t e rn" )  in any n prefix. The measure K (x ~ I n)  is then preferable 
to K (x ~) in this instance. I t  should be made clear tha t  no stand is being 
taken here as to whether the length of a sequence is or is not  to be an 
integral par t  of the information content associated with the sequence. 
This seems a mat ter  of context. 

I f  we agree that  our interest is in measuring the pattern of O's and l ' s  
without concern for the length of the pattern, then we should choose between 
K(x  ~ [ n) and K(x~; n). Here the lat ter  has some distinct advantages. 
Recall tha t  the existence of a program p such tha t  A (p, n)  = x ~ is 
sufficient to assure K (x n ] n)  _-< 1 (p). But  here p may make heavy use of 
n in generating the pat tern as well as determining the length of x ~. For  
example, there is clearly a program P0 such that  A (p0, n)  = 400 • . .  0 
= x ~ where g is the binary expansion of integer n. The string of following 
O's has length determined to meet the length requirement for x". Such a 
sequence we shall call an n string. For  example, the n string for n = 5 is 
10100. All n strings have an upper bound of l(po), a constant, on their 
conditional complexity measure although the patterns are intuitively be- 
coming more complex. (This is more dramatic if instead of trailing zeros, 
x ~ consists of ~ i terated sufficiently often to fill the length requirement. A 
program p' exists which accomplishes this.) This measure also has the 
somewhat counter intuitive property tha t  a given pattern may be judged 
considerably more complex than the same pat tern followed by  a f ini te 
sequence of O's. For choose any sequence x ~ with K(x ~ ] n) >> l (po) such 
that  the first bit of x ~ is a 1. Then x n = ~ for some integer r. The  r string 
x ~ = /90 . . .  0 satisfies x ~ < x ~ and K (x" I r )  << K (x ~ I n) .  (This should 
not  be confused with "densi ty of informagon" measures such as K/n,  
where K is the complexity of a sequence of length n. I t  is to be expected 
that  the information density of x * should be less than tha t  of x ~ if x r is 
an extension by O's of x~). 

The uniform complexity avoids these characteristics in an obvious way. 
If  p C D (A, x ~) then A (p, i)  = x * < x ~, i < n, which assures tha t  n ex- 
plicitly influences the pat tern itself for at  most the last bit. Thus n as the 
second argument in A (p, n)  serves solely to determine the length of the 
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sequence. I t  is clear tha t  no single program tha t  generates all n strings is 
acceptable for the uniform complexity measure. We show below tha t  no 
constant c exists such tha t  K(x~; n)  <= e for all n strings x ~. Also, if 
n < r and x" < x ~ then K(x ' ;  n)  <= K(xr; r). The objections mentioned 
previously are thus not valid here. To summarize, when concern is cen- 
tered on the pat tern  (shape) exclusively, the interpretation of the uni- 
form measure has some desirable properties not  found in the interpreta- 
tion of the conditional measure of complexity. 1 

Let  us look further at the behavior of K ( x  ~ I n)  and K(x~; n)  when x ~ 
is of " low" complexity. I t  is almost immediate tha t  i f  there exists a con- 
stant c such that for every n prefix x ~ of an infinite sequence x, K (x ~; n)  < c 
then x is effectively computable (recursive). I t  suffices to show there exists a 
single program pl such tha t  for any n A (pl, n)  -~ x ~ where x ~ <: x. There 
are less than 2 c+1 programs p such tha t  I (p) _~ c. Thus, for each n we 
know tha t  A (p, i )  = x i < x ~, all i < n for some program p of a finite 
number of programs. Then at  least one program p' satisfies A (p', i )  
= x i < x ~, all i < n for infinitely many n, hence for all n. Then p' = p l .  
Thus we also know l(pl) <= c. 

The statement above also holds for K ( x  ~ I n)  although in general 
1 (pl) ~ c for the desired program pl .  The last Section gives a proof due 
to A. R. Meyer  tha t  the statement holds for K (x n ! n) .  

The  justification above of the statement concerning K (x~; n)  yields a 
stronger statement.  If there exists a constant c such tha t  for infinitely 
many n prefixes x ~ of an infinite sequence x, K (x';  n) < e then x is ef- 
fectively computable (reeursive). This does not  hold for the measure 
K (x ~ l n) .  In  fact, we have the following Theorem. 

There exists a constant c such that the set of infinite sequences x for which 
K (x ~ I n)  <= c for infinitely many n prefixes x" has the cardinality of the 
continuum. 

The theorem is proven by  providing a 1-1 map from the subsets of the 
positive integers to the infinite sequences x such that  K (x ~ I n)  =< e in- 
finitely often. We choose c = l (p0), i.e., the length of a program which 
generates all n strings. Let  * :N --> X be the function that  maps integer n 

1 For  a fu r the r  compar ison of the  uni form and  condi t ional  complexit ies see 
Loveland,  D. W. "On minimal -p rogram complexi ty  measures" ,  Conference 
Record of the  ACM Symposium on theory of computing, May,  1969. I t  is observed 
there  t h a t  the  condi t ional  complexi ty  measure  enjoys a symmet ry  p roper ty  not  
vMid for the  uni form complexi ty measure,  a desirable p roper ty  in  some instances .  
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into the binary sequence formed by placing a 1 to the right of every sym- 
bol in the binary expansion of n. For example, 2 = 1101. If  b C X and the 
first bit of b is a 1, let (b) denote the n string formed by  adding a correct 
number of O's to the right of b. Thus, (2*) = 1101000000000. Let  P ~ N. 
Let  ml ,  m2, • • • be an enumeration of the elements of P.  I f  P is finite let 
mk be the last element enumerated. For  P infinite form the infinite se- 
quence • . .  (((ml*)m2*)m~*) . . .  where (a)b is the concatenation of se- 
quences (a) and b. This infinite sequence is uniquely associated with P 
as the numbers m~ may be determined from the sequence by  noting tha t  
consecutive O's act as spacers between subsequences denoting the m~*. 
I f  P is finite the finite sequence ( . . .  ((m1*)m2*) . . .  )m~*) is formed and 
the desired infinite sequence then defined to be this finite sequence fol- 
lowed by a sequence of O's. In each case, P finite or infinite, K (x" I n)  < c 
holds for infinitely many n prefixes x ". 

We now establish a statement made earlier and derive an interesting 
corollary from the method of proof. 

For no constant c does K (x"; n )  < c for all n strings x ~. Choose k _-> 2. 
Consider the set W of n-strings with 24-1 < n  < 24. Note that  n has a 
k-bit binary expansion within this range. Let  S c W denote the subset 
of n strings which also h a v e n  1 in the k-th bit; S has 2 k-" members. How- 
ever, no program acceptable for the uniform complexity measure (ac- 
ceptable programs are hereafter called "uniform programs")  can com- 
pute two members of S. In  order for a uniform program to compute two 
members of S one member of S must be a prefix of another member of S 
which is impossible. Thus ,  2 ~-2 distinct uniform programs are needed to 
express the members of S. As the total  number  of (binary) sequences of 
length less than k -- 2 is less than 2 ~-~ at least one program of length 
k - -  2 is needed to express a member of S. But  k was chosen arbitrarily. 
This establishes the statement to be proven. As a corollary, we have the 
following statement.  

There exists a constant c such that for infinitely many  n 

K ( x " ; n )  - K ( x " l n )  > L o g n  -- c 

for some sequence x n. 
For each k chosen for the above argument, a (different) n string of 

length between 2 k-1 and 24 is obtained which requires a uniform program 
of length at least k - 2 .  Th i s  infinite collection of n-strings are the x"s  
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which satisfy the corollary. Recall tha t  K (x ~ t n)  =< c for an appropriate 
c for any n-string x ~. 

This is as strong a divergence between these measures as one could ex- 
pect for if there is a program p such tha t  A (p, n)  = x ~ where p uses n, a 
uniform program q can be built from p which includes the integer n as 
information. This adds at most approximately Log n to the length of p. 

2. We now shift our at tention to the characteristics of the uniform 
complexity measure in the region of high complexity. Much is known 
about  the qualities of sequences x ~ whose conditional complexity is 
high from the work of Martin-LSf [4]. Such complex sequences exhibit 
properties of "randomness".  We show tha t  sequences of sufficiently high 
uniform complexity also share many properties associated with random- 
ness by  showing tha t  the technique developed by Martin-LSf for estab- 
lishing this quality for sequences of high conditional complexity carries 
over to the uniform case. In  doing so, we establish that  for every c > 0 
there is a cl > 0 such that 

{x ~ [ K ( x ~ ; n )  > n -  c} c {x ~ I K ( ~  ~ I n )  > n -  cl} 

holds for all n E N. 
This is from one viewpoint an unexpected result. Recall the measures 

differ by  approximately Log n for some sequences x ~ at the low end of the 
complexity scale; at the high end of the complexity scale where a dif- 
ference of Log n is small relative to the complexity of the sequence itself, 
the theorem asserts tha t  the difference between K(x~; n)  and K(x  ~ I n)  
is no longer a function of n. 

Before we give the proof of this theorem (which includes some re- 
marks concerning the randomness properties associated with sequences 
x ~ such tha t  K ( x  ~ I n)  _-> n - c), we mention another property of the 
measure K (x~; n) .  The property follows from a result of Mart imLSf [5]. 
Consider a recursive function f such that  ~ 2 -s(~) = q- ~o. Then, for all 
x, K(x~; n)  <_ n -- f ( n )  for infinitely many n prefixes x ~ of x. For ex- 
ample, K ( 2 ;  n)  <= n - Log n for infinitely many n E N. This property 
was shown by Martin-LSf for the complexity measure K (x"). However, 
we have K(x~; n)  <-< K(x  ~) -F c as for any algorithm A we have an algo- 
r i thm B such tha t  if A (p) = x ~ then B(p,  i)  = x ~, all i _-< n. B merely 
acts as A and allows only the first i bits to "print out".  So K,(x~; n)  
< K (x ~). But  K (x"; n)  < K ,  (x ~; n)  q- c, some constant c. This constant 
is easily absorbed in the function f to give the result for the uniform meas- 
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ure. (Chaitin [2] establishes a similar but  less strong result than that  of 
Martin-L6f's used here. ) 

We will need the notion of a uniform test which is a special type of 
Mar~in-LSf test. We recall the definition of a Martin-LSf test. 

A Martin-Lb'f test V is a subset of N X X with the following properties: 
(1) V is recursively enumerable. 
(2) Vm+l _c Vm, where V~ = {x ~ I (m, x ~) C V, a l l n  C N}. 
(3) The number of sequences of length n in V~ is ~ 2 ~-~. 

I f  V is a Martin-L6f test and x" E V~ then x" is terminal of class c at m, 
c = n -- m, if there does not  exist a y.+l E V , ~  such tha t  x" < y~+l. Let  
T~ (V) denote the set of terminal sequences in class c in V. Let  Tc ~ (V) 
denote the set of terminal sequences in class c at r for 1 < r < m, in V. 
The number of sequences in a set S is notated tS while ~'S denotes the 
number of sequences of length n in S. We now can write the added con- 
dition for a uniform test. A Martin-L6f test is a uniform test if: 

(4) ~Vm + ~Tj~(V) <= 2~-~ f o r m  => 2where  c = n - m. 
Condition (3) for the Martin-L6f test, ~V~ =< 2 ~-~, is subsumed by 

condition (4). This is immediate for all values of m except m = 1 for 
condition (3 ) .  The m = 1 ease should become clear after consideration 
below of the intuitive meaning of the four conditions. I t  thus suffices to 
show conditions (1),  (2) and (4) to establish a set of finite binary se- 
quences is a uniform test. 

Martin-LSf defined for any test V the set V0 to be the set X. This is 
convenient when working with the critical levels. We do the same for the 
uniform test. This definition is compatible with the requirements of uni- 
form test as condition (4) is void at  m = 0. The definition of Tc'~(V) 
(and T, (V))  are not  extended to include sequences terminal at m = 0. 

Condition (4) is chosen so that  uniform tests relate to the uniform 
complexity measure as Martin-LSf tests relate to conditional complexity. 
The condition is forced if a key theorem relating Martin-LSf tests and the 
conditional complexity measure is to be preserved. This condition along 
with conditions (2) and (3) can be illustrated by  presenting a partial 
"pic ture"  of a test V given by  Fig. 1. Each box represents for a fixed n 
and m the set of x ~ in V~. V ,  is the union of all boxes in the m-th row 
from the bot tom; the set of x ~ in V is given by the n-th column from the 
left. The  number  in the lower lefthand corner of each box gives the maxi- 
mum number  of sequences permit ted in the box. This expresses condi- 
tion (3). Condition (2) demands tha t  any sequence in a box B appear 
also in the box below B. Condition (4) is a condition on the diagonal line 
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m 

1 

111,110 
2 

111,1i0,101 
11,01 011,010 

4 

1 2 3 

2 
i111 ,i101 
0111,0101 

4- 

8 

4 

2 

4 

8 

16 

5 

Fla. 1. A structure violating some conditions required of a uniform test. 

of boxes containing the same left-hand corner number. A sequence x n is a 
terminal sequence if the next higher diagonal box does not  contain an ex- 
tension of x ". To satisfy condition (4), the number of sequences in a box 
plus the number of terminal sequences "below" it on the diagonal must  
not exceed the lefthand corner number. In  Fig. 1, boxes m = 1, n = 2 
and m = 2, n = 3 together present a violation of condition (4). Boxes 
m =  1, n =  3, and m =  2, n = 4 together also violate condition (4) and illus- 
t rate  the reason condition (4) implies condition (3). The proof is 
left to the reader. 

The properties shown to hold for Martin-LSf tests in l-Viartin-LSf 
[4] also hold for uniform tests. Proofs of statements below are similar 
to the proofs for the corresponding results for Martin-LSf tests. 

There exists a universal uni form test U such that for every uni form test V 

V,~+o C U,, m = 1, 2, 3, . . .  , 

where c is a constant (dependent on U and V ) .  
Recall tha t  the critical level function m v ( x  ~) is defined for each 

Martin-LSf test by 
m , , ( x D  = m a x  m,  

xn, eF~ 

for all x ~, 0 ~ my (x ~) _-_ n. The following fact follows directly from the 
theorem on universal tests. 



520 LOVELAND 

I f  U is a universal uniform test then given uniform test V, there exists a c 
such that 

m,, (x ~) <= m~ (x n) + c. 

I f  U and V are universal uniform tests then I mv (x ~) - my (xn) J _-< c 
for a suitable constant c, so the critical level function depends on the 
choice of universal uniform test  only as to addition of a constant.  We 
choose some universal uniform test as a s tandard and again suppress the 
indication of the test  when the s tandard is used. We indicate tha t  a uni- 
form universal test  is the s tandard by  writing the critical level function as 

The impor tant  theorem tha t  ties the conditional complexity measure 
to Mart in-L6f  tests carries over to the uniform case. The uniform tests 
are defined as such to enable this theorem to go through. 

There exists a constant c such that In - K(x~; n)  - ~ ( x ' )  I <= c, all 
binary strings x ~. 

In  one direction, we define 

V =  {(m,x  ~) K(xn;n) < n - m } .  

I t  is easily checked tha t  this defines a uniform test  V. We then obtain 

n -- K ( 2 ;  n)  -- ~ ( x  '~) <= cl, 

for a suitable cl, in the same manner  as for 5/Iartin-L6f tests. For  the  
converse inequality, we assume given the s tandard universal uniform 
test  enumerated by  a recursive function f :  N --~ N X X. (The function f 
is total  bu t  not  necessarily 1-1 ). We give the s-th stage in defining an 
algorithm A. The algorithm will be seen to be an effectively calculable 
function with domain a subset of N × X. 

s-th stage: 
(1) E v a l u a t e f ( k )  = (m~, x~ ) ,  k < s. 
(2) I f  :there exists a k < s such tha t  x ~ < x n~ and n~ - m~ -- nk - m k  

then go to stage (s + 1). 
(3) I f  (2) does not  hold and there exists a k  < s with n~ -- ms = nk 

- -  mk and a program p such tha t  A (p, n~) = x ~ < x ~* and A (p, nk + 1 ) 
has not yet  been defined, then define A (p, i )  = x ~ < x ~" for n~ < i _-< n~. 

(4) I f  (2) and (3) do not  hold choose the first binary sequence p of 
length n~-m~ not  assigned a t  an earlier step and define 

A ( p , i )  -- x i ,1  = i <  n~, where x ~ < x " .  
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This completes the definition of algorithm A. Condition (4) of the uni- 
form test is used to insure an available sequence p exists of length no - m,~ 
if step (4) of stage s requires such a p. I t  is here tha t  the form of condi- 
tion (4) is determined. I t  follows that  

KA(X ~ ;n)  = n - -  m(x ), 

o r K ( x ~ ; n )  <= n -- ~ ( x  n) + c2,so --c~ < n -- K ( x ~ ; n )  - ~ ( x ~ ) f o r a  
suitable c~. The theorem follows. 

Let  s~ denote the number of l 's  in x ~. Let  f (m, n ) be determined so that  
12s~ -- n l > f ( m ,  n )  holds for less than 2 ~-m sequences x ~ but  tha t  
f ( m ,  n )  cannot be decreased without violating this condition. 5{artin- 
L6f uses the Martin-LSf test V -- { (m, x ~) I 12s~ - n] > f(m,  n)} to 
establish tha t  for sequences x ~ with conditional complexity near n, 
[ 2s~ -- n I has a bound of the order of %/n. More precisely, for an arbi- 
t rary  constant c if Go = {x ~ I K (  xÈ [ n )  >= n - c} then any sequence 

n l  ~2  n g  
X l  ~ X2 , X3 ~ " ' "  

of members of G~ such tha t  n~ < ni+~ yields 

lira sup I 2s~ - ni I < k, 

where k depends on c. We shall label this property of G~ the "weak central 
limit property."  

Many  other limit properties of probability theory such as the law of 
the i terated logarithm or yon Mises' "impossibility of a successful 
gambling system" axiom can be shown valid for sequences of high condi- 
tional complexity by  using the same technique as referenced above. I t  is 
certainly desirable, therefore, to establish the same property for se- 
quences of high uniform complexity. We undertake this now. Let  
H¢ = { 2  I K (x~; n )  >= n - c}. Then the following theorem holds. 

For any constant c there exists a constant c~ such that H~ c G~ . 

We already have observed in Section 1 that  G~ ~ H~ as K ( x  ~ I n )  
=< K (x~; n)  under the assumption that  the underlying universal algo- 
r i thm is the same. 

As an example of the use of this theorem we note tha t  the weak central 
limit property holds for every H~. In a similar manner all such state- 
ments tha t  hold for the class of G~ sets also hold for the class of H~ sets. 

The  theorem is established by relating Martin-LSf tests to uniform 
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tests. We might remark here tha t  the Martin-L6f tests formed to estab- 
lish individual properties are usually not uniform. For example, the test 
V = { (m, x')  t 1 2s, - n I > f (m,  n)} is not a uniform test. I t  does not 
seem tha t  the formulation of (a) uniform test(s) from V is any easier in 
this singular case than the general method we consider in the proof we 
give now. 

The basis of the proof is to represent any given Martin-LSf test  V by  
an infinite collection of uniform tests V(b) each of which faithfully 
represents a particular "subset" of V, namely Vb+l. The tests are then 
put  together in a manner similar to constructing a universal test. 

Given Martin-LSf test V we define uniform test V (b ) defined from V 
with base b, b => 1, to be the uniform test satisfying 

(1) V~(b) is empty if m > b. 
(2) If m < b then x ~ ~ V~ (b) if and only if x" E Vb+l. 

We must justify tha t  V(b) is a uniform test. Condition (1): V(b) is 
rccursively enumerable as V is given recursively enumerable. Condition 
(2) : to show V,,+I (b) c V~, (b). This is immediate. Condition (4) [which 
implies condition (3)]: to show ~Vm(b) + ~To'~[V (b )] <= 2 ~-m, where 
e = n - m. We first consider m _-< b. We have ~V~(b)  <= 2 -(b+~). The 
number of sequences x k terminal in class c at m' is < 2 k-(b+~). Thus 

~Tc'~[V (b )] <= ~ 2 (~-j)-(b+l) where m _-> 2. 
j = l  

Put t ing both estimates together we have 
m- - 1  

~Vm(b) + ~T~'~[V(b)] <= 2 -(b+~)" ~ 2 ~-~ 
j~O 

2 -(b+l) • 2n+l 

=< 2 "-b 

_---< 2 ~-~ for m =< b. 

For  m > b, let us define k by m - n = /c - b = c. Then ~'~Vm(b) 
~T~'~[V(b)] = ~Tom[V(b)] = ~kVb(b) + ~T~b[V(b)] <_ 2 -b = 2 n-re. Thus 
V (b) is a uniform test. 

We make use of the following Lemma. 

For each universal uniform test U and each Martin-Lb'f test V there exists 
a monotone increasing function c (m) such that 

Vm+~(,~) ~ U,, , for all m. 



K O L M O G O R O V  C O M P L E X I T Y :  A V A R I A N T  5 2 3  

To prove this Lemma we construct a uniform test V* such tha t  for any 
test V 

V,a+¢x(,~) ~ V~*, 

where cl (m) is monotone increasing. However, for each universal uniform 
test U, there is a constant c such tha t  V,,+~ ~ U~, all m. Putt ing these 
two inequalities together gives the Lemma. I t ,  therefore, suffices to con- 
struct V*. 

First, a set T*, a subset of N X N X X ,  is defined. Recall that  Martin- 
L6f [4] proves a lemma stating there exists a recursively enumerable 
set T ~ N × N X X such that  V is a Martin-LSf test if and only if 
V = { (m,x  ~) I ( i , m , x  ~) C T} for s o m e i =  1, 2, . . .  . By V iwesha l l  
mean the 5![artin-LSf test with index i as determined by T. Thus 
V 1, V ~, . . .  is a (repetitive) effective enumeration of the Martin-L6f 
tests. 

We consider a different effective enumeration of the Vi's for the defini- 
tion of T*. The rule of formation is: V k occurs at the i-th place in the 
enumeration if and only if i = (k - 1 ) + 2 = where n is chosen such that  
k < 2 ~. The enumeration begins (indicating indices of V) 1, 1, 2, 1, 2, 3, 
4, 1, . . . ,  7, 8, 1, 2, . . . .  However, in place of V k at  position i in the 
enumeration just given we enter uniform test V 1~ (i + j ) ,  the uniform test 
defined from V ~ with base i + j .  Here, j is the number of occurrences of 
Vk(b), any b, to (and including) position i. In  particular, the first oc- 
currence of a V k (b) is V k (i + 1 ). We define 

(i, m, x ~') C T'c=* (m, x ~) C Vk(i + j),  

where j and k are determined from i as stated above. 
We now define V* as follows: 

(m,x  ~) C V**v ( i , i + m , x  ~) E T* for some i => 1. 

I t  is easily checked that  conditions (1), (2) and (4) hold for V* so V* is 
indeed a uniform test. Because V~+I = Vbk(b), using the definition of V* 
(and T*) it follows that  for each j > 0, k > 0, 

/z k • V~+~-+I -- V~+~(~ + j )  _c Vi* 

for some i depending on j.  For fixed k, i increases as j increases. We write 
i (3") for i to emphasize dependency on j.  Then the function c (j) such that  

__c v? ,  
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is given by c( j )  = i ( j )  + 1 which is monotone increasing i n j .  This es- 
tablishes the Lemma. 

Let  V be the "s tandard"  universal Martin-L6f test and let U be the 
"s tandard"  universal uniform test. To  complete the proof of the theorem 
we seek a relation between the critical levels m (x ~) of V and r~ (x ~ ) of U 
for arbi trary x ~. Let  c (m) be a function such that  

V~+c(~) ~ U~, all m, 

assured by  the above Lemma. Fix x ~. Let  

m0 = max {m l m --b c(m) "< m (z~)}. 

Then x ~ E V~0+c(~0) so x ~ E U~0 by the Lemma. Thus ~ (x ~) => m0. 
Because 

mo q- c(mo) <= m(x  '~) < mo q- 1 + c(mo + 1), 

we have 

Now, 

m(x'*) <= ~ ( x  '~) -]- c(mo q- 1). 

c[~(x ~) q- 1] _-> c(mo q- 1) 

because c (m) is an increasing function. We have 

m(x ") _-< ~ ( x  ") + c[~(x ~) + 11 = c~(~) 

for an appropriate increasing function c~ (~)  which depends only on 
r~ (x n) (and on the choice of "s tandard"  tests U and V). 

Consider a given I I ¢ =  {x ~ I K(x'~; n) >= n - c}. Using the relation 
I n - K (x ~; n)  - ~ (x ~) [ < ca for a suitable ca, we observe that  if 
x ~ E Ho then ~ (x ~) =< c -k ca = c4. Then m (x ~) =< c~ (c4) as c2 (~ )  is in- 
creasing in r~. Now using In - K (x ~ I n)  -- m (x~)] =< c5, we have 
n -- c~(c4) - c~ =< K ( x  ~ I n) ,  or, with cl = c2(c4) q- c5, x ~ E Go1 = 
{ x'~ I K(x'* [ n) >= n - ci}. The Theorem is proved. 

iV[artin-L6f [4] also introduces the notion of sequential test as an 
extension of the notion of (Martin-LSf) test for the purpose of defining 
" random sequence" as applied to infinite sequences. The sequential test 
differs from the Martin-LSf test by  the addition of the condition tha t  if 

n n " b l  x E V,~andx ~ <~ y , i =  1 , 2 , 3 , . . . t h e n y ~ E  V ~ . T h e d e v e l o p m e n t  
of the calculus for sequential tests parallels tha t  for Martin-L6f tests. A 
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" s tandard"  universal sequential test  is chosen and the level m ( x  ~) de- 
fined. We define the critical level m (x) for an infinite sequence x as 
m (x) = l i m , ~  m (x ~) where x ~ is the n prefix of x. Here the extended 
value ~ is permit ted in the range of m (x). The  limit is well-defined (in 
the extended sense) due to the added condition imposed on sequential 
tests. Mart in-LSf defines an infinite binary sequence as random if 
m ( x )  < ~ .  

The concept of uniform test can be extended to uniform sequential test  
by  addition of the same condition. The  critical level ~ (x n) and ~ (x) are 
defined in the analogous manner.  I t  may  be shown by  an argument  
directly parallel to the preceding work tha t  ~ ( x )  = ~ *=~ re (x )  = ~ .  
Thus,  in the formal definition of infinite random sequence as given by  
Martin-LSf,  it makes no difference if the sequential test  or the uniform 
sequential test  forms the basis of the definition. 

3. We now give the proof of the Theorem on conditional complexity 
s ta ted in Section 2. The proof given here is a modification of the proof 
originally given by  A. R. Meyer.  

I f  x is an infinite binary sequence for which there exists a constant c > 0 
such that K (x ~ ] n )  <= c, all n, then x is recursive. 

Let A be the underlying universal algorithm for K (x ~ I n) .  Then A is a 
recursive function. By  hypothesis, there exists a set of programs 
p l ,  " "  , p~ such tha t  for each n > O, A ( p ~ ,  n )  = x ~ for some i < m, 
where m < 2 c+1. We let x n denote the n prefix of the given sequence x. 
Also, we denote A (p~, n)  by  x~ ~ if A (p~, n)  is defined. We must  prove 
there exists a single program p such tha t  A (p, n)  = x ~, all n. We con- 
struct  (nonuniformly from p l ,  • • • ,  pro) such a program p. First  we need 
some definitions. 

Let  k (b) denote the number  of distinct x~ b defined a t  b for 1 =< i =-< m. 
Let/~ = lim supb_,~ k (b). Let  r be an integer chosen so tha t  r =< b implies 
k (b) < k. Define S = { b I r _-< b and/¢ (b) = k}. Then S is an infinite re- 
cursively enumerable set. We say programs p~', . .  • ,  p J  S-define y with 
prefix z ~ if for all b E S satisfying b > h there is an i _-< k such tha t  
A (p / ,  b) = yb and z h < yb. The programs Pl ,  • • • , p~ clearly S-define x 
with prefix x ~. 

We show tha t  there exists a t > 0 such tha t  programs p~, •. • ,  p~ S~ 
define only x with prefix x t. For suppose p~, . . .  , p~ S-defines d ~ 1 
distinct infinite sequences x, y~, • • • ,  y~ with the empty  prefix require- 
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ment.  Then there exists a w such tha t  x', yl ~, • • • yd' are all distinct for all 
s E S such tha t  s > w. Because only x satisfies x w ~ x we may  choose 
t ~ w .  

We now present an outline of the computat ion of A (p, n) ,  which deter- 
mines the desired p. First, for n < t set A (p, n )  = x ~ where t is chosen so 
tha t  p l ,  " ' " ,  pm S-defines only x with prefix x t. We enumerate S and 
show how to define A (p, b) for each b C S not already determined. We 
note t ha t  if A (p, b) is determined then so is A (p, n )  for all n < b. There 

b are two possibilities for A (p, b) with b C S and b > t. I f  only one x~ 
satisfies (i) x ~ < x~ and (it) for every d C S so far enumerated,  either 
z~ b <: x~ or x /  < x~ b for some j,  1 =< j =< m, then z :  = x b and A (p, b) is 
determined. The second possibility is tha t  there exist more than  one 
x~ satisfying the conditions just  mentioned. But  it is then simply neces- 
sary to keep enumerat ing S until condition (it) holds for only one x~ b such 
tha t  x ~ < x~. This must  occur for otherwise more than  one infinite se- 
quence will be S-defined with prefix x t. This contradicts our assumption. 
Thus,  x b and A (p, b) are determined. This concludes the proof. 
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