
Linearity, Persistence and Testing Semantics

in the Asynchronous Pi-Calculus

Diletta Cacciagrano,2 Flavio Corradini3

Dipartimento di Matematica e Informatica
Università degli Studi di Camerino, Italy

Jesús Aranda 1 ,4

INRIA Futurs, LIX École Polytechnique, France

Escuela de Ingenieŕıa de Sistemas y Computación, Universidad del Valle, Colombia

Frank D. Valencia5

CNRS and LIX École Polytechnique, France

Abstract

In [24] the authors studied the expressiveness of persistence in the asynchronous π-calculus (Aπ) wrt weak
barbed congruence. The study is incomplete because it ignores the issue of divergence. In this paper,
we present an expressiveness study of persistence in the asynchronous π-calculus (Aπ) wrt De Nicola and
Hennessy’s testing scenario which is sensitive to divergence. Following [24], we consider Aπ and three
sub-languages of it, each capturing one source of persistence: the persistent-input calculus (PIAπ), the
persistent-output calculus (POAπ) and persistent calculus (PAπ). In [24] the authors showed encodings
from Aπ into the semi-persistent calculi (i.e., POAπ and PIAπ) correct wrt weak barbed congruence. In
this paper we prove that, under some general conditions, there cannot be an encoding from Aπ into a
(semi)-persistent calculus preserving the must testing semantics.

Keywords: Asynchronous Pi-Calculus, Linearity, Persistence, Testing Semantics.

1 The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para el Desar-
rollo de la Ciencia y la Tecnoloǵıa ”Francisco José de Caldas”) and INRIA Futurs.
2 Email:diletta.cacciagrano@unicam.it
3 Email:flavio.corradini@unicam.it
4 Email:jesus.aranda@lix.polytechnique.fr
5 Email:frank.valencia@lix.polytechnique.fr

Electronic Notes in Theoretical Computer Science 194 (2008) 59–84

1571-0661 © 2008 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.11.006
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82233143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:diletta.cacciagrano@unicam.it
mailto:flavio.corradini@unicam.it
mailto:jesus.aranda@lix.polytechnique.fr
mailto:frank.valencia@lix.polytechnique.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

In [24] the authors present an expressiveness study of linearity and persistence

of processes. Since several calculi presuppose persistence on their processes, the

authors address the expressiveness issue of whether such persistence restricts the

systems that we can specify, model or reason about in the framework. Their work is

conducted using the standard notion of weak barbed congruence and hence it ignores

divergence issues. Since divergence plays an important role in expressiveness studies,

particularly in those studies involving persistence, in this work we aim at extending

and strengthening their study by using the standard notion of testing equivalences.

As elaborated below, our technical results contrast and complement those in [24].

More importantly, our results also clarify and support informal expressiveness claims

in the literature.

Motivation: Linearity is present in process calculi such as CCS, CSP, the π-

calculus [20] and Linear CCP [31,14], where messages are consumed upon being

received. In the π-calculus the system x̄z | x(y).P | x(y).Q represents a message

with a datum z, tagged with x, that can be consumed by either x(y).P or x(y).Q.

Persistence of messages is present in several process calculi. Perhaps the most

prominent representative of such calculi is Concurrent Constraint Programming

(CCP) [32]. Here the messages (or items of information) can be read but, unlike in

Linear CCP, they cannot be consumed. Other prominent examples can be found

in the context of calculi for analyzing and describing security protocols: Crazzolara

and Winskel’s SPL [12], the Spi Calculus variants by Fiore and Abadi [15] and by

Amadio et all [2], and the calculus of Boreale and Buscemi [5] are operationally

defined in terms of configurations containing messages which cannot be consumed.

Persistent receivers arise, e.g. in the notion of omega receptiveness [29], where the

input of a name is always available—but always with the same continuation. In the

π-calculus persistent receivers are used, for instance, to model functions, objects,

higher-order communications, or procedure definitions. Furthermore, persistence of

both messages and receivers arise in the context of CCP with universally-quantified

persistent ask operations. In the context of calculi for security, persistent receivers

can be used to specify protocols where principals are willing to run an unbounded

number of times (and persistent messages to model the fact that every message

can be remembered by the spy). In fact, the approach of specifying protocols in a

persistent setting, with an unbounded number of sessions, has been explored in [4]

by using a classic logic Horn clause representation of protocols (rather than a linear

logic one).

Expressiveness of Persistence - Drawbacks and Conjectures: The study in

[24] is conducted in the asynchronous π-calculus (Aπ), which naturally captures

the persistent features mentioned above. Persistent messages (and receivers) can

simply be specified using the replication operator of the calculus which creates an

unbounded number of copies of a given process. In particular, the authors in [24]

investigate the existence of encodings from Aπ into three sub-languages of it, each

capturing one source of persistence: the persistent-input calculus (PIAπ), defined as

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8460

Aπ where inputs are replicated; persistent-output calculus (POAπ), defined dually,

i.e. outputs rather than inputs are replicated; persistent calculus (PAπ), defined as

Aπ but with all inputs and outputs are replicated. The main result basically states

that we need one source of linearity, i.e. either on inputs (PIAπ) or outputs (POAπ)

to encode the behavior of arbitrary Aπ processes via weak barbed congruence.

Nevertheless, the main drawback of the work [24] is that the notion of correct

encoding is based on weak barbed bisimulation (congruence), which is not sensitive

to divergence. In particular, the encoding provided in [24] from Aπ into PIAπ is

weak barbed congruent preserving but not divergence preserving. Although in some

situations divergence may be ignored, in general it is an important issue to consider

in the correctness of encodings [8,17,16,18,7].

In fact, the informal claims of extra expressivity of Linear CCP over CCP in

[3,14] are based on discrimination introduced by divergence that is clearly ignored by

the standard notion of weak bisimulation. Furthermore, the author of [11] suggests

as future work to extend SPL, which uses only persistent messages and replication,

with recursive definitions to be able to program and model recursive protocols such

as those in [1,25]. Nevertheless, one can give an encoding of recursion in SPL from

an easy adaptation of the composition between the Aπ encoding of recursion [30]

(where recursive calls are translated into linear Aπ outputs and recursive definitions

into persistent inputs) and the encoding of Aπ into POAπ in [24]. The resulting

encoding is correct up-to weak bisimulation. The encoding of Aπ into POAπ, how-

ever, introduces divergence and hence the composite encoding does not seem to

invalidate the justification for extending SPL with recursive definitions. The above

works suggest that the expressiveness study of persistence is relevant but incomplete

if divergence is not taken into account.

This work: In this paper we shall therefore study the existence of encodings from

Aπ into the persistent sub-languages mentioned above using testing semantics [13].

Our main contribution is to provide a uniform and general result stating that,

under some reasonable conditions, Aπ cannot be encoded into any of the above

(semi-) persistent calculi while preserving the must testing semantics. The general

conditions involve compositionality on the encoding of constructors such as parallel

composition, prefix, and replication. The main result contrasts and completes the

ones in [24]. It also supports the informal claims of extra expressivity mentioned

above. We shall also state other more specialized impossibility results for must

preserving encodings from Aπ into the semi-persistent calculi, focusing on specific

properties of each target calculus. This helps clarifying some previous assumptions

on the interplay between syntax and semantics in encodings of process calculi. We

believe that, since the study is conducted in Aπ with well-established notions of

equivalence, we can easily adapt our results to other asynchronous frameworks such

as CCP languages and the above-mentioned calculi for security.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 61

2 The calculi

Here we define the calculi we study. We first recall the (monadic) asynchronous

π-calculus (Aπ). The other calculi are defined as syntactic restrictions of Aπ.

2.1 The asynchronous pi-calculus

Let N (ranged over by x, y, z, . . .) be a set of names. The set of the asynchronous

π-calculus processes (ranged over by P , Q, R . . .) is generated by the following

grammar:

P,Q, . . . ::= 0 x̄z x(y).P P | Q (νx)P ! P

Intuitively, an output x̄z represents a message z tagged with a name x indicating

that it can be received (or consumed) by an input process x(y).P which behaves,

upon receiving z, as P{z/y}. Furthermore, x(y).P binds the names y in P . The

other binder is the restriction (νx)P which declares a name x private to P . The

parallel composition P | Q means P and Q running in parallel. The replication !P

means P |P | . . ., i.e., !P represents a persistent resource.

We use the standard notations bn(Q) for the bound names in Q, and fn(Q) for

the free names in Q. The set of names of P is defined as n(P) = fn(P) ∪ bn(P).

We let σ, ϑ . . . range over (non-capturing) substitutions of names on processes.

The reduction relation −→ is the least binary relation on processes satisfying

the rules in Table 1.
∗

−→ denotes the reflexive, transitive closure of −→ . The

reductions are quotiented by the structural congruence relation ≡.

Definition 2.1 [Structural congruence] Let ≡ be the smallest congruence over pro-

cesses satisfying α-equivalence, the commutative monoid laws for composition with

0 as identity, the replication law !P ≡ P | !P , the restriction laws (νx)0 ≡ 0,

(νx)(νy)P ≡ (νy)(νx)P and the extrusion law: (νx)(P | Q) ≡ P | (νx)Q if

x �∈ fn(P).

Com x̄z | x(y).P −→ P{z/y}

Par
P −→ P ′

P | Q −→ P ′ | Q
Res

P −→ P ′

(νx)P −→ (νx)P ′

Cong
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

Table 1
Reduction Rules.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8462

2.2 The (semi-)persistent calculi

The persistent-input calculus PIAπ results from Aπ by requiring all input processes

to be replicated. Processes in PIAπ are generated by the following grammar:

P,Q, . . . ::= 0 ! x(y).P x̄y P | Q (νx)P ! P

The persistent-output calculus POAπ arises as from Aπ by requiring all outputs

to be replicated. Processes in POAπ are generated by the following grammar:

P,Q, . . . ::= 0 x(y).P ! x̄y P | Q (νx)P ! P

Finally, we have the persistent calculus PAπ, a subset of Aπ where output and

input processes must be replicated. Processes in PAπ are generated by the following

grammar:

P,Q, . . . ::= 0 ! x(y).P ! x̄y P | Q (νx)P ! P

The relation −→ for PIAπ, POAπ and PAπ can be equivalently defined as

in Table 1, with Com replaced respectively with Com(PIAπ), Com(POAπ) and

Com(PAπ) rules (Table 2). The new rules reflect the persistent-input and linear-

output nature of PIAπ (Rule Com(PIAπ)), the linear-input and persistent-output

nature of POAπ (Rule Com(POAπ)), and the persistent nature of PAπ (Rule

Com(PAπ)).

Com(PIAπ) x̄z | ! x(y).P −→ P{z/y} | ! x(y).P

Com(POAπ) ! x̄z | x(y).P −→ ! x̄z | P{z/y}

Com(PAπ) ! x̄z | ! x(y).P −→ P{z/y} | ! x̄z | ! x(y).P

Table 2
Reduction Rules.

Notation 2.1 We shall use P to range over the set of the calculi so-far defined

{Aπ,PIAπ,POAπ,PAπ}.

3 Testing semantics

In [13] De Nicola and Hennessy propose a framework for defining pre-orders that

is widely acknowledged as a realistic scenario for system testing. It means to de-

fine formally when one process is a correct implementation of another considering

specially unsafe contexts, in which is particularly important what is the revealed

information of the process in any context or test. In this section we summarize the

basic definitions behind the testing machinery for the π-calculi.

Definition 3.1 [Observers]

- The set of names N is extended as N ′ = N ∪ {ω} with ω �∈ N . By convention

we let fn(ω) = {ω} and bn(ω) = ∅ (ω is used to report success).

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 63

- The set O (ranged over by o, o′, o′′, E,E′, . . .) of observers (tests) is defined like

P, where the grammar is extended with the production P ::= ω.P .

-
ω

−→ is the least predicate overO satisfying the inference rules in Table 3.

Omega ω.E
ω

−→ Res
E

ω
−→

(νy)E
ω

−→

Par
E1

ω
−→

E1 | E2
ω

−→
Cong

E′ ω
−→ E′ ≡ E

E
ω

−→

Table 3
Predicate

ω

−→ .

Definition 3.2 [Maximal computations] Given P ∈ P and o ∈ O, a maximal

computation from P | o is either an infinite sequence of the form

P | o = E0 −→ E1 −→ E2 −→ . . .

or a finite sequence of the form

P | o = E0 −→ E1 −→ . . . −→ En �−→ .

Definition 3.3 [May, must and fair relations 6] Given P ∈ P and o ∈ O, define:

- P may o if and only if there is a maximal computation (as in Def. 3.2) such that

Ei
ω

−→, for some i ≥ 0;

- P must o if and only if for every maximal computation (as in Def. 3.2) there exists

i ≥ 0 such that Ei
ω

−→;

- P fair o [6] if and only if for every maximal computation (as in Def. 3.2) and

∀i ≥ 0, ∃ E′
i such that Ei

∗
−→ E′

i and E′
i

ω
−→.

4 Encoding linearity into persistence

First, we recall some notions about encodings. An encoding is a mapping from

the terms of a calculus into the terms of another. In general a “good” encoding

satisfies some additional requirements, but there is no agreement on a general notion

of “good” encoding. Perhaps indeed there should not be a unique notion, but

several, depending on the purpose. In this paper we shall study the existence of

encodings [[·]] : Aπ → P from π into P ∈ {PAπ,PIAπ,POAπ} and focus on typical

requirements such as compositionality w.r.t. certain operators, and the correctness

w.r.t. a given semantics.

6 It may be possible to give other equivalent definitions not based on maximal computations by using

properties of the calculi under consideration such as: if P
ω

−→ and P −→ P ′ then P ′
ω

−→. For uni-
formity, however, we have used a well-known testing semantics definition based on the notion of maximal
computations.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8464

Compositionality and multi-hole contexts: We shall use notion of (multi-hole)

process contexts [30] to describe compositionality. Recall that a P context C with

k holes is a term with occurrences of k distinct holes []1, . . . , []k such that a P
process must result from C if we replace all the occurrences of each []i with a P
process. The context C is singularly-structured if each hole occurs exactly once.

For example, []1 | x(y).([]2 | []1) is an Aπ non singularly-structured context with

two holes. Given P1, . . . , Pk ∈ P and a context C with k holes, C[P1, . . . , Pk] is the

process that results from replacing the occurrences of each []i with Pi. The names

of a context C with k holes, n(C), are those of C[Q1, . . . , Qk] where each Qi is 0.

The free and bound names of a context are defined analogously. We can regard the

input prefix x(y), | and ! as the operators of arity 1, 2 and 1 respectively in Aπ in

the obvious sense.

Definition 4.1 [Compositionality w.r.t. an operator] Let op be an n-ary operator

of Aπ. An encoding [[·]] : Aπ → P is compositional w.r.t. op iff there is a P context

Cop with n holes such that [[op(P1, .., Pn)]]= Cop[[[P1]], .., [[Pn]]].

In the following, C[·] denotes contexts with one hole and C[·, ·] contexts with

two holes. Furthermore, given an encoding [[·]] : Aπ → P, we define Cop
[[·]] as the

context C such that [[op(P1, . . . , Pn)]] = C[[[P1]], . . . , [[Pn]]]. We shall often omit the

“[[·]]” in Cop
[[·]] since it is easy to infer from the context.

Remark 4.2 [Homomorphism wrt parallel composition] An interesting case of

compositionality is homomorphism w.r.t a given operator op: The operator is

mapped into the same operator of the target language, i.e. [[op(P1, .., Pn)]]

= op([[P1]], . . . , [[Pn]]). Homomorphism w.r.t parallelism, also called distribution-

preserving [33,26,27], can arguably be considered as a reasonable requirement for

an encoding. In particular, the works [33,26,27,23,9,16,17] support the distribution-

preserving hypothesis by arguing that it corresponds to requiring that the degree

of distribution of the processes is maintained by the translation, i.e. no coordinator

is added. Some of these works are in the context of solving electoral problems and

some others in more general scenarios [16,17]. Other works [22,28], however, argue

that the requirement can be quite demanding as it rules out practical implemen-

tation of distributed systems. Some of our impossibility results will appeal to the

distribution-preserving hypothesis.

Remark 4.3 Typically, the Cop mentioned in Definition 4.1 is a singularly-

structured multi-hole context in encodings of operators such as input prefix, parallel

composition and replication. Note that, if the encoding is homomorphic wrt op, then

Cop is a singularly-structured multi-hole context.

Correctness wrt testing: Concerning semantic correctness, we consider preser-

vation of sat testing, where sat can be respectively may , must and fair . Given

an encoding e = [[·]] : Aπ → P, we assume that its lifted version e′ from the set of

observers of π to the ones of P is an encoding satisfying the following: e′(o) = e(o),

in the case o has no occurrences of ω.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 65

Definition 4.4 [Soundness, completeness and sat-preservation] Let [[·]] : Aπ → P.

We say that [[·]] is:

- sound w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, [[P]] sat [[o]] implies P sat o;

- complete w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, P sat o implies [[P]] sat [[o]];

- sat-preserving iff [[·]] is sound and complete w.r.t. sat.

4.1 Some encodings from asynchronous pi-calculus into its semi-persistent subsets

We consider the following encoding from Aπ to PIAπ, defined in [24].

Definition 4.5 The encoding [[·]] : Aπ → PIAπ is a homomorphism for 0, parallel

composition, restriction and replication, otherwise is defined as

- [[x̄z]] = x̄z, and

- [[x(y).P]] = (νtf)(t̄ | !x(y).(νl)(l̄ | !t.!l.([[P]] | !f̄) | !f.!l.x̄y))

where t, f, l �∈ fn(P) ∪{x, y}. (The lifted version is given adding [[ω.P]] = ω.[[P]].)

This encoding enjoys a strong property: namely, for any P, [[P]] ≈ P , where

≈ denotes weak barbed congruence [30]. This implies, in the testing scenario, a

property stronger than sat-preservation.

Proposition 4.6 Let [[·]] : Aπ → PIAπ as in Definition 4.5. ∀ P ∈ Aπ, ∀ o ∈ O ⊆
PIAπ P sat o iff [[P]] sat o, where sat can be respectively may and fair .

To prove that the statement does not hold in the case of must semantics,

consider P = (a.0 |!ā) and o = a.ω.0: then P must o but [[P]] �must o.

Extending the notion of barb to ω, clearly P | o ≈ [[P | o]] as P | o ∈ Aπ and, by

homomorphism w.r.t parallel composition, we obtain that P | o ≈ [[P]] | [[o]]. This is

enough to hold fair- and may-preserving.

In [24] the encoding in Definition 4.5 is used to get an encoding of Aπ into

POAπ, by composing it with the following mapping from PIAπ into POAπ.

Definition 4.7 The encoding f = [[·]] : PIAπ → POAπ is a homomorphism for 0,

parallel composition, restriction, and replication, otherwise is defined as

- [[x̄z]] = (νs)(!x̄s | s(r).!r̄z), and

- [[!x(y).P]] =!x(s).(νr)(!s̄r | r(y).[[P]])

where s, r �∈ fn(P) ∪ {x, z}. (The lifted version is given adding [[ω.P]] = ω.[[P]].)

Let g be [[·]] : Aπ → PIAπ in Definition 4.5. The encoding h = [[·]] : Aπ → POAπ is

the composite function f ◦ g.

Because of this encoding maps a linear output into a replicated one with the

same barb, the composite encoding h = [[·]] : Aπ → POAπ in Definition 4.7 does

not satisfy [[P]]≈ P . It has a weaker property: namely, P ≈ Q iff [[P]] ≈ POAπ
[·] [[Q]],

where [[P]] ≈ POAπ
[·] [[Q]] means that ∀C context in Aπ, [[C]][[[P]]] and [[C]][[[Q]]] (as-

suming [[[]]] = []) are weak barbed bisimilar [30]. Similarly, the results for the

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8466

composite encoding from Aπ into POAπ in a testing scenario are weaker than these

ones for the encoding from Aπ into PIAπ. Obviously, the following proposition

would not hold if sat were must . Consider P =!ā and o = a.ω.0: then P must o

but [[P]] �must [[o]].

Proposition 4.8 Let h = [[·]] : Aπ → POAπ as in Definition 4.7. ∀P ∈ Aπ, ∀o ∈ O,

P sat o if and only if [[P]] sat [[o]], where sat can be respectively may and fair .

5 Uniform impossibility results for persistence

This section is the core of the paper and it focuses on general and uniform negative

results for encodings of Aπ into PIAπ,POAπ and PAπ, respectively. We identify

some reasonable conditions which will guarantee that none of these encodings can be

must-preserving. In particular, we show that there does not exist a must-preserving

compositional encoding, homomorphic wrt replication, from π-calculus into any

semi-persistent calculus. The proofs mainly rely on the following statement: if [[·]] is

an encoding from Aπ into P satisfying (1) compositionality w.r.t. input prefix, (2)

must-preservation and (3) [[ω.0]]
ω

−→ then ∀x, y ∈ N , any hole is prefixed in C
[[·]]
x(y).

We believe that the hypothesis [[ω.0]]
ω

−→ is reasonable for an encoding. It can

follow from the existence of a divergent process in the range of the encoding, which is

necessary if the encoding preserves divergence—recall that P diverges, P ↑, if there

is an infinite sequence of reductions from P . However, the hypothesis [[ω.0]]
ω

−→
can be also obtained in a purely syntactic way, i.e without divergence assumption,

defining [[ω.P]] = ω.[[P]].

Theorem 5.1 Let [[·]] : Aπ → P, with P ∈ {PIAπ,POAπ,PAπ}, be an encoding

satisfying:

1. compositionality w.r.t. input prefix, parallelism and replication,

2. [[ω.0]]
ω

−→ ,

3. ∃x, y, z : n(C
[[·]]
!) ∩ n(C

[[·]]
x(y))= n(C

[[·]]
!) ∩ n([[x̄z]])=n(C

[[·]]
!) ∩ n(C

[[·]]
|)=∅,

4. C
[[·]]
! is a singularly-structured context.

Then [[·]] is not must-preserving.

Proof. (Sketch of:) Suppose that [[·]] in C
[[·]]
! is not in the scope of a replication.

Then it is possible to prove that the hole is prefixed in C
[[·]]
! . Now it suffices to

consider that x(y).0 must !ω.0 but Cx(y)[[[0]]] �must C![[[ω.0]]], since every hole is

prefixed in C
[[·]]
x(y), the hole is prefixed in C

[[·]]
! and Cx(y)[[[0]]] | C![[[ω.0]]] �−→ by (3).

Now suppose that [[·]] in C
[[·]]
! is in the scope of a replication. Then it is possible to

prove that ∀x′, z′ ∈N , either C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] or Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]]

has at least one infinite computation such that [[ω.0]] does not interact or participate

in the computation. Now it suffices to consider both P | o (with [[P]] | [[o]]) and

P ′ | o′ (with [[P ′]] | [[o′]]), where P =!x(y).x′(y′).ω.0, o = x̄z | x̄′z′ (x �= x′), P ′ =

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 67

x(y).x′(y′).ω.0 and o′ =!(x̄z | x̄′z′), obtaining that [[·]] cannot be must-preserving.�

Let us discuss the premises in the above theorem. Compositionality is in gen-

eral a reasonable condition for an encoding. As argued above, the second condition

is validated if the encoding is to preserve divergence. The third condition is val-

idated if in the encoding of each operator op the context where the encodings of

the operands are placed, i.e. Cop, uses unique names only. Replication represents

an infinite parallel composition, so it is arguably reasonable to require homomor-

phism for replication since homomorphism for the parallel operator is arguably

a reasonable requirement—see Remark 4.2. Regarding (4), we already pointed

out in Remark 4.3 that in compositional encodings the contexts Cop are typically

singularly-structured 7 .

We conclude this section with a theorem stating a general and uniform impos-

sibility result for the existence of encodings from Aπ into any (semi-)persistent

calculus. The statement results as an immediate consequence of Theorem 5.1 in the

case of homomorphism w.r.t replication, as it implies n(C
[[·]]
!) = ∅.

Theorem 5.2 Let [[·]] : Aπ → P, with P ∈ {PIAπ,POAπ,PAπ}, be an encoding

satisfying:

1. compositionality w.r.t. input prefix and parallelism,

2. homomorphism w.r.t replication,

3. [[ω.0]]
ω

−→ .

Then [[·]] is not must-preserving.

6 Specialized impossibility results for persistence

In the previous section we gave a uniform impossibility result for the existence of

encodings of Aπ into the (semi-)persistent calculi. In this section, we give further

impossibility results, under different hypotheses, taking into account particular fea-

tures of some of the (semi-)persistent calculi, namely PAπ and PIAπ 8 .

For technical reasons we introduce a particular kind of contexts in P that differ

from those we have introduced in Section 4, in that brackets do not disappear once

we “fill the holes” with process terms.

Definition 6.1 [Focusing contexts] A focusing context C{ } for P is generated by

the following grammar:

C{ } := { }σ 0 out in.C{ } (νx)C{ } C{ } | C{ } !C{ }

where σ is a (name) substitution, and in and out are resp. input and output,

according to P syntax. (e.g. in =!x(y), and either out = x̄z if P = PIAπ or

out =!x̄z if P = PAπ)

7 Notice that the case [[!P]] = [[P]] |![[P]], where C! = [.]|![.] is not singularly-structured, can be rewritten via
≡ as [[!P]] =![[P]], where the corresponding C! =![·] is singularly-structured.
8 We also stated this kind of specialized result for POAπ but for reasons of space and its restricted nature
it has been moved in the appendix

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8468

Notation 6.1 Given a focusing context C{} and P ∈ P, C{P} is the term obtained

by replacing each occurrence { }σ in C{ } by {P}σ. We denote by L(P) (ranged

over by B,B′, ..) the set {C{P} | P ∈ P, C{ } is a focusing context}.

An occurrence of {P}σ is prefixed in B ∈ L(P) if it is in the scope of an input

prefix. We write Pref(B) when every occurrence of {P}σ is prefixed in B.

The structural congruence and the reduction semantics for the language L(P)

are both defined on the basis of the ones for P, the only difference being that terms

are in L(P) instead than in P and that unguarded braces (i.e. terms out of the

scope of an input prefix like {P}σ) are assumed as deadlocked terms. This is not

a concern, because for the proof of our main results, for every σ each occurrence of

{P}σ is prefixed, i.e. in the scope of an input prefix.

It is possible to prove that L(P) is closed under substitution and, as a con-

sequence, under reduction. Denoting by Unbrace(B) the P process obtained by

removing all the braces from B and by applying the substitutions, it is also pos-

sible to prove that: (i) B ∈ L(P), then B −→ B′ implies B′ ∈ L(P) and

Unbrace(B) −→ Unbrace(B′), and (ii) Pref(B) and Unbrace(B) −→ R implies

that ∃B′ ∈ L(P) such that B −→ B′ and R ≡ Unbrace(B′).

Focusing contexts are extended for the testing machinery, adding rule

{ω.E}σ
ω

−→ in Table 3. Notice that, since every σ is defined over N and ω �∈ N ,

then ∀E ∈ P and B ∈ L(P), (i) {ω.E}σ
ω

−→; (ii) B
ω

−→ implies Bσ
ω

−→; (iii) B
ω

−→
if and only if Unbrace(B)

ω
−→, where Bσ represents the result of the application of

σ to B (assuming to use α-equivalence to avoid collision of names).

Persistent calculus: To prove our main results, we define a function over L(P),

min(B) (Table 4), and a predicate, Pr (Table 5).

min(B) = +∞ if B ∈ P; min((νx)B) = min(B);

min({P}) = 0; min(B | B′) = min{min(B),min(B′)};

min(x(y).B) = 1 + min(B); min(!B) = min(B).

Table 4
Function min.

Red
min(!x(y).B) ≥ 2

Pr(!x̄z | !x(y).B)
Res

Pr(B)

Pr((νy)B)

Par
Pr(B1)

Pr(B1 | B2)
Cong

Pr(B′) , B′ ≡ B

Pr(B)

Table 5
Predicate Pr.

We can prove that Pr is closed under reduction and it implies Pref. As a con-

sequence, for every B ∈ L(P) such that Pr(B), it is possible to build a non-empty

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 69

maximal computation from B where any term of the computation verifies the pred-

icate Pr. We can now state a rather strong negative result for PAπ.

Theorem 6.2 Let [[·]] be an encoding from Aπ into PAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]]
ω

−→ .

Then [[·]] is not must-preserving.

Proof. By contradiction, it suffices to suppose [[·]] being must-preserving, consider

P = x̄z |x̄z and o = x(y).x(y).ω.0. and observe that Pr([[x̄z |x̄z]]|Cx(y)[Cx(y){[[ω.0]]}])
holds. Hence, it is possible to prove that there is a non-empty maximal computa-

tion from [[x̄z | x̄z]] |[[x(y).x(y).ω.0]] where any term of the computation verifies the

predicate Pr, i.e. every term does not perform ω (since every occurrence of [[ω.0]] is

prefixed). �

The above theorem resembles the impossibility result in [24] about the existence

of an encoding from Aπ into PAπ wrt weak bisimulation (and output equivalence).

However, the hypothesis of the result in [24] is different. Namely, it is restricted to

encodings homomorphic wrt parallelism.

Persistent-input calculus: Regarding PIAπ (and POAπ), a Pr-like predicate

does not preserve Pref (it suffices to consider B1 = b̄ | c̄ | !b.!c.{P}σ, where P ∈
PIAπ, and B2 =!b̄ | !c̄ | b.c.{P}σ, where P ∈ POAπ). In the case of PIAπ, an

ad-hoc predicate, Prin, is defined. The predicate selects those processes B ∈ L(P)

such that - every {P}σ occurrence is in the scope of an input prefix x(y), for

some x ∈ fn(B) and y ∈ N , - there exists an input component !x(y).B (prefixing

{P}σ) such that min(!x(y).B) ≥ 2, - every parallel component !xi(y).B is such that

min(!xi(y).B) ≥ 1 if xi = x and min(!xi(y).B) ≥ 2 if xi �= x. The results for Pr can

be proven in a similar way for Prin. In particular, whenever ∃x ∈ fn(B) such that

Prin(B,x), it is possible to build a maximal computation from B where any term of

the computation verifies the predicate Prin. Hence, it leads us to the negative result

below.

Theorem 6.3 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]]
ω

−→ ,

3. if fn(P) ∩ bn(x(y)) = ∅ then fn([[P]]) ∩ bn(C
[[·]]
x(y)) = ∅,

4. [[x(y).P]] ≡ (νx1)..(νxn)(!u(v).C[[[P]]] | T), for some x1, .., xn, C, T with u �= xi for

any i.

Then [[·]] is not must-preserving.

Proof. It is possible to prove that ∃h ∈ fn(C
[[·]]
x(y)): Prin(Cx(y)[Cx(y){[[ω.0]]}], h).

Now, it suffices to assume, by contradiction, [[·]] being must-preserving and proving

that Prin([[x̄z | x̄z]] |Cx(y)[Cx(y){[[ω.0]]}], h) holds. Hence, it is possible to prove that

there is a non-empty maximal computation from [[x̄z | x̄z]] | [[x(y).x(y).ω.0]] where

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8470

any term of the computation verifies the predicate Prin, i.e. every term does not

perform ω (since every occurrence of [[ω.0]] is prefixed). �

Notice that the encoding in Definition 4.5 satisfies every condition of the fol-

lowing theorem and, more important, that Prin does not rely on any divergence as-

sumption, differently from Pr. We have already argued for the first two conditions

as being reasonable. Intuitively, the third condition expresses that a non-binding

property wrt input prefix: if in a source term x(y).P none of the free names of P is

bound by the input prefix, then the free names of [[P]] must not be bound either (by

a binder in the context where [[P]] is placed) in the encoding of [[x(y).P]]. Finally, the

fourth condition basically expresses that Aπ inputs should be mapped into PIAπ

inputs possibly allowing some other material around it. This is validated, e.g., by

encodings that preserve input/output polarities—i.e. Aπ inputs/outputs must be

mapped into PIAπ input/outputs 9 .

7 Related work and concluding remarks

Most of the related work was discussed in the introduction. In a different con-

text, in [22] it is shown that the separate choice encoding of the π-calculus into

the asynchronous π-calculus is faithful with respect to weak bisimulation, while

in [8] the authors prove that no must-preserving encoding of the (choiceless) syn-

chronous pi-calculus into the asynchronous one exists. Hence must semantics is a

good candidate to study the expressiveness of persistence when divergence is taken

into account. Nevertheless, differently from [8], this work does not consider any

synchronous language, i.e. the must semantics is studied in a uniform and purely

asynchronous framework. As previously mentioned the study of persistence in [24]

is incomplete as ignores the crucial issue of divergence. In this paper, we used the

divergence-sensitive framework of testing semantics and adapted and exploited the

techniques of [8] to give a more complete account of the expressiveness of persistence

in asynchronous calculi. In particular, as discussed in the introduction, this work

supports informal expressiveness loss claims in persistent asynchronous languages

[3,14,11].

References

[1] J. Alves-Foss. An Efficient Secure Authenticated Group Key Exchange Algorithm for Large and
Dynamic Groups. In Proceedings of the 23rd National Information Systems Security Conference, 2000.

[2] R. Amadio and D. Lugiez and V. Vanackere. On the Symbolic Reduction of Processes with
Cryptographic Functions. TCS: Theoretical Computer Science 290, 2003.

[3] E. Best, F. de Boer, and C. Palamidessi. Partial order and sos semantics for linear constraint programs.
In Proc. of Coordination’97, volume 1282 of LNCS, 1997.

[4] B. Blanchet. From linear to classical logic by abstract interpretation. Information Processing Letters
95(5), 2005.

[5] M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protocols, Lecture Notes in
Computer Science 2421, 2002.

9 E.g., the encoding in Definition 4.5 satisfies all conditions of Theorem 6.3.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 71

[6] E. Brinksma, A. Rensink, W. Vogler. Fair Testing, Proc. of CONCUR’95, LNCS 962, pp. 313-327,
1995.

[7] D. Cacciagrano, F. Corradini. On Synchronous and Asynchronous Commu- nication Paradigms, Proc.
of ICTCS ’01, LNCS 2202, pp. 256-268, 2001.

[8] D. Cacciagrano, F. Corradini, C. Palamidessi. Separation of Synchronous and Asynchronous
Communication Via Testing. Proc. of EXPRESS’05. Electr. Notes Theor. Comput. Sci. 154(3): 95-
108, 2006. An extended version will appear in Theoretical Computer Science.

[9] M. Carbone, S. Maffeis. On the Expressive Power of Polyadic Synchronisation in pi-calculus. Nord. J.
Comput. 10(2): 70-98, 2003.

[10] I. Castellani, M. Hennessy. Testing Theories for Asynchronous Languages, Proc. of FSTTCS ’98, LNCS
1530, pp. 90-101, 1998.

[11] F. Crazzolara. Language, Semantics, and Methods for Security Protocols. PhD Dissertation, University
of Aarhus, Denmark, 2003.

[12] F. Crazzolara and G. Winskel. Events in security protocols, Proceedings of the 8th ACM Conference
on Computer and Communications Security, ACM Press, 2001.

[13] R. De Nicola, M. Hennessy. Testing Equivalence for Processes, Theoretical Computer Science 34, pp.
83-133, 1984.

[14] F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming: operational and phase
semantics. Information and Computation, 2001.

[15] M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic protocols. Proc.
CSFW-14. IEEE, 2001.

[16] D. Gorla: On the Relative Expressive Power of Asynchronous Communication Primitives. FoSSaCS
2006, 47-62, 2006.

[17] D. Gorla: Synchrony vs Asynchrony in Communication Primitives Proc. of EXPRESS’06, 47-62, 2006.

[18] S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. Proc. of EXPRESS
’03, 2003.

[19] R. Milner. Communication and Concurrency, Prentice-Hall International, 1989.

[20] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, Part I and II, Information and
Computation 100, pp. 1-78, 1992.

[21] M. Merro, D. Sangiorgi. On asynchrony in name-passing calculi, Proc. of ICALP ’98, LNCS 1443,
1998.

[22] U. Nestmann. What is a ‘Good’ Encoding of Guarded Choice?, Information and Computation 156, pp.
287-319, 2000.

[23] C. Palamidessi. Comparing the Expressive Power of the Synchronous and Asynchronous π-calculus,
Mathematical Structures in Computer Science 13(5), pp. 685-719, 2003. A preliminary version appeared
in the proceedings of POPL ’97.

[24] C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs
Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68, 2006.

[25] L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In 10th Computer Security
Foundations Workshop, 1997.

[26] I. Phillips and M. Vigliotti Electoral Systems in Ambient Calculi. FoSSaCS’04. 2004.

[27] I. Phillips, M. Vigliotti. Leader Election in Rings of Ambient Processes. Electr. Notes Theor. Comput.
Sci. 128(2): 185-199, 2005.

[28] K.V.S. Prasad. Broadcast Calculus Interpreted in CCS up to Bisimulation. In Proceedings of Express’01,
volume 52 of Electronic Notes in Theoretical Computer Science, pages 83-100. Elsevier, 2002.

[29] D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer Science,
221(12):457493, 1999.

[30] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge University
Press, 2001.

[31] V. Saraswat and P. Lincoln. Higher-order linear concurrent constraint programming. Technical report,
Xerox PARC, 1992.

[32] V. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.

[33] M. Vigliotti, I. Phillips, C. Palamidessi. Separation Results Via Leader Election Problems. FMCO 2005,
172-194, 2005.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8472

A Appendix

In this section, we give the definitions and the proofs omitted in Section 4.

Definition A.1 Define P ↓x̄ iff ∃z1, . . . , zn, y,R : P ≡ (νz1)..(νzn)(x̄y | R) and

∀i ∈ [1..n], x �= zi. Furthermore, P ⇓x̄ iff ∃Q : P
∗

−→ Q ↓x̄.

Definition A.2 (Barbed Bisimilarity, Barbed Congruence) A weak barbed bisimu-

lation is a symmetric relation R satisfying the following: (P,Q) ∈ R implies that:

(i) P −→ P ′ then ∃Q′ : Q
∗

−→ Q′ ∧ (P ′, Q′) ∈ R.

(ii) P ↓x̄ then Q ⇓x̄ .

We say that P and Q are weak barbed bisimilar, written P
.
≈ Q, iff (P,Q) ∈ R

for some weak barbed bisimulation R. Furthermore, weak barbed congruence ≈ is

defined as: P ≈ Q iff for every process context C[·], C[P]
.
≈ C[Q].

Proposition 4.6 ∀ P ∈ Aπ, ∀ o ∈ O ⊆ PIAπ, P sat o if and only if [[P]] sat o,

where sat can be respectively may and fair .

Proof. P ≈ [[P]] implies that ∀ o ∈ O ⊆ PIAπ, P | o ≈ [[P]] | o. Extending the

notion of barb to ω, we have T ⇓ω iff T
ω

=⇒. Suppose P fair o. Then for every

maximal computation P | o = E0 −→ E1 −→ .. −→ Ei [−→ . . .] we have

Ei
∗

−→ E′
i ↓ω, for every i ≥ 0. Since P | o ≈ [[P]] | o, then for every maximal

computation [[P]] | o = A0 −→ A1 −→ .. −→ Ai [−→ . . .] Ai ⇓ω, for every

i ≥ 0. I.e. [[P]] fair o. Notice that may is a special case of fair : P may o implies

P | o
∗

−→ E′
0 ↓ω and, since P | o ≈ [[P]] | o, it implies that [[P]] | o ⇓ω, i.e. [[P]]may o.�

B Appendix

In this section, we give the proofs omitted in Section 5. We will use 〈P 〉 to denote

some restricted version of P , i.e. any process of the form (νx1)..(νxn)P , for some

x1, . . . , xn ∈ fn(P).

Proposition B.1 Let [[·]] : Aπ → P, with P ∈{PIAπ,POAπ,PAπ}, be an encoding

satisfying:

1. must-preservation,

2. ∃P ∈ Aπ such that [[P]]↑.

Then [[ω.0]]
ω

−→ .

Proof. Let P ∈ Aπ such that [[P]] ↑. Since P must ω.0 and the encoding [[·]] is

must -preserving, then [[P]] must [[ω.0]]. Since [[P]] ↑, we have [[ω.0]]
ω

−→. �

Lemma B.2 Let [[·]] : Aπ → P ∈{PIAπ,POAπ,PAπ} be an encoding satisfying:

1. compositionality w.r.t. input prefix,

2. must-preservation,

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 73

3. [[ω.0]]
ω

−→ .

Then ∀x, y ∈ N , every hole is prefixed in C
[[·]]
x(y).

Proof. By definition we have 0 �must x(y).ω.0, and since [[·]] is must-preserving,

we have [[0]] �must [[x(y).ω.0]]. Hence, [[0]] �must Cx(y)[[[ω.0]]]. Since [[ω.0]]
ω

−→ by

hypothesis, every occurrence of [[ω.0]] has to be prefixed in C
[[·]]
x(y). �

The following two technical lemmas are used for proving our main results.

Lemma B.3 Let [[·]] : Aπ → P ∈{PIAπ,POAπ,PAπ} be an encoding satisfying:

1. compositionality w.r.t. input prefix and replication,

2. must-preservation,

3. [[ω.0]]
ω

−→ ,

4. ∃x, y, z : n(C
[[·]]
!) ∩ n(C

[[·]]
x(y))=n(C

[[·]]
!) ∩ n([[x̄z]]) =∅,

5. C
[[·]]
! is a singularly-structured context,

6. the hole in the context C
[[·]]
! is not in the scope of a replication.

Then the hole is prefixed in C
[[·]]
! .

Proof. Since x̄z �mustx(y).x(y).ω.0, !x̄zmustx(y).x(y).ω.0 and [[·]] is must-preserving,

we have [[x̄z]] �must [[x(y).x(y).ω.0]] and [[!x̄z]] must [[x(y).x(y).ω.0]]. Since there is

an unsuccessful maximal computation from [[x̄z]] | [[x(y).x(y).ω.0]], then there is an

unsuccessful maximal computation from ([[x̄z]] | [[x(y).x(y).ω.0]])α, where α denotes

α-equivalence.

By contradiction, suppose that the hole is not prefixed in C
[[·]]
! . Then [[x̄z]] is

not prefixed in C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]]. Since every hole is prefixed in C
[[·]]
x(y)

and the hole is not in the scope of a replication in C
[[·]]
! , we can prove, by induction

on the structure of C
[[·]]
! , that ∃B ∈ P such that C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]] is

congruent to B = 〈T |[[x̄z]]|Cx(y)[Cx(y)[[[ω.0]]]]〉, where bn(C![[[x̄z]]]|Cx(y)[Cx(y)[[[ω.0]]]])

= bn(B) and T ∈ P (without loss of generality, we use the same notation for

C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]] before and after applying α-equivalence). Recall that

[[x̄z]], C
[[·]]
x(y) and T do not contain ω. Now, consider the following (unsuccessful)

maximal computation from [[x̄z]] | Cx(y)[Cx(y)[[[ω.0]]]] (there exists at least one):

[[x̄z]] | Cx(y)[Cx(y)[[[ω.0]]]] = A0 −→ A1 −→ . . . −→ Ai[−→ . . .]

where ∀i ≥ 0, Ai �
ω

−→ .

- If this computation is infinite: then there exists an unsuccessful maximal compu-

tation from B, i.e. from [[!x̄z]] | [[x(y).x(y).ω.0]], contradicting the hypothesis.

- If this computation is finite: then B
∗

−→ 〈T | Ai〉, where Ai �−→ and Ai �
ω

−→.

If T ↑, again there exists an unsuccessful maximal computation from B, i.e.

from [[!x̄z]] | [[x(y).x(y).ω.0]], contradicting the hypothesis.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8474

Otherwise, T
∗

−→ D, i.e B
∗

−→ 〈D| Ai〉, where D �−→ , Ai �−→ , D �
ω

−→ and

Ai �
ω

−→.

Since ≡ does not change free names, fn(C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]]) =

fn(B). Since B is such that bn(C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]]) = bn(B),

we have n(C![[[x̄z]]] | Cx(y)[Cx(y)[[[ω.0]]]]) = n(B). Furthermore, fn(Ai) ⊆

(n([[x̄z]] |Cx(y)[Cx(y)[·]])∪n([[ω.0]])) ⊆ (n([[x̄z]])∪n(C
[[·]]
x(y))∪n([[ω.0]])) and fn(D) ⊆

n(T) ⊆ n(C
[[·]]
!).

By initial hypothesis, every occurrence of [[ω.0]] is prefixed in Ai and n(C
[[·]]
!) ∩

n(C
[[·]]
x(y)) = n(C

[[·]]
!)∩n([[x̄z]]) = ∅. It follows that 〈D|Ai〉 �−→ . Since 〈D|Ai〉 �

ω
−→,

we contradict that [[!x̄z]] must [[x(y).x(y).ω.0]].

�

Lemma B.4 Let [[·]] : Aπ → P ∈{PIAπ,POAπ,PAπ} be an encoding satisfying:

1. compositionality w.r.t. input prefix and replication,

2. [[ω.0]]
ω

−→ ,

3. ∃x, y, z : n(C
[[·]]
!) ∩ n(C

[[·]]
x(y))=n(C

[[·]]
!) ∩ n([[x̄z]]) =∅,

4. C
[[·]]
! is a singularly-structured context,

5. the hole in the context C
[[·]]
! is not in the scope of a replication.

Then [[·]] is not must-preserving.

Proof. By contradiction, suppose [[·]] is must -preserving. Then x(y).0 must !ω.0.

Consider Cx(y)[[[0]]]|C![[[ω.0]]]: since every hole is prefixed in Cx(y), the hole is prefixed

in C
[[·]]
! and Cx(y)[[[0]]] | C![[[ω.0]]] �−→ by (3), we have Cx(y)[[[0]]] �must C![[[ω.0]]]. �

Lemma B.5 Let [[·]] : Aπ → P ∈{PIAπ,POAπ,PAπ} be an encoding satisfying:

1. compositionality w.r.t. input prefix, parallelism and replication,

2. must-preservation,

3. [[ω.0]]
ω

−→ ,

4. ∃x, y, z : n(C
[[·]]
!) ∩ n(C

[[·]]
x(y))=n(C

[[·]]
!) ∩ n([[x̄z]])=n(C

[[·]]
!) ∩ n(C

[[·]]
|)=∅,

5. C
[[·]]
! is a singularly-structured context,

6. the hole in the context C
[[·]]
! is in the scope of a replication.

Then ∀x′, z′ ∈N , either C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] or Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]] has

at least one infinite computation such that [[ω.0]] does not interact or participate in

the computation.

Proof. Let’s assume, by contradiction, that both C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] and

Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]] do not have infinite computations where [[ω.0]] interacts.

Then C![Cx(y)[ω.0]], [[x̄z | x̄′z′]], Cx(y)[[[ω.0]]] and C![[[x̄z | x̄′z′]]] do not have infinite

computations where [[ω.0]] don’t interact.

By must-preservation, [[!x(y).ω.0]] must [[x̄z | x̄′z′]], where [[ω.0]] is prefixed in

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 75

Cx(y)[[[ω.0]]]]. From (2) and (5) we can show that [[!ω.0]] −→ .. −→ 〈!〈[[ω.0]]|P 〉|Q〉.

From (1) we know that ∀U , there is at least one computation such that [[!U]] −→
.. −→ 〈!〈[[U]]|P 〉|Q〉. From the above and considering U = Cx(y)[[[ω.0]]], there is at

least one computation

[[!x(y).ω.0]] = C![Cx(y)[[[ω.0]]]] −→ . . . −→ 〈!〈Cx(y)[[[ω.0]]] | P 〉 | Q〉

where 〈Cx(y)[[[ω.0]]] | P 〉 �−→ (otherwise, !〈Cx(y)[[[ω.0]]] | P 〉 diverges without inter-

vention from [[ω.0]], as [[ω.0]] is prefixed in C
[[·]]
x(y)).

By (4), we know that 〈!〈Cx(y)[[[ω.0]]] | P 〉 | Q〉 ≡ !Cx(y)[[[ω.0]]] | 〈P | Q〉. We also

know that [[x̄z | x̄′z′]] �−→ , (otherwise C![[[x̄z | x̄′z′]]] would be divergent without the

intervention from [[ω.0]]). From the above, we have at least one computation

C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] −→ . . . −→ !Cx(y)[[[ω.0]]] | 〈P | Q〉 | [[x̄z | x̄′z′]]

where Cx(y)[[[ω.0]]] �−→ , [[x̄z | x̄′z′]] �−→ and S = 〈P | Q〉 �
ω

−→ (as [[ω.0]] is prefixed

in any possible occurrence of C
[[·]]
x(y) in 〈P | Q〉).

As Cx(y)[[[ω.0]]] �−→ , [[x̄z | x̄′z′]] �−→ , Cx(y)[[[ω.0]]] �
ω

−→, [[x̄z | x̄′z′]] �
ω

−→ and by

must-preservation we know that Cx(y)[[[ω.0]]] must [[x̄z | x̄′z′]], then there must be at

least one interaction between Cx(y)[[[ω.0]]] and [[x̄z | x̄′z′]]. By compositionality w.r.t

bang and input prefix, the structure of C
[[·]]
x(y) and [[x̄z | x̄′z′]] can be characterized in

one of the following ones:

1. either Cx(y)[·] ≡ 〈h(k).P ′|Q′〉 or ≡ 〈!h(k).P ′|Q′〉, and either [[x̄z|x̄′z′]] ≡ 〈h̄k|R′〉
or ≡ 〈!h̄k|R′〉.

P = POAπ: then !Cx(y)[[[ω.0]]] | [[x̄z | x̄′z′]] ↑, without intervention from [[ω.0]].

As C![Cx(y)[[[ω.0]]]] |[[x̄z | x̄′z′]] −→ . . . −→ !Cx(y)[[[ω.0]]] | S | [[x̄z | x̄′z′]],

C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] diverges without intervention from [[ω.0]].

P = PIAπ: then Cx(y)[[[ω.0]]] | ![[x̄z | x̄′z′]] ↑ without intervention from [[ω.0]].

As Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]] −→ . . . −→ Cx(y)[[[ω.0]]] | S | ![[x̄z | x̄′z′]],

Cx(y)[[[ω.0]]] | C![[[x̄z | x̄′z′]]] diverges without intervention from [[ω.0]].

2. either Cx(y)[·] ≡ 〈h̄k|R′〉 or ≡ 〈!h̄k|R′〉, and either [[x̄z|x̄′z′]] ≡ 〈h(k).P ′|Q′〉 or

≡ 〈!h(k).P ′|Q′〉.

P = POAπ: then Cx(y)[[[ω.0]]]|![[x̄z|x̄′z′]] ↑ without intervention from [[ω.0]].

As Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]] −→ . . . −→ Cx(y)[[[ω.0]]] | S | ![[x̄z | x̄′z′]],

Cx(y)[[[ω.0]]] | C![[[x̄z | x̄′z′]]] diverges without intervention from [[ω.0]].

P = PIAπ: then !Cx(y)[[[ω.0]]] | [[x̄z | x̄′z′]] ↑, without intervention from [[ω.0]].

As C![Cx(y)[[[ω.0]]]]| [[x̄z | x̄′z′]] −→ . . . −→ !Cx(y)[[[ω.0]]] | S| [[x̄z | x̄′z′]],

C![Cx(y)[[[ω.0]]]]|[[x̄z | x̄′z′]] diverges without intervention from [[ω.0]].

From the above, we can conclude that for any encoding [[·]] from Aπ into PIAπ

or POAπ, either Cx(y)[[[ω.0]]] | C![[[x̄z | x̄′z′]]] or C![Cx(y)[[[ω.0]]]]|[[x̄z | x̄′z′]] diverges

without intervention from [[ω.0]] (or both in the case from Aπ into PAπ). �

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8476

Lemma B.6 Let [[·]] : Aπ → P ∈{PIAπ,POAπ,PAπ} be an encoding satisfying:

1. compositionality w.r.t. input prefix, parallelism and replication,

2. [[ω.0]]
ω

−→ ,

3. ∃x, y, z : n(C
[[·]]
!) ∩ n(C

[[·]]
x(y)

)=n(C
[[·]]
!) ∩ n([[x̄z]])=n(C

[[·]]
!) ∩ n(C

[[·]]
|

)=∅,

4. C
[[·]]
! is a singularly-structured context,

5. the hole in the context C
[[·]]
! is in the scope of a replication.

Then [[·]] is not must-preserving.

Proof. Suppose that [[·]] is must-preserving. Consider P =!x(y).x′(y′).ω.0, o =

x̄z | x̄′z′ (x �= x′), P ′ = x(y).x′(y′).ω.0 and o′ =!(x̄z | x̄′z′). It is possible to verify

that P must o and P ′ must o′.

P must o implies [[P]] must [[o]] by must-preservation. It follows that

C![Cx(y)[Cx′(y′)[[[ω.0]]]]] must [[x̄z | x̄′z′]]. As [[ω.0]] is prefixed in C
[[·]]
x′(y′), then in every

computation from C![Cx(y)[Cx′(y′)[[[ω.0]]]]] | [[x̄z | x̄′z′]], Cx′(y′)[[[ω.0]]] must interact to

unprefix one occurrence of [[ω.0]].

P ′ must o′ implies [[P ′]] must [[o′]] by must-preservation. It follows that

Cx(y)[Cx′(y′)[[[ω.0]]]]]must C![[[x̄z | x̄′z′]]]. As [[ω.0]] is prefixed in C
[[·]]
x′(y′), then in every

computation from Cx(y)[Cx′(y′)[[[ω.0]]]] |C![[[x̄z | x̄′z′]]], Cx′(y′)[[[ω.0]]] must interact to

unprefix one occurrence of [[ω.0]].

By lemma B.5, C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] or Cx(y)[[[ω.0]]] | C![[[x̄z | x̄′z′]]] has

at least one infinite computation such that [[ω.0]] does not interact or partici-

pate in the computation. Applying (1), either C![Cx(y)[Cx′(y′)[[[ω.0]]]]] | [[x̄z | x̄′z′]]

or Cx(y)[Cx′(y′)[[[ω.0]]]] | C![[[x̄z | x̄′z′]]] has at least one infinite computation such

that Cx′(y′)[[[ω.0]]] does not interact or participate in this computation, i.e. either

C![Cx(y)[Cx′(y′)[[[ω.0]]]]] �must [[x̄z|x̄′z′]] or Cx(y)[Cx′(y′)[[[ω.0]]]] �must C![[[x̄z | x̄′z′]]]. It

contradicts that [[·]] is must-preserving. �

C Appendix

In this section, we give the proofs omitted in Section 6.

A class of calculi with focusing contexts

Proposition C.1 Let B ∈ L(P). Then:

i) B −→ B′ implies B′ ∈ L(P) and Unbrace(B) −→ Unbrace(B′);

ii) Pref(B) and Unbrace(B) −→ R implies that ∃B′ ∈ L(P) such that B −→ B′

and R ≡ Unbrace(B′).

Proof. First, note that L(P) is closed under substitution, and that the structural

congruence is preserved byUnbrace. First we prove item (i). We proceed by induc-

tion on the depth of the reduction B −→ B′.

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 77

Com out | in.B −→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B{z/y} | in.B (PIAπ) in =!x(y), out = x̄z

out | B{z/y} (POAπ) in = x(y), out =!x̄z

B{z/y} | out | in.B (PAπ) in =!x(y), out =!x̄z

Par
B1 −→ B′

1

B1 | B2 −→ B′
1 | B2

Res
B −→ B′

(νx)B −→ (νx)B′

Cong
B1 ≡ B′

1 , B′
1 −→ B′

2 , B′
2 ≡ B2

B1 −→ B2

Table C.1
Reduction Rules in L(P).

- B ∈ P: the proof is trivial, since P is closed under −→ and ∀P ∈ P, P =

Unbrace(P).

- B = {P}σ: this case is not possible, since {P}σ �−→ .

- B = out | in.B′′: we consider in.B′′ = x(y).B′′ and out = x̄z, since the other

combinations can be proven similarly. Then B −→ B′′{z/y}. We also have

Unbrace(B) = out | in.Unbrace(B′′) −→ Unbrace(B′′{z/y}).

- Cases B = (νx)B′ −→ (νx)B′′ and B = B1 | B2 −→ B′
1 | B2 can be proven by

induction hypothesis on B′ and on B1, respectively.

- Case B ≡ B1 −→ B2 is trivial, since ≡ is preserved byUnbrace.

Now we prove item (ii). We proceed by induction on the depth of the reduction

Unbrace(B) = T −→ R, assuming Pref(B).

- T = out | in.T ′′: we consider in.T ′′ = x(y).T ′′ and out = x̄z, since the other

combinations can be proven similarly. Then T = out | in.T ′′ −→ T ′′{z/y}. Define

B = out | in.B′′, where Unbrace(B′′) = T ′′. Then Unbrace(B′′{z/y}) = T ′′{z/y}
and B −→ B′′{z/y}.

- Cases T = (νx)T ′ −→ (νx)T ′′ and T = T1 | T2 −→ T ′
1 | T2 can be proven by

induction hypothesis.

- Case T ≡ T1 −→ T2 is trivial, since ≡ is preserved byUnbrace.

�

Lemma C.2 Let B1, B2 ∈ L(P) such that B1 ≡ B2. Then min(B1) = min(B2).

Proof. Only axiom !B ≡ B | !B can look difficult to prove. Other axioms are

trivial. If B ∈ P, min(!B) = min(B | !B) = +∞. Suppose B �∈ P. Then we have

min(!B) = min(B) and min(B | !B) = min{min(B),min(!B)} = min(B). �

Negative results for PAπ

Proposition C.3 Let P ∈ PAπ, B ∈ L(P), such that Pr(B). Then ∃B′ ∈ L(P)

such that B −→ B′ and Pr(B′).

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8478

Proof. To prove the statement we proceed by induction on the depth of the deriva-

tion of Pr(B). We recall that L(P) is closed under −→ and that the cases B ∈ P and

B = {P}σ are not possible, since Pr(B) implies Pref(B), i.e. min(B) ∈ [1.. + ∞).

- B =!x̄z | !x(y).B′′, where min(!x(y).B′′) ≥ 2: then B −→ B′ = B′′{z/y} | B.

Since Pr(B), it follows Pr(B′).

- Cases B = (νx)B′, B = B1|B2 and B ≡ B1 can be proven by induction hypothesis

on B′ and on B1, assuming Pr(B′), B′ −→ B′′ and Pr(B′), and Pr(B1), B1 −→ B′
1

and Pr(B′
1), respectively.

�

Proposition C.4 Let P ∈ PAπ, B ∈ L(P) such that Pr(B). Then there exists a

non-empty maximal computation from B

B = B0 −→ B1 −→ B2 −→ . . . −→ Bi[−→ . . .]

such that ∀i ≥ 0,Pref(Bi).

Proof. By Proposition C.3, ∃B1 ∈ L(P) such that B −→ B1 and Pr(B1). Now it

suffices to iterate, noticing that ∀i ≥ 0, Pr(Bi) implies Pref(Bi). �

Lemma C.5 Let [[·]] be an encoding from Aπ into PAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. must-preservation,

3. [[ω.0]]
ω

−→ .

Then ∀x, y, z ∈ N , Pr([[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}]).

Proof. First, we prove that [[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] −→ . By contradic-

tion, suppose [[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] �−→ . By Lemma B.2, every hole

is prefixed in C
[[·]]
x(y). This implies that [[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] �

ω
−→, that is

[[x̄z | x̄z]] | Cx(y)[Cx(y)[[[ω.0]]]] �−→ and [[x̄z | x̄z]] | Cx(y)[Cx(y)[[[ω.0]]]] �
ω

−→. It means

that [[x̄z | x̄z]] �must [[x(y).x(y).ω.0]], contradicting that x̄z | x̄z must x(y).x(y).ω.0.

Since every hole is prefixed in C
[[·]]
x(y), we have that Cx(y)[Cx(y){[[ω.0]]}] ≡

〈!h(k).C[!h(k).C ′{[[ω.0]]} | T ′] | T 〉, where T ∈ PAπ and h �∈ 〈·〉 (otherwise, we could

not unprefix one occurrence of [[ω.0]]). Since [[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] −→ , it

follows that [[x̄z | x̄z]] |Cx(y)[Cx(y){[[ω.0]]}] ≡ 〈!h̄k | !h(k).C[!h(k).C ′{[[ω.0]]} | T ′] |T ′′〉.
Since min(!h(k).C[!h(k).C ′{[[ω.0]]}]) ≥ 2, Pr([[x̄z | x̄z]] |Cx(y)[Cx(y){[[ω.0]]}]) holds.�

Theorem C.6 Let [[·]] be an encoding from Aπ into PAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]]
ω

−→ .

Then [[·]] is not must-preserving.

Proof. By contradiction, suppose [[·]] is must-preserving. Let P = x̄z | x̄z and

o = x(y).x(y).ω.0. Consider [[P]] | [[o]] = [[x̄z | x̄z]] | [[x(y).x(y).ω.0]]. By Lemma

C.5, Pr([[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}]). Hence Pref([[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}]).

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 79

By Proposition C.4, there exists a non-empty maximal computation from B =

[[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}]

B = B0 −→ B1 −→ B2 −→ . . . −→ Bi[−→ . . .]

such that ∀i ≥ 0,Pref(Bi). As a consequence, ∀i ≥ 0, Bi �
ω

−→. It follows that there

exists a maximal computation from Unbrace(B) = P | o

Unbrace(B) = T0 −→ T1 −→ T2 −→ . . . −→ Ti[−→ . . .]

such that ∀i ≥ 0, Ti �
ω

−→. This means that P �must o, contradicting the must-

preservation hypothesis of [[·]]. �

Negative results for PIAπ

P
B1 ∈ L(P) , B{z/y} = C1[!x(y).B1], x �∈ bn(C1)

P (!xi(y).B, x)

Base
P (!x(y).B, x)

Prin(!x(y).B, x)
Res

Prin(B,x) , x �= y

Prin((νy)B,x)

Cong
Prin(B′, x) , B′ ≡ B

Prin(B,x)
Par1

Prin(B1, x) , P (!xi(yi).Bi, x)

Prin(B1 | !xi(yi).Bi, x)

Par2
Prin(B1, x) , min(!x(yi).Bi) = 1

Prin(B1 | !x(yi).Bi, x)
Par3

Prin(B1, x) , B2 ∈ PIAπ

Prin(B1 | B2, x)

Table C.2
Predicate Prin.

Lemma C.7 Let P ∈ PIAπ, B ∈ L(P). ∃x ∈ fn(B) such that Prin(B,x) iff

B ≡ N(x) = (νy1)..(νym)(
a∏

i=1

!x(yi).Bi |
b∏

j=1

!x(yj).Bj |
c∏

h=1

!xh(yh).Bh | T)

where a ≥ 1, m, b, c ≥ 0, ∀k ∈ [1..m] x �= yk, ∀i ∈ [1..a] P (!x(yi).Bi, x), ∀j ∈
[1..b] min(!x(yj).Bj) = 1, ∀h ∈ [1..c] xh �= x and P (!xh(yh).Bh, x), and T ∈ PIAπ.

Proof. Consider the if implication: given the term N(x), x ∈ fn(N(x)) and

Prin(N(x), x) hold. For the only if implication it suffices to prove that for each rule

in Table C.2 (unless Rule P) the postcondition can be written, via ≡, as N(x). �

Lemma C.8 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. must-preservation,

3. [[ω.0]]
ω

−→ .

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8480

Then fn(C
[[·]]
x(y)) �= ∅.

Proof. Suppose fn(C
[[·]]
x(y)) = ∅. Since [[x̄z]] must Cx(y)[[[ω.0]]], it follows that ∀A

such that Cx(y)[[[ω.0]]] −→ . . . −→ A, fn(A)/{ω} = ∅ and A −→ . . . −→ A′ ω
−→.

Then Cx(y)[[[0]]] must Cx(y)[[[ω.0]]], i.e. x(y).0 must x(y).ω.0. It is a contradiction of

the must-preservation hypothesis on [[·]]. �

Lemma C.9 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. must-preservation,

3. [[ω.0]]
ω

−→ .

Then Cx(y)[Cx(y)[·]] ≡ 〈!u(v).C[!u′(v).C ′[·] | T ′] | T 〉.

Proof. It follows immediately from Lemma B.2. �

Lemma C.10 and Proposition C.11 are useful to prove Proposition C.12.

Lemma C.10 Let P ∈ PIAπ, B ∈ L(P). ∃x ∈ fn(B) : Prin(B,x) implies Pref(B).

Proof. Trivial. �

Proposition C.11 Let P ∈ PIAπ, B ∈ L(P), ∃x ∈ fn(B) such that Prin(B,x)

and B −→ B′ for some B′ ∈ L(P). Then ∃B′′ ∈ L(P) such that B −→ B′′,

x ∈ fn(B′′) and Prin(B′′, x).

Proof. By Lemma C.7, B can be written in the normal form N(x) as in Lemma C.7.

By operational Rule Cong, we consider N(x) −→ B′′ ≡ B′, for some B′′ ∈ L(P).

We can suppose to apply α- equivalence in such a way ∀a, b ∈ bn(N(x)), a �= b and

∀a ∈ bn(N(x)) and ∀b ∈ fn(N(x)), a �= b. We distinguish four cases:

a. T −→ T ′: trivial;

b. T ≡ x̄z | T ′ and !x(yi).Bi | T −→ Bi{z/yi} | !x(yi).Bi | T
′ for some i ∈ [1..a] and

a ≥ 1: without loss of generality, suppose that i = 1 and there is only one hole

in C1 in Rule P of Table C.2. Since B1{z/y1} = C1[!x(y).B′
1] and x �∈ bn(C1),

the case min(B′
1{z/y1}) ≥ 2 implies that B1{z/y1} ≡ 〈!α(β).C ′

1[!x(y).B′
1] | T

′′〉,
x �∈ 〈·〉, x �∈ bn(C ′

1) and x �∈ bn(T ′′) (either α = x or α �= x), while the case

min(B1{z/y1}) = 1 implies that B1{z/y1} ≡ 〈!x(y).B′
1 | T ′′〉, where x �∈ 〈·〉,

x �∈ bn(T ′′) and T ′′ ∈ PIAπ in both cases. It is possible to prove that in both

cases B′′ can be written in a normal form N ′′(x), i.e. x ∈ fn(B′′) and Prin(B′′, x).

c. T ≡ x̄z | T ′ and !x(yj).Bj | T −→ Bj{z/yj} | !x(yj).Bj | T ′ for some j ∈ [1..b]

and b ≥ 0: without loss of generality, suppose j = 1. Since there is at least one

!x(yi).Bi for some i ∈ [1..a] (being a ≥ 1), we can replace this reduction with the

reduction from !x(yi).Bi | T , considered in item (b).

d. T ≡ x̄hz|T ′ and !xh(yh).Bh|T −→ Bh{z/yh}|!xh(yh).Bh|T
′ for some h ∈ [1..c] and

c ≥ 0: without loss of generality, suppose h = 1 and there is only one hole in C1 in

Rule P of Table C.2. We recall that x1 �= x. Since B1{z/y1} = C1[!x(y).B′
1] and

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 81

x �∈ bn(C1), min(B′
1{z/y1}) ≥ 2 implies B′

1{z/y1} ≡ 〈!α(β).C ′
1[!x(y).B′

1]|T
′′〉, x �∈

〈·〉, x �∈ bn(C ′
1) and x �∈ bn(T ′′) (either α = x or α �= x), while min(B1{z/y1}) = 1

implies B1{z/y1} ≡ 〈!x(y).B′
1 | T

′′〉, where x �∈ 〈·〉, x �∈ bn(T ′′) and T ′′ ∈ PIAπ in

both cases. As in item (a), applying ≡ it is possible to prove that in both cases

B′′ can be written in a normal form N ′′(x), i.e. x ∈ fn(B′′) and Prin(B′′, x).

�

Proposition C.12 Let P ∈ PIAπ, B ∈ L(P), ∃x ∈ fn(B) such that Prin(B,x).

Then there exists a maximal computation from B (also empty)

B = B0 −→ B1 −→ B2 −→ . . . −→ Bi[−→ . . .]

such that ∀i ≥ 0,Pref(Bi).

Below, we prove that, under reasonable conditions, there exists a term satisfying

the predicate Prin (Lemma C.13), and finally the impossibility result for PIAπ

(Theorem C.14).

Lemma C.13 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. must-preservation,

3. [[ω.0]]
ω

−→ ,

4. if fn(P) ∩ bn(x(y)) = ∅ then fn([[P]]) ∩ bn(C
[[·]]
x(y)) = ∅,

(Preservation of independence wrt input prefix)

5. [[x(y).P]] ≡ 〈!u(v).C[[[P]]] | T 〉, where u �∈ 〈·〉.

Then ∃h ∈ fn(C
[[·]]
x(y)): Prin(Cx(y)[Cx(y){[[ω.0]]}], h).

Proof. From (1), we know that Cx(y)[Cx(y){[[ω.0]]}] ≡ 〈!u(v).C[[[x(y).ω.0]]] | T 〉 ≡
〈!u(v).C[〈!u(v).C[[[ω.0]]] |T ′〉] |T 〉, where u is a free name in both cases (in the more

external case by (5) and in the internal case by (4)). Then we can verify that for u

in fn(C
[[·]]
x(y)), Prin(Cx(y)[Cx(y){[[ω.0]]}], h) holds. �

Theorem C.14 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]]
ω

−→ ,

3. ∃h ∈ fn(C
[[·]]
x(y)): Prin(Cx(y)[Cx(y){[[ω.0]]}], h).

Then [[·]] is not must-preserving.

Proof. By contradiction, suppose [[·]] being must-preserving. We can apply α-

equivalence to [[x̄z | x̄z]] |Cx(y)[Cx(y){[[ω.0]]}] in such a way to avoid collision among

bound/free names. By (3), we have that h ∈ fn(Cx(y)[Cx(y)[·]]), and by Table

C.2, Prin([[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}], h) holds. Moreover, we can prove that

[[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] −→ . [[x̄z | x̄z]] | Cx(y)[Cx(y){[[ω.0]]}] �−→ would

imply [[x̄z | x̄z]] �must Cx(y)[Cx(y){[[ω.0]]}], i.e. x̄z | x̄z �must x(y).x(y).ω.0, contradict-

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8482

ing the must-preservation hypothesis on [[·]]. Now, it suffices to apply Proposition

C.12. �

Negative results for POAπ

The following theorem states a negative result for the 0-adic versions of Aπ and

POAπ (denoted resp. by ACCS and POAACCS). It can be reformulated for Aπ and

POAπ by imposing some syntactic restrictions to both source and target language.

The hypotheses are quite strong, in particular (3) and (4). However, they are rea-

sonable for acknowledgment-based encodings, where two partners [[a(y).P]] and [[āz]]

start a communication protocol on a well-known channel x and keep on commu-

nicating by means of private channels. Although an encoding could easily violate

the above conditions, this result is important since, differently from the previous

ones, no form of divergence is either introduced or hidden, i.e. the must-preserving

property is violated without taking into any divergence hypothesis.

Theorem C.15 Let [[·]] be an encoding from ACCS into POAACCS that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]]
ω

−→ ,

3. ∀a ∈ N , |fn(C
[[·]]
a)| = |fn([[ā]])| = 1;

4. x ∈ fn(K) implies #fn(x,K) = 1, where K ∈ {C
[[·]]
a , [[ā]]} and #fn(x,K) denotes

the number of free occurrences of x in K.

Then [[·]] is not must-preserving.

Proof. In the following, (!)P denotes both !P and P . By contradiction, suppose

[[·]] is must-preserving. By Lemma B.2, every hole is prefixed in C
[[·]]
a . It follows

that ∀a ∈ N and ∀j ≥ 1, [[(ā)j]] | Ca[[[ω.0]]] −→ , where (ā)j denotes the parallel

composition of j copies of ā: if [[(ā)j]] | Ca[[[ω.0]]] � −→ , [[(ā)j]] �must [[a.ω.0]], i.e.

(ā)j �must a.ω.0, contradicting the must-preservation hypothesis on [[·]]. It follows

that both fn(Ca[·]) and fn([[(ā)j]]) are not empty sets, i.e. item (3) is well-defined.

We can write [[(ā)j]] and C
[[·]]
a as follows:

1. either [[(ā)j]] ≡ (νx1)..(νxm)(!x̄ | B0), where fn(B0) = ∅ and ∀i, x �= xi

and one of the following configurations

a Ca[·] ≡ (νx1)..(νxn)(x.G1[·] | B1),

b Ca[·] ≡ (νx1)..(νxn)(!x.G1[·] | B1),

c Ca[·] ≡ (νx1)..(νxn)(x.C1[·] | B1),

d Ca[·] ≡ (νx1)..(νxn)(!x.C1[·] | B1),

e Ca[·] ≡ (νx1)..(νxn)(x.B1 | G1[·]),

f Ca[·] ≡ (νx1)..(νxn)(!x.B1 | G1[·]),

where ∀i, x �= xi, fn(G1) = fn(C1) = fn(B1)/{ω} = ∅, every hole is prefixed

in G1 and not in C1,

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–84 83

2. or Ca[·] ≡ (νx1)..(νxm)(!x̄ | G2[·]), where fn(G2) = ∅, ∀i, x �= xi and every hole

is prefixed in G1

and one of the following configurations

a [[(ā)j]] ≡ (νx1)..(νxn)(x.B1 | B2),

b [[(ā)j]] ≡ (νx1)..(νxn)(!x.B1 | B2), where ∀i, x �= xi, fn(B1) = fn(B2) = ∅.

In the cases of (1-a), (1-b), (1-e), (1-f), (2-a) and (2-b), we can deduce that

[[ā]] �must [[a.ω.0]], implying that ā �must a.ω.0. This contradicts the must-preservation

hypothesis on [[·]].

Consider the case (1-c). This implies (up to α-equivalence) [[ā]] | [[a.a.ω.0]] ≡
〈!x̄ | x.C1[〈x.C1[[[ω.0]]] | B1〉] | B0 | B1〉 −→ 〈!x̄ | C1[〈x.C1[[[ω.0]]] | B1〉] | B0 | B1〉 ≡
〈!x̄ |(!)(x.C1[[[ω.0]]] |B1) |B2 |B0 |B1〉. Suppose (!)(x.C1[[[ω.0]]] |B1) = x.C1[[[ω.0]]] |B1

(the other case is similar). It follows that 〈!x̄ | x.C1[[[ω.0]]] | B1 | B2 | B0 | B1〉 −→
〈!x̄ | C1[[[ω.0]]] | B1 | B2 | B0 | B1〉 ≡ 〈!x̄ | [[ω.0]] | B2 | B1 | B2 | B0 | B1〉. This implies

that [[ā]] must [[a.a.ω.0]], that is ā must a.a.ω.0, contradicting the must-preservation

hypothesis on [[·]].

The case (1-d) implies that [[ā | ā]] �must [[a.a.ω.0]], that is ā | ā �must a.a.ω.0, again

contradicting the must-preservation hypothesis on [[·]]. �

D. Cacciagrano et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 59–8484

	Introduction
	The calculi
	The asynchronous pi-calculus
	The (semi-)persistent calculi

	Testing semantics
	Encoding linearity into persistence
	Some encodings from asynchronous pi-calculus into its semi-persistent subsets

	Uniform impossibility results for persistence
	Specialized impossibility results for persistence
	Related work and concluding remarks
	References
	Appendix
	Appendix
	Appendix

