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Abstract

The mathematical formulation and analysis of an optimal control problem associated with a viscous,
incompressible, electrically conducting fluid in a bounded three-dimensional domain with fixed perfectly
conducting boundaries is considered. The objective of control is the matching of the velocity and magnetic
fields to given target fields; control is effected through distributed mechanical force and current controls.
The existence of optimal solutions is shown, the Gateaux differentiability for the magnetohydrodynamic
system with respect to controls is proved, and the optimality system is obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study an optimal control problem for a viscous, incompressible, electrically
conducting fluid. The controls applied are a distributed force and current and the object of control
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is to match the velocity and magnetic fields to given fields. The controls and states are constrained
to satisfy a coupled system of partial differential equations consisting of a modified Navier—
Stokes system and Maxwell’s equations. The need to use a modification of the Navier—Stokes
system is motivated by our interest in treating three-dimensional problems for which the global
uniqueness of weak solutions of the Navier—Stokes system is not known. In two dimensions, this
result is known and one can simply use the Navier—Stokes system; see, e.g., [13].

The particular form of the modified Navier—Stokes system that forms one part of the coupled
MHD system is due to Ladyzhenskaya. The well-known Smagorinski turbulence model is a
special case. The global uniqueness of solutions of the coupled modified Navier—Stokes/Maxwell
equation model was proven in [6].

In the past decade, substantial attention has been devoted to optimal control problem for the
two-dimensional MHD system, see, e.g., [7,8,12,14], only scant attention has been paid to the
analysis of optimal control problems for the three-dimensional MHD system; [1,2,5] all treat the
steady-state case.

The mathematical description of the control problem we study proceeds as follows. Let £2 be
a bounded domain in R3 with boundary 352 C C2. Let v denote the velocity, p the pressure, and
h the magnetic field. Denote by f an applied distributed force control and by j an applied current
control. For given T > 0, the cost functional is defined by

T
J (v, h,f,curlj)=//<%|V—vd|2+%Ih—hd|2+%Iflz—i-%lcurlﬂz)dxdt,
0 2

(1.1)

where v; and h; denote some desired velocity and magnetic fields, respectively, and a7, oo,
B1, and B, are nonnegative constants. The first two terms in (1.1) are the object of control, i.e.,
to match, in an L2(.Q) sense, the velocity and magnetic fields to the given fields v; and hg,
respectively. If o1 > 0 and ap = 0, then the object of control is to just match the velocity fields
while if @1 = 0 and ap > 0, then the object is to just match the magnetic field. If both o1 > 0
and o > 0, then the object is to match both the velocity and magnetic fields. The last two terms
in (1.1) are penalization terms that serve to limit the size of the controls f and curlj. One sets
B1 =0 or B =0 whenever only a current or distributed force control is used, respectively. If
both are used, then 81 > 0 and B, > 0. The relative sizes of the «;’s and §;’s are determined
by the competing objectives of achieving a good match for the velocity and magnetic fields (in
which case one wants relatively large «;’s) and of limiting the cost of control (in which case one
wants relatively large §;’s.)

We wish to minimize (1.1) subject to the constraints which are the modified Navier—Stokes
equations (see [9]) coupled with the Maxwell equations:

v; +v-Vv—divZ (V) + ph x curth+ Vp =f, (1.2)
divv=0, (1.3)
uh; + l curl(curlh) + u(v- Vh —h - Vv) = l curl j, (1.4)
divh:(I), ’ (1.5)
with v = (v, vp, v3), h= (hy, hy, h3), and
swm=20
I PR
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where
1 _dv;
e(v) = (g;j(v), Sij(V)ZE(Ui,j‘i‘vj,i)a vi,j=§j,
supplemented by the initial data
Vo=V’ and h|,.o=h" in, (1.6)

and one of the following sets of boundary conditions: either

v|s, =0, h-n|g, =0, and (curlh);|s, =0, (1.7)
where ST =082 x [0, T], or

v, h, and p are periodic with respect to x;, k=1, 2, 3. (1.8)

Here, n is the outer normal to 952 and u; is the projection of the vector u onto the tangent
plane to 9£2. In (1.2) and (1.4), u > 0 denotes the constant magnetic permeability and o > 0
the constant electric conductivity. We consider (1.2)—(1.8) in Q7 = £2 x (0, T) with a fixed
T € (0, 00).
The potential D(-) is a smooth function having the following properties:

(i) D:M3 — RY =[0,00) and D € C3(M):);

(i) vim(e) < D(e) < vom(e), where m(e) = |&|® + |e|?>T2;
(iii) v3m(e) < 3 (6) gij < vam(e);

W)WU+MMWV\&%g&ﬂH ve(1+ [ |ic|%;

3D(e 25—1
V) 7Py gt < w1l k€] |
with vy > 0, k=1,2,...,7, constants and «, £, w arbitrary elements in M:yxnf' For the Navier—

Stokes equations, we have D(eg) = U|8|2 and div Z (v) = vAv.

The global unique solvability of problems (1.2)-(1.8) was proved in [6] for the three-
dimensional case, under the assumption § € [1/4,2]. For two-dimensional domains §2, the
parameter § can be any nonnegative number.

The plan of the rest of the paper is as follows. In Section 2, we formulate the optimal control
problem. In Section 3, we prove the existence of an optimal solution. Finally, in Section 4, we
show that the magnetohydrodynamic system is Gateaux differentiable with respect to controls
and obtain the optimality system from which optimal states and controls may be determined.

2. Notations and formulation of the optimal control problem

We use the standard notations for the Lebesgue spaces L™ (£2) with norms
1/m
Pllm,2 = </ lpl™ dX) form € [1,00) and [¢llcc, 2 =esssup|g].
xef?
2

The inner product in L2(£2) is denoted by (-,-), i.e., (¢, ¥) = f_q ¢ dx. Sobolev spaces are
denoted by W,’,‘l (£2) with associated norms
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k

alilg
Il 2= PRI ,
li|=0 1 90X 0Xy" - 0X, llm,2
where i1, ..., Iy are nonnegative integers and |i| = Zle ij.

We will use the same notation for spaces of vector-valued functions and their associated

norms. For example, u = (u1, ..., uy) € L™ (§2) implies that each component u; € L™ (S2).

The set of all infinitely differentiable functions with compact support with respect to £2 is

denoted by D(£2). We then introduce the set

Ja
T®(2) = {ve D(£2) ‘ divv = Zvi,i 20}

i=1
and the subspace of L?(£2),
J(2)={ve L*(£2) |divv=0},
where divv = 0 is understood in the sense of distributions, i.e.,
/V~V¢dx=0 Vo € D($2).
Q
Then, j(.Q) is defined to be the closure of J%°(£2) in the norm of L2(£2). Thus,
J(2)C TR C L ().
We also define
Tn(£2) =W (2)N T ()
and
\70,,11(.{2), the closure of J°°(£2) in the norm of W,L(.Q).
The following subspaces of jzz(SZ) and le (£2) will be needed:
TF@2)={ve 77 (2)| (v-mlsg =0, (curlv);|se =0}
and
jzl (£2), the closure of 522(9) in the norm of W21 (£2).

Finally, C will denote several constants whose value changes with context.
Instead of Egs. (1.2) and (1.4), we will use the integral identities
aD(e)
ae

(V[ +v- VV, ") + < —S(V)’ 8(”)) - (I"Lh : Vh3 7’) = (fv 77)
for any n € j£+26(.{2) and

1 1
(uhe, §) — ;(Ah»é')JrM(V'Vh—h'VV,C): ;(Curlj,é')

2.1)

2.2)

for any S L2(£2). Tt is easy to see that (2.1) follows from the inner product in L2(£2) of (1.2)
and 5 € ._7%”5(.{2) and that (2.2) follows from the inner product of (1.4) and ¢ € L2(£2), if we
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take into account (1.3), (1.5), and (1.7) or (1.8) and also the identity h x curlh = —h - Vh +
IVIh?.
We recall the following existence result from [6].

Theorem 1. Suppose that 2 is a bounded domain in R3 with 32 C C* and let Q7 = 2 x (0, T)
and Sg = 352 x [0, T1. Suppose that £, curlj € L2(Qr), divj =0, v € W2(2) N J;} (), and
h° € T1(82). Then, the problem (1.2)~(1.6) along with either (1.7) or (1.8) with § € [1,2] has a
unique generalized solution v, h. Moreover, the generalized solution has the properties

”Vl ||2,QT5 tg[l(%);] ||Vx (t) ||2+25,9 < o0 (23)
and
max [B: (1), o Mhell2. 07 xxll2.0r < oo (2.4)

We use the following notations:
3 172 3 1/2
|w/rx|:<Z |w,-,,-|2) : |¢”|=< > |1/fi,,-k|2) .
i,j=1 ijk=1

Given 2, T, v’ € W2(2)NJ)(£2), h° € 74(£2), and v4, hy € L2(Qr), the set of all admissible
solutions is defined by

Aug = {(v, h, £, curlj) € L2(Q7) | J (v, h, £, curl j) < co and (2.1)~(2.2) are satisfied}.
With this notation, the formulation of the optimal control problem is given by

given 2,T,v' € W2(2) N 75 (2), 0 € 7}(2), and vy, hg € L*(Q7),

find (v, h,f, curlj) € Aaq such that the functional (1.1) is minimized. (2.5)

We recall that (u- Vv, w) = 0 for all divergence free u, v, w € W21 (£2) satisfying fag Upv; X
wing dS = 0, and that (curlu, v) = (u, curl v) holds if u; |3 = 0. We will use the inequality

vgllhy[l3 o — vollhl3 o < llcurlhl)3 o (2.6)

with vg > 0 which holds for any solenoidal h satisfying the boundary condition h - n|yo = 0;
see, e.g., [3]. Also according to the Korn inequalities, we have

C@Vellg. < e ||q9 Vg € (1, 00), 2.7
that holds for some C(g) > 0 and for any v € j; (£2).
3. Existence of optimal solutions

In the following theorem, we prove the existence of solutions for the optimal control problem.

Theorem 2. Given T > 0, v € W2(2) N J1(2), h° € T}(2), and v, hy € L*(Qr), then there
exists a solution (V, fl, f', curlj) to the optimal control problem (2.5).
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Proof. The admissible set 4,4 is bounded and nonempty, e.g., (vo, h,, 0, 0) € A,q, where v,,
h, is the solution to (2.1)—(2.2) with f =0, curlj = 0. Let {(f™, curlj®)} be a minimiz-
ing sequence for the optimal control problem and denote by (v??, h™) = (v(f™ curl j™),
h(f™, curlj™)) the corresponding solution to (2.1) and (2.2). From (1.1), we see that the se-
quence {(f™, curl j"™)} is bounded in L?(Q7). To obtain bounds on (v, h™) we will use
some estimates from [6], which we will sketch for the reader’s convenience. Thus, (2.1) with
n= v<"> and (2.2) with £ = h™ yield

2428

v 2
e e e e ||2+25,9>+——||h<"> o+ 2R,

2 .
< ;9 ”h(n) ||2Q + ”f(n) “29 ”V(n) “29 + pu ||cur1J(”) ”29 ”h(n) “29

and by the Gronwall lemma we obtain

2428 2 2
max [V o+ V0 B g+ VI o+ mas (W12 g+ [,
<O |V 00 80, 0 [ g, fewrti® ], ). G

where @ is a continuous function of the indicated arguments.
Now we take £ = —Ah™ in (2.2) and obtain

wd 2 1 2
2dr ||cur1h(”) stz + . H Ah®™ “2.(2
_ M(V(n) .Vh"™ — ™ . VV("), Ah(")) + l(curlj("), Ah(n))
o

: 1 .
< =i )+ o | ARG g+ (I VO ertj ] ). B2

We will use now the Holder inequality with powers ¢ =2 + 28 and ¢’ = (2 + 28) /(1 + 28), the
multiplicative inequality (see [11])

lullg,e < C(Q)Illlxllzgllllll > T Ci1@llul2.2 (3.3)
with
1 1
a=3<— — —) €[0,1], ge€[2,6]
2 gq
(here Ci(q) =0ifulye =0o0r fﬂ udx =0), and Young’s inequality to obtain

(3 1)

<€ [ IO N0 Patx < OV | 0 Py
2

2
<CHV 0.0 (IR [5G [0S 5% + [0]3 )
Se Hh(n) Hz o tCe Hv(n) ”2+26 o Hh)(cn) Hz.o +C HV)(cn) H2+25,.Q Hh)(cn) H;Q (34)

forany € € (0, 1] and o = m; see, e.g., [6].
Now we will use Holder inequality with exponents ¢ = 1 + 8 and ¢’ = (1 + 8) /6, the imbed-
ding inequality (see, e.g., [6,11])

allm,e < COn, rllucll,e + Ci(m, r)lullz,e, (3.5
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where

3r
m< i, forr €[1, 3),

with m =2(148)/8 and r = 6(1 4 8)/(2 4 568) (also Ci(m,r) =0if ulye =0 or [, udx), the
inequality (3.3) with ¢ = 6(1 4 §)/(2 + 56), and Young’s inequality to obtain

B VO3 g < [V .0 10 [

o ||2+25 Q(”h(n) ”%WS + ”h(n) ”; .Q)

n I + V5.0 (I + D5 0)

<C ||V
<G ”V(n) H2+28 Q ”h(n) ”

<alb R g+ Calv |00

+ ol s (105 + 103 ) (3:6)
forany €; € (0, 1] and y = ;é‘g
We recall also the inequality

[hycll2,2 < C1(82)[|Ahll2, 2 + C2(82) |[hl2,2

which holds for any solenoidal vector field h satisfying the boundary conditions h-n|3 = 0 and
(curlh); |3 = 0; see, e.g., [10]. Now if

1
8= —, 3.7
I (3.7)

then 25 <2428 and % <2+ 24.
smg (3.4), (3.6), and (3.7), we conclude from (3.2) with sufficiently small € and € that

d
- ”C“ﬂh(n) ”2 et ”h(n) ”2 2

<c(v H2+2s o+ v )”2+25 o+ v ”2+2a o+ ”§+28,Q)”hx”%,9
+C ||V§cn) H2+25,9 “h(n) ”2:2 +C2 ”C“rlJ(n) ||2:2
Integrate now over (0, t), use (2.6), the Gronwall lemma, and (3.1) to obtain for § > 1/4 that

max [0, + B2, o, <17, [0, ) 68)

In a similar way, we obtain from (2.2) with { = hf") that

”h <<;b2(T, ||h°||2 Q)

(n)
2.0, <
Now, we let 5 = vl ) in (2.1), integrate over (0, ¢), and use (2.7) to obtain

¥ .0, + 2531V Lo + IV 15035.0)

<2(W 5.0 + IW05555.0) + UMM, o, + 1B o)

+2[t™)3 . (3.9)
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Using the Holder inequality with exponents ¢ = 1 + 8 and ¢’ = (1 + 8) /8, and inequality (3.5)
with m = (2 +26)/6 and r =2 + 2§, we obtain

1 t
NI g, < [ 1 B oV zp g7 <€ [N im0
0 0

if § > % Using the Holder inequality with exponents ¢ = 3 and ¢’ = 3/2, the inequality (3.5)
with m = 6 and r = 2, and the multiplicative inequality (3.3) with g = 3, we have

t
(101012 , < [ 612 g0 2 g =
0

t
< Cf(llhﬁ") 3.0+ 1015 ) (I, o [, o + 115 ) d.

0 G.11)

From (3.9), (3.10), (3.11), and (3.8), we obtain
IV 15,0, + 2031V [0 + 1V 1522.02)

13
< c[nvs Bt o+ 10 g, + 0 [P o (901
0

+ V@35 0) dr + (T

)|

so that (3.1) and the Gronwall lemma yield

I g, mas (V@] g+ V0] 0) < 5(T.

Vg ||2+25,9’ |v2 ||2,9)

with a continuous function @3 which depends also the known functions v, hO, £ and curl j(").
Selecting subsequences, if necessary, we have

£ curlj™ — f, curlj weakly in L*(Q7),

(v, h{") — (¥, hy)  weak-x in L®(0, T; L*F(£2)),
v 0" h®) > @, b, hy,)  weakly in L2(Q7),

E(v(")) — x weakly in L2(1+25)/(1+25)(0, T, (W21+25 (.Q))/).

If v converges to ¥ in L%, T; W21+26 (£2)) weakly and L2(0,T; L%(2)) strongly and h®
converges to h in L%(0,T; W2] (£2)) weakly and L%(0,T; L*(£2)) strongly, then, for any 7, ¢ €
J*(£2) we have
T T
lim [ (v vv® — uh®™ . VR ) dr = / (- V¥ — uh - Vh, p)dt,
0

n—0oo
0
T T
lim [ (v?.Vh™ —h®™ . vv® ¢)dr = /(0 .Vh—h-V¥,¢)dt.
0

n—o00

0
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Since J>°(£2) is dense in J} 425(82), then this is still true for any 7 € g} 125(2).¢ € LA(R2),
by a continuity argument.

To deduce x = Z(¥), we use the monotonicity of &. Indeed, for any w € L2230, T’
j£+25 (£2)), we have

T
/(x—.’_'](w),f'—w)dt
0

T
= lim [ (&8(v™) - Z(w), v — w)dt

n—00

0
T 1
. / /‘8217(8)
lim
n—oo dede
0 ‘o

Passing to the limit as n — oo we obtain that f, curlj, vand h satisfy the integral identities
(2.1) and (2.2).

By the weak lower semicontinuity of the norms we finally get that the cost functional J attains
its infimum at (f, curl j, ¥, h). This completes the proof. O

dt: S(V(”) -w), s(v(”) — w)) dt > 0.
Te(v)+(1—1)e(w)

4. First-order necessary condition

We now show that the optimal solution must satisfy the first-order necessary condition asso-
ciated with the optimal control problem. By studying the case in which the Gateaux derivative
of the cost functional vanishes, we get a possible candidate solution for the optimal control;
see [15].

Theorem 3. Ler V¥ € W2(£2) N J1(82) and W° € T} (£2). The mapping (f, curlj) = (v, h) x

(f, curlj) from L*(Qr) to L*(0, T; W, (£2)), defined as the solution of (2.1), (2.2) and (1.6), has

a Gateaux derivative (D(v, h)/ D (£, curlj)) - (g, curlK) for every (g, curlk) € L2(Q7). Moreover

(v, h)(g, curlk) = (D(v, h)/D(f, curlj)) - (g, curlK) is the solution of the linear problem

32D (e)
degde

({'t+v-V‘7+{'~Vv,17)+(

:em,a(n)) —u(h-Vh+h-Vh,p) = (g n)
4.1

e=¢(v)

forany y € j£+23(9) and

. 1 . .. 1
u(hs, &) + —(curlh, curl¢) + (V- Vh+v-Vh—h-Vv—h-Vv,¢) = —(curlk, ¢)
o o
4.2)
for any ¢ € L*>(£2), with the initial data
Vico=hl,0=0 in .
Proof. Let (f, curlj) and (g, curlk) be given in LZ(QT) and let (v, h) and (v;, h,) denote the

solutions of (2.1)—(2.2) with the right-hand sides (f, curlj) and (f, curl j) + A(g, curlk), respec-
tively. We need to prove that
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) = v ) = AE D 20 7w )
lim =

r—0 A

0.

For v=v, —v—Avand h= h)y —h-— )lel, we have the identities

(i 4v-Vi+9-Vv,n) — puh- Vh+h-Vh, )+ (A, 2(p)

St~

— (VA=) -V =vu),n) — u((h;, —h) - V(h —hy), 9))dr =0 (4.3)

and

T
~ 1 ~ ~ ~
/(/,L(ht, &)+ —(curlh,curlg) + u(v-Vh+v-Vh—h-Vv—h-Vv, )
o
0

—u((va=v)-V(h—hy) — (hy —h) - V(v—W;), C)) dt=0 4.4

which follow from (2.1), (2.2), (4.1), and (4.2). Here

1
3°D 3°D .
A =/ (&) dt:e(vy —v)—X (&) 1e(v)
0ede | . 0€0e |o—p(y)
0
1 92D : 92D 32D(e)
_ f ©1 gre@+ / ©) 9D )dr:,\a(v)
dede |, dede | . 9e0e  |o_e(y)
0

d0:| dt:he(V) = A1+ As

0
([ fd 3*D(e)
&

Ay —i—/ —
o Ly d0 e |pe, +(1-0)e(v)

with e; =te(vy) + (1 — t)e(v) and
1

3°D
A =/ (&)
9ede |,
0

4 _/1 /1832)(8)
2= dedede

0 0

dt:e(v),

do:te(vy — V):| dt:de(v).

E=€70
By virtue of our hypothesis on D, we have

1
(A1, e(®) >v5/(1+/|8,|25dr>|8(€')|2dx
0

2

1

~ ~\[2

> 0[19x 113, + vs / / e[ dz|e@)| dx, (4.5)
20

v >0, and
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- 1

I
o 33D(e)
(Ag,e(v))—A/: /(/388838
Lo Mo

2

td@) dr:| te(Vy — V) 8({,)}8(;) dx
€10
~ 1 T
/ / 33D(e)
dedede
- 0

f 162~ e — )| |6 )| |®)| dp dT dx
0

A

1e(vy —v):e(V) dp) dl':| }8(9) dx

2

<V7X/
2
§U7A/
2

Now, in (4.3), we set

(=]

le(@)|leo 1 |e(va — W)||e()]|le,1* ! dp dx. (4.6)

Ct— . O T—

v(x,s) fors <1,
n(x, 1) =

0 fors > 1,

and in (4.4), we set

h(x, fors <1,
<;(x,t)={ (.9) fors <
0 fors > ¢,
for arbitrary r < T and transform them into the relations

t

1
Euv(z)ujg +/(A1,s(v))ds
0
t

= /((e VY, V) — w(h- VI, h) + (Vi = V) - V(v = V3), V)
0
+((hy —h) - V(h—hy), ) — (A2, () ds 4.7)

and

1
1= 1 .
E”h(t)”;ﬂ +- f||cur1h||§Q ds
0

t

= /(—u(v- Vh—h-Vv+ pu((vi —v)- V(h—hy) — (hy —h) - V(v —v;),h)))ds,

0
(4.8)

respectively. We majorize the right-hand sides of (4.7) and (4.8) using our hypotheses on
the potential D. In detail, we apply the Holder inequality with powers p =2 4 25§ and g =
(2+4268)/(1 + 26), the multiplicative inequality (3.3) with o = ﬁ, and Young’s inequality to
get
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s o -2 <2 2
(V~Vv,V)</|VxIIV| dx < [IVxll242s.21Vl304) , < C||Vx||2+289||vx” 2lVIZ o
1+25
2
2 1L 2
<elVally o + Cellvell, 1% o IV3 o (4.9)

Using the Sobolev imbedding, (2.4), and Young’s inequality, we have

(h- V¥, h) < [V |22 lhlloc.2hll2.0 < €9:113, o + Cellhe |13 o I1RII3 o (4.10)
and

(- Vh,h) < V2.2 lhx 2.2 hls,e < €llhyll3 o + Cellhu |3 o IV113 - (4.11)

For § > 1/2, we have W2+25(.Q) C L®(£2) since 6(1+5) < 0; therefore

~ ~ 2 ~
(Vi =V) - V(v=v;),V) < / [Villva = V|7 dX < [[Vi. — Voo, 2 1 Vxll2,211Va — V2,2
2

< ” (Va — V)i ||2+28,.Q ”{'x ”2,9 lvs — V”Z,Q
~ 2
ellVell3 g+ Ce (Vi = Va5 05 0 I1Vi = VI3 -
| 6(148) . .
For § < 1/2 we have W, ,5(£2) C L1-% (£2) which yields

(V2= V) - V(V=V3),7)
<Vell2.ellva = Viisass olIvi — Vilsuis o
1-25 2+58

pIeEE) briEey
< Cill¥xllze | (vi — v>x||2+2m(||m V1357 Vi = vIZ5Y + v = Vii2.)

145
- 2 = Sie
<ellVull3 g + Cef| (Vi = Vs ||2+25 ellva—vlyg

+Ce| i = Vs [2405 o1V — VIEE o (4.12)
Here we used (3.3) with o = 2(“32), since 62(%2) € [2,6] for § < 1/2. Also note that 1+5 <
2+ 26.
Using Young’s inequality and the Sobolev imbedding we obtain
((hy —h) - V(h—hy), )
< / V2 l1hy — h”dx < [V 2.2 [ — hlco, 2 [y, — hil2.0
S 2 2
<ell¥xlB,g + Cellh — hliz 6 11— hI3 . (4.13)

Similarly to (4.9) we have

(h-Vv,h) < | |vel|h?dx < Clvall2425.2 1Bl 55
1425

2(1 —a)
C1||Vx||2+25:2||hx|| YLy
4(1+a)

< el ]l3 o + Cellvell,[ 55 o 1113 - (4.14)
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Using Young’s inequality and Sobolev imbedding we obtain
(Vi =v) - V(h—h;). h)

= - 2
</m = Vi, = i dx < el I3 o + Cc |y = hivi = Vi[5
2
L2 2 2
<ellhsl3 o + Cellbi =Rl g V2 = VI3 - (4.15)

Adding (4.7) and (4.8), by the use of (2.4), (2.6), and (4.9)—(4.15) we obtain that

- 1
vl g+ IR 3 o + [ (nvxn%,g B+ [ [ |8t|25|8(€7)|2dxdt> N
0 0 £
t
i3 h3 R >
< C/(||V||2,.Q + b3 o) (1 + Vel o + Ihaells o) ds
0
t N » 2 |
+ [0 =901 1 = 1S + 10 =0 gl Vi
0
=+ |Ihy, — h”%VZZ(!Z)(”h)‘ - h||%’9 + [lvy, — V||%,_Q)]ds
r 1
+A2///|8(VA _v)|2|8({’)|2|87:|2(6_1) dr dxds
0 £2 0
t
12 £ 12 4(140) )
< C/(||V||2,:2 +IRI3 ) (1+ Ivell, s o + Iherl3 o) ds
0
t B » 2
* /(” (Vi = V) Hzlj:s%f? Vi =Vl o + (v = v)x ||2+25,.(2 vy — V||%,.Q) ds
0

1
2 2 2
- / B2 = Bl g (0 = I3 o + v = VI3 ) ds
0

t 1
022 [ [1et =911, alle® g0, pller 370 g dv s @.16)
0 0

Now we setu=v, —v, B=h, — h so that

1

3’°D
u; +u-Vu4u-Vv+v-Vu, g + / ©) dt:e(u), e(n)
dede [,
0
—uB-VB+B-Vh+h-VB,p) =x(g,n) 4.17)

and
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1
u®B;, &)+ —(curlB,curlg) + p(u-VB+u-Vh+v.-VB
o

A
—B-Vu—B:-Vv—h-Vu,¢)=—(curlk, ¢). (4.18)
o

After some calculation we obtain

2 2 2426
”u”z,_rz + VS(”ux”z‘Q + ||ux||2+23,9)

2dt
<—@-Vv,u)+ u(B-VB+B-Vh+h-VB,u) + A(g,u)
and by (2.6)
wd 2 Vg8 2
EE”BHZ,Q + ;IIBxllg,Q
A
< v—9||B||%Q —pn@-Vh—B-Vu—B:Vv—-h-Vu,B)+ —(curlk, B).
o ’ o

Integrating over ¢ and using for the right-hand side the following estimates:

2 2 2 2(1—a)
(u- Vv, u)</|u| Vxldx < fulldass o IVallzi2s.2 < ClluclSgllully o ™ lIvell212s.2
1+25
2

4(148)
2 2 1+45
<eluclla g+ Cellullz o lIvIlL5 s o

(B~Vh,u)</|Bllhllux|dX< ucll2,2Bll2,.2lhlloc,2
2

2 2 2
<elluy ||2+25,_Q + Ce ||B||2_Q Ihy ”2’(27

(B-Vv,B) < / P iveldx < 1BI2.,

1V ll2425, 22
1428 ’Q
2
5 5 4(1+8)
1+468
<elBillz, o + CelBl3 2 IVI5455 o

(u- Vh, B)S/IUIIBxIIhIdX< lull2,2 1By ll2,2 Ihxx 2,2
2

2 2 2
< ellByll} o + Cellull3 olihecll3 o,
for € sufficiently small we obtain that

t

) o+ BOLE o + [ (el g+ a3 o + Bl o) ds
0

<A 04(T, ligll2. 2, |l curlk2, ) (4.19)

with a continuous function @4 which depends on the information about the known functions v°
hO, £, curl j used before.

We estimate the norm || - ||, of By, using the identity (4.17) with ¢ = —AB and the esti-
mate (4.19). Choosing ¢ = —AB, (4.18) can be transformed in the following way:

i
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2 JcurlBIZ o+~ IABIZ o
<um-VB4+u-Vh+v-VB—B-Vu—B:-Vv—h-Vu, AB) — g(curlk, AB)
< —n((ue,j 4+ vi, Bk, Bi j) + %IIABH%,Q
+C(jlu- Vh+B-Vu+B-Vv+h- Vu|3 5+ A% curlk||3 o).
With a similar method as for (3.8), using (2.3), (2.4) and (4.19) we conclude that

2
max [Bx ()] o + [Burllz, o, <2°@5(T liglla.e. llcurlkll.q). (4.20)

Finally, we can apply Gronwall’s inequality in (4.16) and use estimates (4.19) and (4.20) to obtain

t 1

FoLo+ Rl g+ (llvxn%,g o+ [ [ |eflzare<v>\2dxdr) as
2

0 0
< Cr%0(h),

from which our claim follows. O

The Gateaux derivative gives useful information about the sensitivity of the system at a par-
ticular point (v, h) in a particular direction (g, curl k), but complete information requires one to
solve (4.1) and (4.2) for every possible direction (g, curl k). Fortunately, in order to minimize the
functional we need only an integral over all these directions which can more easily be obtained
through the solution of a single adjoint equation.

Theorem 4. Let V0 € W22(.Q) N j%(.Q) and h® € jzl (£2) and let (v, h,f, Curlj) be a solution of
the optimal control problem. Let (w, D) be the solution of the adjoint problem

2
(—w; —V-Vw+ (v)T'w, n) + (8 Dee) ze(n), e(w))
8888 g:g(fl)
— (V) W —h-Vw, ) =1 (V= va, m), (4.21)

—uD;, )+ é(curlD, curl§) + (=¥ - VD + (V9)'D, ¢)
+u((V)'D +h - VD, ) = ez (curl(h — hy), ¢), 4.22)
foranyn e j;_ﬂg (£2) and ¢ € L*(£2), with the final data
Ve =hli.r =0 in £2.
Then,

~ 1 A 1
f=——w and curlj=———D. (4.23)
1 Bao

Proof. Let (v, lAlA, f.z curlj) be a solution of the optimal control problem. The derivative of the cost
functional J (¥, h, f, curl j) in the direction (g, curlK) is then
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dJ¥,h,f, curlj)

= = - (g, curlk)
d(f, curlj)

=//(a1(6—vd)-v+a2(ﬁ—hd).ﬁ+ﬁ]f.g+ﬁ2cuﬂj.curlk)dxdt,
0 2

where (v, fl) is the solution of the system (4.1) and (4.2). Since (¥, fl, f', curlj) is an opti-
mal solution and the Géateaux derivative of J exists, the latter must be zero on all directions

(g, curlk) € L2(Qr). R 5
Taking n = w(z) in (4.1) withv =¥, ¢ =D(¢) in (4.2) withh =h, 5 = v(¢) in (4.21), £ = h(z)
in (4.22), and integrating by parts we obtain

T
1
// a1 (V—vy) - V+a2(h h,) - h dxdt://(gw—i——curlk~D>dxdt.
o
0 2

Therefore,

T
//((ﬁlf—i— w)-g+ (,32 curlj—i— éD) ~curlk) dxdt =0 V(g,curlk) e LZ(QT),
0 2

and by the completeness of the Hilbert space, we obtain (4.23). O

The optimality condition curlj = ——D along with divj i= 0 and the boundary condition
J n = 0 can be used to determine the 0pt1mal applied current J (see, e.g., [4]).
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