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We present explicit constructions of three families of graphs that
yield the following lower bounds on Ramsey numbers: R(4,m) �
Ω(m8/5), R(5,m) � Ω(m5/3), R(6,m) � Ω(m2).
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1. Introduction

For two positive integers s and m, the Ramsey number R(s,m) is the least integer R such that
every graph on R vertices contains either a clique of size s or an independent set of size m. The
best lower bounds on Ramsey numbers are proven by probabilistic methods which do not give ex-
plicit constructions of graphs without a clique of size s and an independent set of size m. All known
constructions give weaker lower bounds.

In this note we show constructions that give nontrivial lower bounds on the Ramsey numbers
R(s,m) for s = 4,5,6. We describe three families of explicitly defined graphs that give the following
bounds:

R(4,m) � Ω
(
m8/5), R(5,m) � Ω

(
m5/3), R(6,m) � Ω

(
m2).

These graphs are defined similarly to the graphs introduced in [6], which give the constructive lower
bound
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R(3,m) � Ω
(
m3/2). (1)

In [6] the lower bound was proved using an algebraic argument. For the sake of completeness, we
repeat this construction and give a combinatorial proof of the lower bound. The first constructive
lower bound of the form (1) was found by Alon [1].

A different generalization of the construction of [6] was presented in [2]. That construction gives
polynomial lower bounds for R(s,m) with the exponent of the polynomials increasing with s. How-
ever, for s = 3,4,5,6, the construction does not give anything interesting.

To the best of our knowledge, the above bounds are the best known constructive bounds. However,
they are far from nonconstructive lower bounds [7,10]:

R(3,m) � Ω
(
m2/ log m

)
, R(4,m) � Ω

(
(m/ log m)2.5),

R(5,m) � Ω
(
(m/ log m)3), R(6,m) � Ω

(
(m/ log m)3.5).

2. Preliminaries

Let G be a graph. The superline graph, HG , of G is constructed as follows. The vertices of HG are
the edges of G , and ef is an edge in HG if e and f are disjoint edges of G and there exists an edge g
of G that connects an end of e with an end of f (i.e., if the edges e, g and f form a path in G).

Let α(G) denote the independence number of G , i.e., the size of a largest independent set in G .

Lemma 2.1. For every triangle-free graph G and its superline graph HG ,

α(HG) � α(G).

Proof. Let A be an independent set in HG . Let B be the set of vertices in G of the edges in A. Then
the subgraph G[B] of G induced by B has no triangles and does not contain paths of length 3. So, the
components of G[B] are stars, hence G[B] has an independent set of size |A|. �

We also need the following modification of the superline graph construction. Let G be a bipartite
graph with bipartition of vertices (U , V ) and let ≺ be a linear ordering of the edges of G . We denote
by H≺

G the graph whose vertices are the edges of G and a pair {uv, u′v ′}, with u �= u′ ∈ U and
v �= v ′ ∈ V is an edge in H≺

G if either uv ≺ u′v ′ and uv ′ is an edge in G or u′v ′ ≺ uv and u′v is an
edge in G . (In particular, H≺

G is a subgraph of HG .)

Lemma 2.2. For every bipartite graph G on n vertices, every bipartition of G and every ordering ≺ of its edges,

α
(

H≺
G

)
< n.

Proof. Let A be a set of n edges of G . Then A contains a cycle. Let (u0, v0, u1, v1, . . . , uk−1, vk−1, u0)

be a cycle formed by some edges in A. Then for some 0 � i < k, ui vi ≺ ui+1 vi+1 (where we count
i + 1 modulo k). Hence {ui vi, ui+1 vi+1} is an edge in H≺

G , which proves that A is not an independent
set. �

We also need the following concepts. A bipartite graph is called a generalized k-gon, if it is regular
and has diameter k and girth 2k.

Let G be a bipartite graph with bipartition (U , V ). A mapping π : U → V is called a polarity, if it
is a bijection such that for every u1, u2 ∈ U

u1π(u2) ∈ E(G) iff u2π(u1) ∈ E(G).

If a polarity exists, then the polarity graph Gπ is the graph with vertex set U , and u1u2 ∈ E(Gπ )

iff u1 �= u2 and u1π(u2) ∈ E(G).
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We also define the polarity graph with loops Gπ,o . It is obtained from the polarity graph Gπ by
adding loops uu for every u such that uπ(u) is an edge in G . The reason for using these graphs is
that this construction preserves regularity; namely, if G is d-regular, then so is Gπ,o . Our convention
is that by adding a loop to a vertex v its degree increases by 1 (note that some authors postulate
that the increase of the degree is 2). We use graphs Gπ,o to estimate the independence numbers of
graphs Gπ . Otherwise all graphs in this paper will be loop-free.

Recall the well-known inequality

α(G) � n
λ

d
, (2)

where G is d-regular graph without loops of order n, λ is the second largest absolute value of an
eigenvalue and α(G) denotes the cardinality of the largest independent set in G . For graphs with
loops the corresponding inequality is

α(G) � n
λ + 1

d
, (3)

where we allow loops to be present in independent sets. Both inequalities are immediate conse-
quences of the well-known inequality

∣∣∣∣e(A, B) − d

n
|A| · |B|

∣∣∣∣ � λ
√|A| · |B|, (4)

where e(A, B) denotes the number of edges (u, v) such that u ∈ A and v ∈ B (including loops when
A and B are not disjoint); this inequality is Corollary 2.5, Chapter 9 of [3].

Let G be a bipartite graph with bipartition (U , V ). Let M be the matrix of G such that the rows
of M are indexed by vertices in U , the columns of M are indexed by vertices in V , Muv equals 1
if (u, v) is an edge, and equals 0 otherwise. We use the eigenvalues of MMT for generalized k-gons
as they are presented in Tanner [11]. Observe that G has a polarity if and only if one can choose an
ordering of vertices of G so that the matrix M is symmetric. In such a case, MMT = M2 and M is also
the adjacency matrix of the polarity graph with loops Gπ,o . Since the eigenvalues of M2 are squares
of the eigenvalues of M , one can determine the absolute values of the eigenvalues of Gπ,o from the
eigenvalues of MMT .

3. Constructive bound R(3,m)��� Ω(m3/2)

Let Pq be the incidence graph of the classical projective plane PG(2,q) with q2 + q + 1 points and
q2 +q +1 lines, where q is a prime power. Pq is a regular graph of degree q +1. Let ≺ be an arbitrary
ordering of the edges of Pq . We use the graphs H≺

Pq
. The following properties can be easily verified:

1. H≺
Pq

has (q + 1)(q2 + q + 1) vertices.
2. H≺

Pq
is triangle-free.

Proof. If p1l1 ≺ p2l2 ≺ p3l3 would form a triangle, then (p1, l3, p2, l2) would be a 4-cycle
in Pq . �

3. The largest independent set in H≺
Pq

has size � 2(q2 + q + 1), by Lemma 2.2.

4. Constructive bound R(5,m)��� Ω(m5/3)

The construction and the proof is the same as above, except that instead of graphs without K2,2
we use denser graphs that do not contain K3,3. Such graphs were constructed in [5,4].

We use the bipartite version of Brown’s construction. Let U and V be two copies of F
3
p , where

p is a prime and Fp is the finite field with p elements. Connect two vertices (u1, u2, u3) ∈ U and
(v1, v2, v3) ∈ V by an edge if they are different and (u1 − v1)

2 + (u2 − v2)
2 + (u3 − v3)

2 = 0 (mod p).

The resulting graph B p
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1. has 2p3 vertices,
2. is regular of degree p2 − p, hence it has p5 − p4 edges,
3. does not contain K3,3.

Consider the graph H≺
B p

, where ≺ is an arbitrary linear order. Let n = p5 − p4 be the number

of vertices of H≺
B p

. The maximal independent set has size m � 2p3, according to Lemma 2.2, hence

n = Ω(m5/3). The proof that H≺
B p

does not contain K5 is also similar. By way of contradiction, suppose
that u1 v1 ≺ · · · ≺ u5 v5 are vertices of K5 in H≺

B p
. Then vertices u1, u2, u3, v3, v4, v5 induce a K3,3

in B p .

5. Constructive bound R(4,m)��� Ω(m8/5)

Constructions of generalized 4-gons are known for every prime power q, but those with polarities
exist if and only if q is an odd power of 2. For an explicit presentation of such a polarity, see [8].
Let Q π

q and Q π,o
q denote the polarity graph and the polarity graph with loops of a generalized 4-gon

for q an odd power of 2. We need the following properties:

1. Q π,o
q is a (q + 1)-regular graph of order q3 + q2 + q + 1.

2. Q π
q has at least (q4 + q3 + q2 + q)/2 edges.

3. Q π
q does not contain cycles C3, C4, C6 (but it does contain C5).

4. The second largest absolute value of an eigenvalue of Q π,o
q is

√
2q.

5. The size of any independent set in Q π
q is at most (q3+q2+q+1)(

√
2q+1)

q+1 .

Properties 1 and 3 were proved in [8]. Property 2 immediately follows from Property 1. According
to [11], the eigenvalues of the square of the adjacency matrix of Q π,o

q are (q + 1)2,2q,0, which
implies Property 4. Property 5 follows from Property 4 and inequality (3).

Consider the superline graph H Q π
q

. Let m be its independence number and n be its order. Then

m = O (q5/2) and n = Θ(q4), whence n = Ω(m8/5). It remains to prove that it does not contain K4. To
this end we use Property 3 of Q q .

Lemma 5.1. If G is a graph such that K4 is a subgraph of HG , then G contains a cycle C3 , or C4 , or C6 .

Proof. Suppose that the edges 11′, . . . ,44′ of G are vertices of a K4 in HG . We consider two cases
depending on how the first edge is connected to the three others, see Figs. 1–3.

Case 1. The sets {2,2′}, {3,3′}, and {4,4′} have to be adjacent to each other. Since Q q is C3- and
C4-free, they can be connected only by edges i′ j′ , 2 � i < j � 4. But then we would have triangle
(2′,3′,4′).

Case 2. We consider the possibilities how sets {2,2′}, {3,3′}, {4,4′} are connected to each other
without creating cycles of lengths 3, 4 or 6. For 22′ and 33′ there is the unique possibility 2′3′ .

Fig. 1. Case 1.
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Fig. 2. Case 2.

Fig. 3. Case 2, continued.

One can check that each of the edges 2′4,3′4′ would produce a C6 and each of the edges 24′,34′
would produce a C4. Hence we must have (24 or 2′4′) and (34 or 3′4). Thus we have 4 possibilities;
each of them produces C4 or C6:

24,34 �→ (1,2,4,3),

24,3′4 �→ (
2,2′,3′4

)
,

2′4′,34 �→ (
1,2,2′,4′,4,3

)
,

2′4′,3′4 �→ (
2′,4′,4,3′). �

6. Constructive bound R(6,m)��� Ω(m2)

Let Pπ
q be the polarity graph of the classical projective plane PG(2,q), where q is a prime power.

This graph has a simple explicit definition. The vertices of Pπ
q are the points of the projective plane Pq .

Given two distinct points with homogeneous coordinates (a,b, c) and (a′,b′, c′), a,b, c,a′,b′, c′ ∈ G Fq ,
they form an edge in Pπ

q , if aa′ + bb′ + cc′ = 0. Pπ
q has n = q2 + q + 1 vertices; q + 1 vertices have

degree q, and q2 vertices have degree q + 1, hence the number of edges is 1
2 q(q + 1)2. This graph is

also known as the Erdős–Rényi graph; for more information on its independence number, see [9].
The second largest absolute value of an eigenvalue of the polarity graph with loops Pπ,o

q is λ = √
q.

This fact also follows from the results of [11], since Pq is a generalized 3-gon.
Whence by (3),

α
(

Pπ
q

) = α
(

Pπ,o
q

)
� n

√
q + 1

q + 1
= O

(
n3/4).

Our explicit lower bound on R(6,m) is based on H Pπ
q

. The number of vertices of this graph is

Ω(n3/2) and α(H Pπ
q
) � α(Pπ

q ) = O (n3/4) = O (
√

n3/2 ). Hence it remains to prove that H Pπ
q

does not
contain K6. Again, the only property we use is that Pπ

q does not contain C4.
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Fig. 4. Case 1.

Fig. 5. Case 2.

Lemma 6.1. If G is a graph such that K6 is a subgraph of HG , then C4 is a subgraph of G.

Proof. Suppose that 11′, . . . ,66′ are disjoint edges of a graph G that form a K6 in HG .
Case 1. One end of 66′ is adjacent to ends of at least four other edges, say, 6 is adjacent to

1,2,3,4. Assuming there is no C4 in G , we cannot have edges i j′ , for 1 � i �= j � 4. Furthermore
we cannot have two non-disjoint edges on {1,2,3,4}, or five edges on {1′,2′,3′,4′}. Thus we must
have two disjoint edges on {1,2,3,4}, say, 12 and 34, see Fig. 4. This forces the remaining four edges
connecting 11′, . . . ,44′ to be 1′3′,1′4′,2′3′,2′4′ . Due to symmetry, it suffices to consider how 11′ is
connected with 33′ . The edge 13 would produce the 4-cycle (1,3,4,6); 13′ would produce the cycle
(1,3′,3,6); 1′3 would produce the cycle (1′,3,6,1). But if we have edges 1′3′,1′4′,2′3′,2′4′ , then we
get the 4-cycle (1′,3′,2′,4′).

Hence Case 1 leads to a contradiction.
Case 2. One end of 66′ is adjacent to ends of two edges and the other is adjacent to ends of three

edges, say, as shown in Fig. 5.
Assuming G does not contain C4, there are no edges of the form i j′ , i �= j either for 1 � i, j � 2

or for 3 � i, j � 5. Furthermore, there can be only one edge of the form i j for 3 � i, j,� 5. Thus we
have at least two edges on {3′,4′,5′}, say, 3′4′,4′5′ .

In the following two claims we assume that C4 is not a subgraph of G .

Claim 1. There is no edge connecting the sets {1,2} and {3,4,5}.

Proof. Such an edge would form C4 with 6,6′ . �
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Fig. 6. Case 2, continued.

Claim 2. There is no edge connecting the sets {1′,2′} and {3′,4′,5′}.

Proof. Suppose i′ j′ is such an edge i < j. W.l.o.g. assume i = 2 and j ∈ {3,4}. Let k be the other
element of {3,4}, thus jk is an edge. Then the only way {i, i′} can be connected with {k,k′} is by the
edge i′k′ . Indeed, 2k′ would form the 4-cycle (2,k′, j′,2′) and 2′k would form the cycle (2′,k,k′, j′).
Thus we have the situation shown in Fig. 6.

Now consider how {2,2′} is connected to {5,5′}. The edge 2′5′ would produce 4-cycle (2′,3′,4′,5′);
2′5 would produce 4-cycle (2′,5,5′,4′); 25′ would produce 4-cycle (2,5′,5,4′). This contradiction fin-
ishes the proof of Claim 2. �

According to Claims 1 and 2, there are only cross edges connecting pairs (1,1′), (2,2′) with pairs
(3,3′), (4,4′), (5,5′). Since we need 6 edges to connect these sets, one of the vertices 1′,2′,3′,4′,5′
must be incident with two such edges. Suppose for instance that it is 1′ and it is adjacent to 3 and 4.
Then (1′,3,6′,4) is a 4-cycle. The other cases are similar. �
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