
J. Math. Anal. Appl. 396 (2012) 888–903

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

Multiple weighted estimates for commutators of multilinear singular
integrals with non-smooth kernels✩

Songqing Chen, Huoxiong Wu ∗

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

a r t i c l e i n f o

Article history:
Received 28 May 2011
Available online 23 July 2012
Submitted by R.H. Torres

Keywords:
Multilinear operators
Generalized Calderón–Zygmund operators
Commutators
Maximal operators
Multiple weights AP⃗

a b s t r a c t

Multilinear commutators and iterated commutators generated by the multilinear singular
integrals with non-smooth kernels and BMO functions are studied. By the weighted
estimates of a class of new variantmaximal operators and the sharpmaximal functions, the
multiple weighted norm inequalities for such operators are obtained. In particular, some
previous results in Anh and Duong (2010) [1], Lerner et al. (2009) [4], Pérez et al. (2011) [5]
are improved or extended significantly.
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1. Introduction and main results

Commutators ofmultilinear singular integral operatorswith BMO functions have been the subject ofmany recent articles
(see [1–7] et al.). The purpose of this paper is to extend and improve some known results for two types of commutators
associated with multilinear operators.

Let T : S(Rn) × · · · × S(Rn) → S′(Rn) be an m-linear operator. A locally integrable function K(x, y1, . . . , ym) defined
away from the diagonal x = y1 = · · · = ym in (Rn)m+1 is called an associated kernel of T if

⟨T (f1, . . . , fm), g⟩ =


Rn


(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym)g(x)dy1 · · · dymdx (1.1)

holds for all f1, . . . , fm, g in S(Rn) with
m

j=1 supp fj


supp g = ∅. Throughout this paper, we assume that the associated
kernel K satisfies the following size condition:

|K(y0, y1, . . . , ym)| ≤
A

m
k,l=0

|yk − yl|

mn (1.2)

for some A > 0 and all (y0, y1, . . . , ym) with y0 ≠ yj for some j ∈ {1, 2, . . . ,m}.
For the multilinear operator T and b⃗ = (b1, . . . , bm) in BMOm, we define them-linear commutator TΣ b⃗:

TΣ b⃗(f⃗ ) :=

m
j=1

T j
bj
(f⃗ ) :=

m
j=1

[bj, T ]j(f1, . . . , fm), (1.3)
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and the iterated commutator TΠ b⃗:

TΠ b⃗(f⃗ ) := [b1, [b2, . . . , [bm−1, [bm, T ]m]m−1 · · ·]2 ]1(f1, . . . , fm), (1.4)

where f⃗ = (f1, . . . , fm), each T j
bj
is the commutator of bj and T in the j-th entry of T , that is,

T j
bj
(f⃗ ) = [bj, T ]j(f1, . . . , fm) = bjT (f1, . . . , fj, . . . , fm) − T (f1, . . . , bjfj, . . . , fm).

If T is associated with a distribution kernel, which coincides with the function K defined away from the diagonal y0 = y1 =

· · · = ym in (Rn)m+1, then, at formal level,

T j
bj
(f⃗ )(x) =


(Rn)m

(bj(x) − bj(yj))K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 · · · dym, (1.5)

and

TΠ b⃗(f⃗ )(x) =


(Rn)m

m
j=1

(bj(x) − bj(yj))K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 · · · dym, (1.6)

whenever x ∉ ∩
m
j=1 supp fj and f1, . . . , fm are C∞ functions with compact support. Here the notations of our commutators

are taken from [5], also see [4,6] et al. for the definitions and notations of these commutators.
Clearly, for m = 1, TΣ b⃗ = TΠ b⃗ coincides with the linear commutator [b, T ] introduced by Coifman et al. in [8]. The

original interest in the study of [b, T ] was related to generalizations of the classical factorization theorem for Hardy spaces.
Further applications have then been found in partial differential equations [9–12]. Somemultiparameter versions have also
received renewed attention; see [13,14].

For themultilinear setting, Pérez and Torres [6] showed that if T is them-linear Calderón–Zygmund operator, then TΣ b⃗ is
bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) whenever 1 < p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · + 1/pm with p > 1.
Tang [7] obtained the weighted boundedness of TΠ b⃗ for the classical Ap classes (in fact, Tang established the corresponding
result for the vector-valued version of TΠ b⃗). Very recently, Lerner et al. [4] and Pérez et al. [5] have extended the above
results to the following:

Theorem A. Let T be an m-linear Calderón–Zygmund operator; w⃗ = (w1, . . . , wm) ∈ AP⃗ and vw⃗ = Πm
j=1w

p/pj
j with 1/p =

1/p1 + · · · + 1/pm and 1 < pj < ∞, j = 1, . . . ,m; and b⃗ ∈ BMOm. Then, there exists a constant C such that

(i) (cf. [4])
TΣ b⃗(f⃗ )


Lp(vw⃗)

≤ C


m
j=1

∥b∥BMO


m
j=1

∥fj∥Lpj (wj)
; (1.7)

(ii) (cf. [5])
TΠ b⃗(f⃗ )


Lp(vw⃗)

≤ C


m
j=1

∥b∥BMO


m
j=1

∥fj∥Lpj (wj)
. (1.8)

Here the classes AP⃗ were introduced by Lerner et al. in [4] and are the largest classes of weights for which all m-linear
Calderón–Zygmund operators are bounded (see Section 2 for definitions). An important fact is that

m
j=1

Apj  AP⃗ . (1.9)

An m-linear operator T associated with K is said to be an m-linear Calderón–Zygmund operator if, for some 1 ≤ qj < ∞,
it extends to a bounded multilinear operator from Lq1 × · · · × Lqm to Lq, where 1/q = 1/q1 + · · · + 1/qm, and the kernel K
satisfies (1.2) and the regularity condition

|K(y0, . . . , yj, . . . , ym) − K(y0, . . . , y′

j, . . . , ym)| ≤
A|yj − y′

j|
ϵ

m
k,l=0

|yk − yl|

mn+ϵ
, (1.10)

whenever 0 ≤ j ≤ m and |yj − y′

j| ≤
1
2 max0≤k≤m |yj − yk|. We denote by m − CZK(A, ϵ) the collection of all kernels K

satisfying (1.2) and (1.10).
In this paper, we will continuously focus on the two types of commutators TΣ b⃗ and TΠ b⃗ by replacing the regularity

condition (1.10) by weaker regularity conditions on the kernel K given by Assumptions (H1) and (H2) described below.
These assumptions were introduced by Duong et al. in [15,16]. An important example for satisfying these assumptions is
them-th Calderón commutator.
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Let {At}t>0 be a class of integral operators, which play the role of the approximation to the identity (see [17]). We always
assume that the operators At are associated with kernels at(x, y) in the sense that for all f ∈ ∪p∈[1,∞] Lp and x ∈ Rn,

At f (x) =


Rn

at(x, y)f (y)dy,

and that the kernels at(x, y) satisfy the following conditions

|at(x, y)| ≤ ht(x, y) := t−n/sh


|x − y|
t1/s


, (1.11)

where s is a positive fixed constant and h is a positive, bounded, decreasing function satisfying that for some η > 0,

lim
r→∞

rn+ηh(r s) = 0. (1.12)

Recall that the j-th transpose T ∗,j of them-linear operator T is defined via

⟨T ∗,j(f1, . . . , fm), g⟩ = ⟨T (f1, . . . , fj−1, g, fj+1, . . . , fm), fj⟩ (1.13)

for all f1, . . . , fm, g in S(Rn). Notice that the kernel K ∗,j of T ∗,j is related to the kernel K of T via the identity

K ∗,j(x, y1, . . . , yj−1, yj, yj+1, . . . , ym) = K(yj, y1, . . . , yj−1, x, yj+1, . . . , ym).

If anm-linear operator T maps a product of Banach spaces X1 × · · · × Xm to another Banach space X , then the transpose T ∗,j

maps X1 ×· · ·×Xj−1 ×X ×Xj+1 ×· · ·×Xm to Xj. Moreover, the norms of T and T ∗,j are equal. To maintain uniform notation,
we may occasionally denote T by T ∗,0 and K by K ∗,0.

Assumption (H1). Assume that for each i = 1, . . . ,m there exist operators {A(i)
t }t>0 with kernels a(i)

t (x, y) that satisfy condi-
tions (1.11) and (1.12) with constants s and η and that for every j = 0, 1, 2, . . . ,m, there exist kernels K ∗,j,(i)

t (x, y1, . . . , ym)
such that

⟨T ∗,j(f1, . . . , A
(i)
t fi, . . . , fm), g⟩ =


Rn


(Rn)m

K ∗,j,(i)
t (x, y1, . . . , ym)f1(y1) · · · fm(ym)g(x)dy1 · · · dymdx (1.14)

for all f1, . . . , fm in S(Rn) with ∩
m
k=1 supp fk ∩ supp g = ∅. Also assume that there exist a function φ ∈ C(R) with suppφ ⊂

[−1, 1] and a constant ϵ > 0 so that for every j = 0, 1, . . . ,m and every i = 1, 2, . . . ,m, we haveK ∗,j(x, y1, . . . , ym) − K ∗,j,(i)
t (x, y1, . . . , ym)

 ≤
A

m
k=1

|x − yk|
mn

m
k=1,k≠i

φ


|yi − yk|

t1/s



+
Atϵ/s

m
k=1

|x − yk|
mn+ϵ

(1.15)

whenever t1/s ≤ |x − yi|/2.

If T satisfies Assumption (H1) we will say that T is an m-linear operator with generalized Calderón–Zygmund kernel
K . The collection of functions K satisfying (1.14) and (1.15) with parameters m, A, s, η and ϵ will be denoted by m −

GCZK(A, s, η, ϵ). We say that T is of classm − GCZO(A, s, η, ϵ) if T has an associated kernel K in m − GCZK(A, s, η, ϵ).

Theorem B (Cf. [15, Theorem 3.1]). Assume that T is a multilinear operator in m − GCZO(A, s, η, ϵ). If there exist some
1 ≤ q1, . . . , qm < ∞ with 1/q = 1/q1 + · · · + 1/qm such that T maps Lq1(Rn) × · · · × Lqm(Rn) to Lq(Rn), then for
1/m ≤ p < ∞, 1 ≤ pj ≤ ∞ with 1/p = 1/p1 + · · · + 1/pm, all the following statement are valid:
(i) when all pj > 1, then T can be extended to be a bounded operator from them-fold product Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn);
(ii) when some pj = 1, then T can be extended to be a bounded operator from the m-fold product Lp1(Rn) × · · · × Lpm(Rn) to

Lp,∞(Rn).
Moreover, there exists a constant C(n,m, pj, qj) such that

∥T∥L1×···×L1→L1/m,∞ ≤ C(n,m, pj, qj)(A + ∥T∥Lq1×···×Lqm→Lq).

Assumption (H2). Assume that there exist operators {Bt}t>0 with kernels bt(x, y) that satisfy conditions (1.11) and (1.12)
with constants s and η. Let

K (0)
t (x, y1, . . . , ym) =


Rn

K(z, y1, . . . , ym)bt(x, z)dz (1.16)
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whenever 2t1/s ≤ min1≤j≤m |x − yj|, andK(x, y1, . . . , ym) − K (0)
t (x′, . . . , y1, . . . , ym)

 ≤
A

m
k=1

|x − yk|
mn

m
k=1

φ


|x − yk|
t1/s


+

Atϵ/s
m

k=1
|x − yk|

mn+ϵ
(1.17)

whenever 2|x − x′
| ≤ t1/s and 2t1/s ≤ max1≤j≤m |x − yj|.

From the proof of Proposition 2.1 in [15], we know that condition (1.15) is weaker than, and indeed a consequence of the
Calderón–Zygmund kernel condition (1.10). Similarly, we can verify that (H2) is also weaker than the condition (1.10) for
K(x, y1, . . . , ym).

For T in m − GCZO(A, s, η, ϵ) with kernel K satisfying Assumption (H2), the study on the corresponding commutators
TΣ b⃗ and TΠ b⃗ have attractedmuch attention. In [2] (resp., [3]), Gong and Li (resp., Lian, Li andWu) proved that TΣ b⃗ (resp., TΠ b⃗)
is bounded from Lp1(w) × · · · × Lpm(w) to Lp(w) for 1 < p, p1, . . . , pm < ∞ with 1/p = 1/p1 + · · · + 1/pm and w ∈ Ap.
Moreover, Anh and Duong [1] established the following result:

Theorem C (Cf. [1, Theorem 4.5]). Let T be a multilinear operator in m − GCZO(A, s, η, ϵ) with kernel K satisfying Assump-
tion (H2). Assume that there exist some 1 ≤ q1, . . . , qm < ∞ and some 0 < q < ∞ with 1/q = 1/q1 + · · · + 1/qm, such that
T maps Lq1(Rn) × · · · × Lpm(Rn) to Lq,∞(Rn). Then for b⃗ ∈ BMOm, 1/p = 1/p1 + · · · + 1/pm with 1 < pj < ∞, wj ∈ Apj , j =

1, . . . ,m, there exists a constant C such thatTΣ b⃗(f⃗ )

Lp(vw⃗)

≤ C
m
i=1

∥bi∥BMO

m
j=1

fjLpj (wj)
,

where vw⃗ =
m

j=1 w
p/pj
j .

Compared with the results in Theorems A and C, (1.9) shows an obvious gap between Theorems A and C. It is natural to
ask whether the results in Theorem A are also true for the corresponding commutators TΣ b⃗ of T in Theorem C, and what
about TΠ b⃗? This problem will be addressed by our next theorems:

Theorem 1.1. Assume that T is a multilinear operator in m − GCZO(A, s, η, ϵ) with kernel K satisfying Assumption (H2),
b⃗ = (b1, . . . , bm) ∈ BMOm. If there exist some 1 ≤ q1, . . . , qm < ∞ and some 0 < q < ∞ with 1/q = 1/q1 + · · · + 1/qm,
such that T maps Lq1(Rn) × · · · × Lqm(Rn) to Lq,∞(Rn), then for 1/m < p < ∞, 1 < p1, . . . , pm < ∞ with 1/p =

1/p1 + · · · + 1/pm, P⃗ = (p1, . . . , pm), and w⃗ ∈ AP⃗ ,TΣ b⃗(f⃗ )

Lp(vw⃗)

≤ C
m
i=1

∥bi∥BMO

m
j=1

fjLpj (wj)
, (1.18)

where vw⃗ =
m

j=1 w
p/pj
j .

Theorem 1.2. Assume that T is a multilinear operator in m − GCZO(A, s, η, ϵ) with kernel K satisfying Assumption (H2),
b⃗ = (b1, . . . , bm) ∈ BMOm. If there exist some 1 ≤ q1, . . . , qm < ∞ and some 0 < q < ∞ with 1/q = 1/q1 + · · · + 1/qm,
such that T maps Lq1(Rn) × · · · × Lpm(Rn) to Lq,∞(Rn). Then for 1/m < p < ∞, 1 < p1, . . . , pm < ∞ with 1/p =

1/p1 + · · · + 1/pm, P⃗ = (p1, . . . , pm), and w⃗ ∈ AP⃗ ,TΠ b⃗(f⃗ )

Lp(vw⃗)

≤ C
m
i=1

∥bi∥BMO

m
j=1

fjLpj (wj)
, (1.19)

where vw⃗ =
m

j=1 w
p/pj
j .

Remark 1.1. Since Πm
j=1Apj  AP⃗ , Theorem 1.1 is an essential improvement of Theorem C (i.e.,Theorem 4.5 in [1]).

Meanwhile, note that the regularity in our conditions (H1) and (H2) is significantly weaker than those of the standard
Calderón–Zygmund kernels, Theorems 1.1 and 1.2 can be considered as an extension to Theorem A (i.e., Theorem 3.18 in [4]
and Theorem 1.1 in [5]).

We would like to remark that the main method employed in this paper is a combination of ideas and arguments
from [4,5,18], among others. One of the main ingredients of our proofs is the introduction of a class of new variant maximal
operators and the multiple weighted estimates for such maximal operators (see (3.2)–(3.4) and Proposition 3.1), which is
the key leading to the improvement of the results in [1,4,5].
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Remark 1.2. We remark that under standard regularity conditions, the weak type end-point estimates on TΣ b⃗ and TΠ b⃗ are
established by Lerner et al. in [4, Theorem3.16] and Pérez et al. in [5, Theorem1.2], respectively. However, under the (H1) and
(H2) conditions, our methods do not work to the end-point cases. It will be very interesting to establish the corresponding
weak end-point estimates under our conditions.

Furthermore, Theorems 1.1 and 1.2 can be given in the following more general forms. To state the results, we need to
introduce some notations. Following [5], for positive integers m and j with 1 ≤ j ≤ m, we denote by Cm

j the family of all
finite subsets σ = {σ(1), . . . , σ (j)} of {1, . . . ,m} of j different elements, where we always take σ(k) < σ(l) if k < l. For any
σ ∈ Cm

j , we associate the complementary sequence σ ′
∈ Cm

m−j given by σ ′
= {1, . . . ,m} \ σ with the convention Cm

0 = ∅.
Given anm-tuple of functions b⃗ and σ ∈ Cm

j , we also use the notation b⃗σ for the j-tuple obtained from b⃗ given by (bσ(1), . . . ,

bσ(j)). Similarly to TΠ b⃗, we define for T in m − GCZO(A, s, η, ε), σ ∈ Cm
j and b⃗σ = (bσ(1), . . . , bσ(j)) in BMOj, the j-th order

iterated commutator

TΠ b⃗σ
(f1, . . . , fm) = [bσ(1), [bσ(2), · · · [bσ(j−1), [bσ(j), T ]σ(j)]σ(j−1) · · ·]σ(2)]σ(1)(f⃗ ),

that is, formally

TΠ b⃗σ
(f⃗ )(x) =


(Rn)m


j

i=1


bσ(i)(x) − bσ(i)(yσ(i))


K(x, y1, . . . , ym)

m
i=1

fi(yi)dy⃗. (1.20)

Clearly TΠ b⃗σ
= TΠ b⃗ when σ = {1, . . . ,m}, while TΠ b⃗σ

= T j
bj
when σ = {j}. Then we have the following theorem.

Theorem 1.3. For 1 ≤ j ≤ m, σ ∈ Cm
j and b⃗σ ∈ BMOj, let TΠ b⃗σ

be given in (1.20). Under the same assumptions as in Theo-
rem 1.2, we haveTΠ b⃗σ

(f⃗ )

Lp(vw⃗)

≤ C
j

i=1

∥bσ(i)∥BMO

m
i=1

∥fi∥Lpj (wj)
. (1.21)

We remark that Theorem 1.3 is Theorem 1.2 when j = m, and Theorem 1.3 implies Theorem 1.1 when j = 1. The proof
of Theorem 1.3 will be omitted since it follows from the same way in proving Theorem 1.2 and it is simpler than the latter.

The rest of this paper is organized as follows. In Section 2, we recall some standard definitions and lemmas. In Section 3,
we introduce a class of newmulti(sub)linear maximal operators and prove some useful estimates which will play key roles
in the proofs of our theorems. Section 4 is devoted to the proof of Theorem 1.1. Finally, the proof of Theorem 1.2 is given in
Section 5.

Throughout the rest of the paper, the letter C will stand for a positive constant not necessarily the same one at each
occurrence but is independent of the essential variables.

2. Preliminaries

2.1. Multiple weights

The following class of weights was introduced in [4].
Let 1 ≤ p1, . . . , pm < ∞ and 1/m ≤ p < ∞ with 1/p = 1/p1 + · · · + 1/pm, P⃗ = (p1, . . . , pm). A multiple weight

w⃗ = (w1, . . . , wm) is said to satisfy the multilinear AP⃗ condition if

sup
Q


1

|Q |


Q

vw⃗(x)dx
1/p m

j=1


1

|Q |


Q

w
1−p′

j
j (x)dx

1/p′
j

< ∞, (2.1)

where vw⃗ =
m

j=1 w
p/pj
j . When pj = 1, (|Q |

−1

Q wj(x)

1−p′
jdx)1/p

′
j is understood as (infQ wj(x))−1.

It is easy to check that A(1,...,1) is contained in AP⃗ for each P⃗ , however AP⃗ are not increasing with the natural partial order.
As mentioned in the introduction, these are the largest classes of weights for which the multilinear Calderón–Zygmund
operators are bounded on Lebesgue spaces and an important fact is (1.9) in Section 1. Moreover, we will use the following
results:

Lemma 2.1 (Cf. [4, Theorem 3.6]). Let w⃗ = (w1, . . . , wm) and 1 ≤ p1, . . . , pm < ∞. Then w⃗ ∈ AP⃗ if and only if vw⃗ ∈ Amp and

w
1−p′

j
j ∈ Amp′

j
, j = 1, . . . ,m, where the condition w

1−p′
j

j ∈ Amp′
j
in the case pj = 1 is understood as w

1/m
j ∈ A1.

Lemma 2.2 (Cf. [4, Lemma 6.1]). Assume that w⃗ = (w1, . . . , wm) satisfies AP⃗ condition. Then there exists a finite constant r > 1
such that w⃗ ∈ AP⃗/r .
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2.2. Orlicz norms

For Φ(t) = t(1+ log+ t) and a cube Q inRn, we will consider the average ∥f ∥Φ,Q of a function f given by the Luxemburg
norm

∥f ∥L log L,Q := inf

λ > 0 :

1
|Q |


Q

Φ


|f (x)|

λ


dx ≤ 1


. (2.2)

We will use the following two basic estimates in several occasions without further comment.

∥f ∥Φ,Q > 1 if and only if
1

|Q |


Q

Φ(|f (x)|)dx > 1; (2.3)

1
|Q |


Q

|b(y) − bQ | |f (y)|dy ≤ C∥b∥BMO∥f ∥L(log L),Q , (2.4)

where bQ = |Q |
−1

Q b(y)dy.

2.3. Sharp maximal functions

We recall the definitions of the Hardy–Littlewood maximal function and the sharp maximal function:

M(f )(x) = sup
Q∋x

1
|Q |


Q

|f (y)|dy,

M♯(f )(x) = sup
Q∋x

inf
c

1
|Q |


Q

|f (y) − c|dy ≈ sup
Q∋x

1
|Q |


Q

|f (y) − fQ |dy,

and their variantsMδ(f )(x) = M(|f |δ)1/δ(x) andM♯
δ (f )(x) = M♯(|f |δ)1/δ(x). We will use the following inequality (see [19]):

Rn
(Mδ(f )(x))p w(x)dx ≤ C


Rn


M♯

δ (f )(x)
p

w(x)dx (2.5)

for all functions f for which the left-hand side is finite, and where 0 < p, δ < ∞ and w ∈ A∞.

3. Multilinear maximal operators

In this section, we will introduce certain variant multilinear maximal operators and establish the multiple weighted
estimates for such maximal operators, which are ones of the main novelties in this paper.

Let us recall the definitions of the multilinear maximal functions, which are introduced by Lerner et al. in [4].

M(f⃗ )(x) = sup
Q∋x

m
j=1

1
|Q |


Q

|fj(x)|dx,

Mr(f⃗ )(x) = sup
Q∋x

m
j=1


1

|Q |


Q

|fj(x)|rdx
1/r

,

ML(log L)(f⃗ )(x) = sup
Q∋x

m
j=1

∥fj∥L(log L),Q .

By the fact that for r > 1, there exists a constant c > 0 such that

∥f ∥L(log L),Q ≤ c


1
|Q |


Q

|f (y)|rdy
1/r

,

it is easy to check that

M(f⃗ )(x) ≤ ML(log L)(f⃗ )(x) ≤ c Mr(f⃗ )(x). (3.1)
In the next, we introduce the following modified multilinear maximal operators. Let r > 1, 1 ≤ l < m, ϱ = {j1, j2,

. . . , jl} ⊆ {1, . . . ,m} and ϱ′
= {1, 2, . . . ,m} \ ϱ. We define the following multilinear maximal functions:

Mϱ(f⃗ )(x) = sup
Q∋x

∞
k=0

2−knl

j∈ϱ

1
|Q |


Q

|fj(x)|dx

j∈ϱ′

1
|2kQ |


2kQ

|fj(x)|dx, (3.2)

Mϱ,L(log L)(f⃗ )(x) = sup
Q∋x

∞
k=0

2−knl

j∈ϱ

∥fj∥L(log L),Q


j∈ϱ′

∥fj∥L(log L),2kQ , (3.3)
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and

Mϱ,r(f⃗ )(x) = sup
Q∋x

∞
k=0

2−knl

j∈ϱ


1

|Q |


Q

|fj(x)|rdx
1/r 

j∈ϱ′


1

|2kQ |


2kQ

|fj(x)|rdx
1/r

. (3.4)

We remark that when ϱ = {1, 2, . . . , ℓ}, Mϱ is first introduced by Grafakos et al. in [18] and denote Mϱ by Mℓ. Similarly
to (3.1), for any r > 1, we have

Mϱ(f⃗ )(x) ≤ Mϱ,L(log L)(f⃗ )(x) ≤ c Mϱ,r(f⃗ )(x). (3.5)

The following proposition will play a key role in proving our theorems.

Proposition 3.1. Let 1 < p1, . . . , pm < ∞, 1/p = 1/p1 + · · · + 1/pm, P⃗ = (p1, . . . , pm), and w⃗ ∈ AP⃗ . Let 1 ≤ l < m and
ϱ = {j1, . . . , jl} ⊆ {1, . . . ,m}. Then for some r > 1 (r depending only on w⃗), Mr and Mϱ,r is bounded from Lp1(w1) × · · · ×

Lpm(wm) to Lp(vw⃗).

Proof. The boundedness of Mr is contained in the proof of Theorem 3.18 in [4, p. 1258]. We need only to prove the bound-
edness ofMϱ,r . Without loss of generality, wemay assume ϱ = {1, . . . , l}. Since w⃗ ∈ AP⃗ , by Lemma 2.2 (i.e., [4, Lemma 6.1]),
there exists a finite constant r > 1 such that w⃗ ∈ AP⃗/r . Let si = pi/r, S⃗ = (s1, . . . , sm) and 1/s = 1/s1 + · · · + 1/sm. Then

s = p/r,
m

j=1 w
p/pj
j =

m
j=1 w

s/sj
j and w⃗ ∈ AS⃗ . Consequently, w

−1/(sj−1)
j satisfies the reverse Hölder inequality, that is, there

exist uj > 1 and C > 0 such that for all u ∈ (0, uj] and all cubes Q ,
1

|Q |


Q

w
−u/(sj−1)
j (x)dx

1/u

≤
C

|Q |


Q

w
−1/(sj−1)
j (x)dx.

Let η = min1≤j≤m uj and

t = max
1≤j≤m

sm
sm + (1 − 1/η)(sj − 1)

.

Observe that t < 1 and tsj > 1 for 1 ≤ j ≤ m. Then the proof of Proposition 2.1 in [18] implies that for all cubes Q and
1 ≤ j ≤ m,

1
|Q |


Q

|fj|r(x)dx ≤ C

Mc

vw⃗


|fj|rsjwj/vw⃗

t
(x)
1/tsj vw⃗(Q )

|Q |

1/sj  1
|Q |


Q

w
−s′j/sj
j (x)dx

1/s′j
,

whereMc
vw⃗

denotes the weighted centered Hardy–Littlewood maximal function, that is,

Mc
vw⃗

(f )(x) := sup
r>0

1
vw⃗(Q (x, r))


Q (x,r)

|f (y)|vw⃗(y)dy,

where Q (x, r) denotes the cube centered at x and of side length r . Hence,
1

|Q |


Q

|fj|r(x)dx
1/r

≤ C

Mc

vw⃗


|fj|pjwj/vw⃗

t
(x)
1/tpj vw⃗(Q )

|Q |

1/rsj  1
|Q |


Q

w
−s′j/sj
j (x)dx

1/rs′j
.

This together with the definition of Mϱ,r implies that

Mϱ,r(f⃗ )(x) ≤ C sup
x∈Q

∞
k=0

2−knl
l

i=1


Mc

vw⃗


|fi|piwi/vw⃗

t
(x)
1/tpi vw⃗(Q )

|Q |

1/rsi

×


1

|Q |


Q

w
−s′i/si
i (x)dx

1/rs′i m
j=l+1


Mc

vw⃗


|fj|pjwj/vw⃗

t
(x)
1/tpj

×


vw⃗(2kQ )

|2kQ |

1/rsj  1
|2kQ |


2kQ

w
−s′j/sj
j (x)dx

1/rs′j

≤ C
m
j=1


Mc

vw⃗


|fj|pjwj/vw⃗

t
(x)
1/tpj

sup
x∈Q

∞
k=0

2−knl
l

i=1


vw⃗(Q )

|Q |

1/rsi

×


1

|Q |


Q

w
−s′i/si
i (x)dx

1/rs′i m
j=l+1


vw⃗(2kQ )

|2kQ |

1/rsj  1
|2kQ |


2kQ

w
−s′j/sj
j (x)dx

1/rs′j
.
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Denote

Il,k =

l
i=1


vw⃗(Q )

|Q |

1/si  1
|Q |


Q

w
−s′i/si
i (x)dx

1/s′i m
j=l+1


vw⃗(2kQ )

|2kQ |

1/sj  1
|2kQ |


2kQ

w
−s′j/sj
j (x)dx

1/s′j
.

We have

Il,k ≤

m
j=1


vw⃗(2kQ )

|2kQ |

1/sj  1
|2kQ |


2kQ

w
−s′j/sj
j (x)dx

1/s′j l
i=1


vw⃗(Q )

|Q |

1/si  |2kQ |

vw⃗(2kQ )

1/si 
|2kQ |

|Q |

1/s′i

≤

[w⃗]AP⃗

r
2knl


vw⃗(Q )

vw⃗(2kQ )

Σ l
i=11/si

.

Since vw⃗ ∈ A∞, there exists θ > 0 such that for all cubes Q and all sets E ⊆ Q ,

vw⃗(E)

vw⃗(Q )
≤ C


|E|

|Q |

θ

.

Therefore,

Mϱ,r(f⃗ )(x) ≤ C
m
j=1


Mc

vw⃗


|fj|pjwj/vw⃗

t
(x)
1/tpj ∞

k=0

2−knl
[w⃗]AP⃗

2knl/r2−knθ(Σ l
i=11/si)/r

≤ C
m
j=1


Mc

vw⃗


|fj|pjwj/vw⃗

t
(x)
1/tpj

.

Then, Mϱ,r(f⃗ )(x)

Lp(vw⃗)

≤ C

 m
j=1


Mc

vw⃗


|fj|pjwj/vw⃗

t1/tpj
Lp(vw⃗)

≤ C
m
j=1

Mc
vw⃗


|fj|pjwj/vw⃗

t1/tpj
Lpj (vw⃗)

= C
m
j=1

Mc
vw⃗


|fj|pjwj/vw⃗

t1/tpj
L1/t (vw⃗)

≤ C
m
j=1

|fj|pjwj/vw⃗

t1/tpj
L1/t (vw⃗)

≤ C
m
j=1

fjLpj (wj)
.

This completes the proof of Proposition 3.1. �

From (3.1), (3.5) and Proposition 3.1 we have the following corollary.

Corollary 3.1. Under the same assumptions as in Proposition 3.1, M, ML(log L), Mϱ and Mϱ,L(log L) are bounded from Lp1(w1) ×

· · · × Lpm(wm) to Lp(vw⃗) for w⃗ ∈ AP⃗ .

We remark that the results of M and ML(log L) can be found in Theorem 3.7 and the proof of Theorem 3.18 in [4], and one
of Mℓ (the special case of Mϱ for ϱ = {1, 2, . . . , ℓ}) is Proposition 2.1’s (i) in [18].

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. At first, we present the estimates on the sharp Fefferman–Stein
maximal operators acting on T (f⃗ ) and TΣ b⃗(f⃗ ) in terms of the multilinear maximal functions given in Section 3.

Proposition 4.1. Let T be an m-linear operator in GCZO(A, s, η, ϵ) that satisfies the assumptions in Theorem 1.1. Let ϱ0 =

{1, . . . ,m} and 0 < δ < 1/m. Then for any f⃗ in the product of Lqj(Rn), with 1 ≤ qj ≤ ∞,

M♯
δ (T (f⃗ ))(x) ≤ C


M(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ(f⃗ )(x)


. (4.1)
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Proposition 4.2. Let T be an m-linear operator in GCZO(A, s, η, ϵ) that satisfies the assumptions in Theorem 1.1, and TΣ b⃗ be the
corresponding multilinear commutator with b⃗ ∈ BMOm. Let 0 < δ < min{ε, 1/m}, r > 1 and ϱ0 = {1, . . . ,m}. Then, there
exists a constant C > 0, depending on δ and ε, such that

M♯
δ


TΣ b⃗(f⃗ )


(x) ≤ C

m
i=1

∥bi∥BMO


Mε


T (f⃗ )


(x) + ML(log L)(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )(x)


(4.2)

for all bounded measurable vector functions f⃗ = (f1, . . . , fm) with compact supports.

Remark 4.1. Propositions 4.1 and 4.2 improve the following inequalities obtained in Theorems 4.1 and 4.3 of [1], respec-
tively:

M♯
δ (T (f⃗ ))(x) ≤ C

m
j=1

M(fj)(x),

and

M♯
δ


TΣ b⃗(f⃗ )


(x) ≤ C

m
i=1

∥bi∥BMO


m
j=1

ML(log L)(fj)(x) + Mε


T (f⃗ )


(x)


,

since M and Mϱ (resp., ML(log L) and Mϱ,L(log L)) are trivially controlled by the m-fold product of M (resp., ML(log L)), where
ML(log L)(f )(x) = supQ∋x ∥f ∥L(log L),Q .

The ideas and arguments used in the proofs are similar, although with some modifications. For completeness, we give
the proofs as follows.

Proof of Proposition 4.1. We employ the ideas taken from [4,6]. Fix a point x and a cube Q ∋ x. Since | |α |
r
−|β |

r
| ≤

|α − β|
r for 0 < r < 1, to obtain (4.1), it suffices to prove for 0 < δ < 1/m
1

|Q |


Q

T (f⃗ )(z) − cQ
δ dz1/δ

≤ C


M(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ(f⃗ )(x)



for some constant cQ to be determined later. Let fj = f 0j + f ∞

j , where f 0j = fjχQ∗ for j = 1, . . . ,m, and Q ∗
= (8

√
n + 4)Q .

Then
m
j=1

fj(yj) =

m
j=1


f 0j (yj) + f ∞

j (yj)


=


α1,...,αm∈{0,∞}

f α1
1 (y1) · · · f αm

m (ym)

=

m
j=1

f 0j +


′f α1
1 (y1) · · · f αm

m (ym),

where each term of


′ contains at least one αj ≠ 0. Then

T (f⃗ )(z) = T (f⃗ 0)(z) +


′ T

f α1
1 , . . . , f αm

m


(z).

By Theorem B and the Kolmogorov inequality, it is actually shown in the proof of Theorem 4.1 in [1] that
1

|Q |


Q

|T (f⃗ 0)(z)|δdz
1/δ

≤ CM(f⃗ )(x).

To estimate the remaining terms, employing the arguments in the proof of Theorem 3.2 of [4] (also see [6]), we choose
cQ =


′ T (f α1

1 , . . . , f αm
m )(x) and will show that


′
T (f α1

1 , . . . , f αm
m )(z) − T (f α1

1 , . . . , f αm
m )(x)

 ≤ C


M(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ(f⃗ )(x)


. (4.3)

For the case of α1 = · · · = αm = ∞, taking t = (2
√
nl(Q ))s (l(Q ) denotes the side-length of Q ) and by Assumption (H2),

Anh and Duong in the proof of Theorem 4.1 of [1] actually showed thatT (f⃗ ∞)(z) − T (f⃗ ∞)(x)
 ≤ CM(f⃗ )(x).
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It remains to estimate the terms in (4.3) with αj1 = · · · = αjl = 0 for some ϱ = {j1, . . . , jl} ⊂ ϱ0 and 1 ≤ l < m. We haveT (f α1
1 , . . . , f αm

m )(z) − T (f α1
1 , . . . , f αm

m )(x)


≤


(Rn)m

K(z, y⃗) − K (0)
t (z, y⃗)

+ K (0)
t (z, y⃗) − K(x, y⃗)

 m
j=1

fj(yj) dy⃗
=


(Rn)m

K(z, y⃗) − K (0)
t (z, y⃗)

 m
j=1

fj(yj) dy⃗ +


(Rn)m

K (0)
t (z, y⃗) − K(x, y⃗)

 m
j=1

fj(yj) dy⃗
:= I + II.

Set ϱ′
= ϱ0 \ ϱ, by (1.17) of Assumption (H2), we get

I ≤ C

j∈ϱ


Q∗

fj(yj) dyj



(Rn\Q∗)m−l

tϵ/s

j∈ϱ′

fj(yj) dyj
j∈ϱ′

|x − yj|

mn+ϵ
+


(Rn\Q∗)m−l


j∈ϱ′

fj(yj) dyj
j∈ϱ′

|x − yj|

mn


≤ C


j∈ϱ


Q∗

fj(yj) dyj  ∞
k=1

|Q ∗
|
ϵ/n

2k|Q ∗|1/n
mn+ϵ


(2k+1Q∗)m−l


j∈ϱ′

fj(yj) dyj
+

∞
k=1

1
2k|Q ∗|1/n

mn


(2k+1Q∗\2kQ∗)m−l


j∈ϱ′

fj(yj) dyj

≤ C


m

k=1

1
2kϵ

m
j=1

1
|2kQ ∗|


2kQ∗

fj(yj) dyj + m
k=1

1
2knl


j∈ϱ

1
|Q ∗|


Q∗

fj(yj) dyj 
j∈ϱ′

1
|2kQ ∗|


2kQ∗

fj(yj) dyj

≤ C

M(f⃗ )(x) + Mϱ(f⃗ )(x)


.

Similarly,

II ≤ C

M(f⃗ )(x) + Mϱ(f⃗ )(x)


.

This finishes the proof of Proposition 4.1. �

Proof of Proposition 4.2. It suffices to consider the operator:

Tb(f⃗ )(x) := b(x)T (f1, . . . , fm)(x) − T (bf1, . . . , fm)(x)

for fixed b ∈ BMO(Rn). Note that for any constant λ we have

Tb(f⃗ )(x) = (b(x) − λ)T (f1, . . . , fm)(x) − T ((b − λ)f1, . . . , fm)(x).

Fix x. For any cube Q centered at x and a constant c determined later, we estimate
1

|Q |


Q

|Tb(f⃗ )(z)|δ − |c|δ
 dz1/δ

≤


1

|Q |


Q

Tb(f⃗ )(z) − c
δ dz1/δ

≤


C

|Q |


Q

(b(z) − λ)T (f⃗ )(z)
δ dz1/δ

+


C

|Q |


Q

|T ((b − λ)f1, . . . , fm) (z) − c|δ dz
1/δ

:= I + II.

Let Q ∗
= (8

√
n + 4)Q and λ = bQ∗ . Note that 0 < δ < ε. By John–Nirenberg’s inequality and the Hölder inequality, it

follows from the proof of Theorem 4.3 of [1] that

I ≤ C∥b∥BMOMε


T (f⃗ )


(x).
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To estimate II, we split each fj as fj = f 0j + f ∞

j , where f 0j = fχQ∗ and f ∞

j = f − f 0j for j = 1, . . . ,m. Then

m
j=1

fj(yj) =


{α1,...,αm}∈{0,∞}

f α1
1 (y1) · · · f αm

m (ym)

=

m
j=1

f 0j (yj) +


′ f α1

1 (y1) · · · f αm
m (ym),

where each term in


′ contains at least one αj ≠ 0.
Take c =


′cα1,...,αm with cα1,...,αm = T ((b − λ)f α1

1 , f α2
2 , . . . , f αm

m )(x). We have

II ≤ C


1

|Q |


Q

T (b − λ)f 01 , f 02 , . . . , f 0m

(z)
δ dz1/δ

+


′


1

|Q |


Q

T (b − λ)f α1
1 , f α2

2 , . . . , f αm
m


(z) − cα1,...,αm

δ dz1/δ


:= II0,...,0 +


′IIα1,...,αm .

In the proof of Theorem 4.3 of [1], Anh and Duong actually showed that

II0,...,0 and II∞,...,∞ ≤ C∥b∥BMO ML(log L)(f⃗ )(x).

It remains to estimate the terms IIα1,...,αm with αj1 = · · · = αjl for some ϱ = {j1, . . . , jl} ⊂ ϱ0 and 1 ≤ l < m. We consider
only the case 1 ∈ ϱ since the other one follows in an analogous way. By (1.17) in Assumption (H2), we get

IIα1,...,αm =


1

|Q |


Q

T (b − λ)f α1
1 , . . . , f αm

m


(z) − T


(b − λ)f α1

1 , . . . , f αm
m


(x)
δ dz1/δ

≤
1

|Q |


Q

T (b − λ)f α1
1 , . . . , f αm

m


(z) − T


(b − λ)f α1

1 , . . . , f αm
m


(x)
 dz

≤ C
1

|Q |


Q


Q∗

|(b(y1) − λ)f1(y1)| dy1


j∈ϱ\{1}


Q∗

fj(yj) dyj

×




(Rn\Q∗)m−l

tϵ/s


j∈ϱ0\ϱ

fj(yj) dyj 
j∈ϱ0\ϱ

|z − yj|

mn+ϵ
dz +


(Rn\Q∗)m−l


j∈ϱ0\ϱ

fj(yj) dyj 
j∈ϱ0\ϱ

|z − yj|

mn dz


≤ C∥b∥BMO ∥f1∥L(log L),Q∗ |Q ∗

|


j∈ϱ\{1}


Q∗

fj(yj) dyj
×


∞
k=1

1
2kϵ

1
|2kQ ∗|m


j∈ϱ0\ϱ


2kQ∗

fj(yj) dyj + ∞
k=1

1
|2kQ ∗|m


j∈ϱ0\ϱ


2kQ∗

fj(yj) dyj

≤ C∥b∥BMO


∞
k=1

1
2kϵ

m
j=1

∥fj∥L(log L),2kQ∗ +

∞
k=1

1
2knl


j∈ϱ

fjL(log L),Q∗


j∈ϱ0\ϱ

fjL(log L),2kQ∗


≤ C∥b∥BMO


ML(log L)(f⃗ )(x) + Mϱ,L(log L)(f⃗ )(x)


.

This finishes the proof of Proposition 4.2. �

Proposition 4.3. Let T be as in Theorem 1.1 and TΣ b⃗ be the corresponding m-linear commutator with b⃗ ∈ BMOm, ϱ0 =

{1, . . . ,m}. Suppose that w is an A∞ weight, 0 < p < ∞. Then there exists a constant C > 0, depending on the A∞ constant of
w, such that

Rn

TΣ b⃗(f⃗ )(x)
p w(x)dx ≤ C


m
i=1

∥bi∥BMO

p
Rn


ML(log L)(f⃗ )(x)

p
w(x)dx +


∅≠ϱ ϱ0


Rn


Mϱ,L(log L)(f⃗ )(x)

p
w(x)dx


(4.4)

for all bounded measurable vector functions f⃗ = (f1, . . . , fm) with compact supports.
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Proof. For simplicity, we may assume that
m

i=1 ∥bi∥BMO = 1. Using Propositions 4.1 and 4.2 and the Fefferman–Stein
inequality (2.5), with 0 < δ < ε < 1/m, we haveTΣ b⃗(f⃗ )


Lp(w)

≤

Mδ


TΣ b⃗(f⃗ )


Lp(w)

≤

M♯
δ


TΣ b⃗(f⃗ )


Lp(w)

≤ C

Mε


T (f⃗ )


Lp(w)

+

ML(log L)(f⃗ )

Lp(w)

+


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )

Lp(w)



≤ C

M♯
ε


T (f⃗ )


Lp(w)

+

ML(log L)(f⃗ )

Lp(w)

+


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )

Lp(w)



≤ C

M(f⃗ )

Lp(w)

+


∅≠ϱ ϱ0

Mϱ(f⃗ )

Lp(w)

+

ML(log L)(f⃗ )

Lp(w)

+


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )

Lp(w)



≤ C

ML(log L)(f⃗ )

Lp(w)

+


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )

Lp(w)


.

We remark that to apply the inequality (2.5), in the above computations, we need to check that ∥Mδ(TΣ b⃗(f⃗ ))∥Lp(w) and
∥Mε(T (f⃗ ))∥Lp(w) are finite when the terms ∥ML(log L)(f⃗ )∥Lp(w) and ∥Mϱ,L(log L)∥ are finite. This task is not difficult. We omit
the details as it is actually shown in the proof of Theorem 4.4 in [1]. �

Proof of Theorem 1.1. By Lemma 2.1, w⃗ ∈ AP⃗ implies that vw⃗ ∈ A∞. Therefore, Proposition 4.3 shows that
Rn

TΣ b⃗(f⃗ )(x)
p vw⃗(x)dx ≤ C


m
i=1

∥bi∥BMO

p
Rn


ML(log L)(f⃗ )(x)

p
vw⃗(x)dx

+


∅≠ϱ ϱ0


Rn


Mϱ,L(log L)(f⃗ )(x)

p
vw⃗(x)dx


. (4.5)

Then (1.18) follows from (4.5) and Corollary 3.1. Theorem 1.1 is proved. �

5. Proof of Theorem 1.2

As before, the proof of Theorem1.2 also rely on a point-wise estimate using sharpmaximal functions. For positive integers
m and j with 1 ≤ j ≤ m, let Cm

j , σ = {σ(1), . . . , σ (j)}, σ ′
= {1, . . . ,m} \ σ , b⃗σ and TΠ b⃗σ

be as in Section 1. Then we have
the following proposition:

Proposition 5.1. Suppose that T is an m-linear operator in GCZO(A, s, η, ϵ) and satisfies the assumptions in Theorem 1.2, and
TΠ b⃗ is the corresponding iterated commutator with b⃗ ∈ BMOm. Let 0 < δ < min{ε, 1/m}, r > 1 and ϱ0 = {1, . . . ,m}. Then,
there exists a constant C > 0, depending on δ and ε, such that

M♯
δ (TΠ b⃗(f⃗ ))(x) ≤ C

m
i=1

∥bi∥BMO


Mε


T (f⃗ )


(x) + ML(log L)(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )(x)



+ C
m−1
j=1


σ∈Cm

j

j
i=1

∥bσ(i)∥BMOMε


TΠ b⃗σ ′

(f⃗ )

(x) (5.1)

for all bounded measurable vector functions f⃗ = (f1, . . . , fm) with compact supports.

Proof. The arguments in the proof of Theorem 3.1 in [5] can be followed with some modifications. The way to interpret
(5.1) is

M♯
δ (TΠ b⃗(f⃗ ))(x) ≤ C

m
i=1

∥bi∥BMO


ML(log L)(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )(x)


+ ‘‘lower order terms’’.

For simplicity in the exposition, we only present the case m = 2. The general case is only notationally more complicated
and can be obtained with a similarly procedure. Hence, we will limit ourselves to establish the following (5.2).



900 S. Chen, H. Wu / J. Math. Anal. Appl. 396 (2012) 888–903

For b1, b2 ∈ BMO we will show that

M♯
δ (TΠ b⃗(f⃗ ))(x) ≤ C∥b1∥BMO∥b2∥BMO(Mε(T (f⃗ ))(x) + ML(log L)(f⃗ )(x) + M{1},L(log L)(f⃗ )(x)

+ M{2},L(log L)(f⃗ )(x)) + C (∥b2∥BMOMε(T 1
b1(f⃗ ))(x) + ∥b1∥BMOMε(T 2

b2(f⃗ ))(x)). (5.2)

For any constants λ1 and λ2, write

TΠ b⃗(f⃗ )(x) = (b1(x) − λ1)(b2(x) − λ2)T (f1, f2)(x) − (b1(x) − λ1)T (f1, (b2 − λ2)f2)(x)
− (b2(x) − λ2)T ((b1 − λ1)f1, f2)(x) + T ((b1 − λ1)f1, (b2 − λ2)f2)(x)

= −(b1(x) − λ1)(b2(x) − λ2)T (f1, f2)(x) + (b1(x) − λ1)T 2
b2−λ2

(f1, f2)(x)

+ (b2(x) − λ2)T 1
b1−λ1

(f1, f2)(x) + T ((b1 − λ1)f1, (b2 − λ2)f2)(x).

Also, if we fix x ∈ Rn, a cube Q centered at x and a constant c , then for 0 < δ < 1/2, we have
1

|Q |


Q

TΠ b⃗(f⃗ )(z)
δ − |c|δ

 dz1/δ

≤


1

|Q |


Q

TΠ b⃗(f⃗ )(z) − c
δ dz1/δ

≤


C

|Q |


Q

|(b1(z) − λ1)(b2(z) − λ2)T (f1, f2)(z)|δ dz
1/δ

+


C

|Q |


Q

(b1(z) − λ1)T 2
b2−λ2

(f1, f2)(z)
δ dz1/δ

+


C

|Q |


Q

(b2(z) − λ2)T 1
b1−λ1

(f1, f2)(z)
δ dz1/δ

+


C

|Q |


Q

|T ((b1 − λ1)f1, (b2 − λ2)f2)(z) − c|δ dz
1/δ

:= I + II + III + IV.

We analyze each term separately selecting appropriate constants. Let Q ∗
= (8

√
n + 4)Q and let λj = (bj)Q∗ be the average

of bj on Q ∗, j = 1, 2. Following the arguments used in the proof of Theorem 3.1 of [5], by the Hölder inequality and the
definition ofMε , it is easy to check that

I ≤ C∥b1∥BMO∥b2∥BMOMε(T (f1, f2))(x),
II ≤ C∥b1∥BMOMε(T 2

b2−λ2
(f1, f2))(x) = C∥b1∥BMOMε(T 2

b2(f1, f2))(x),

and

III ≤ C∥b2∥BMOMε(T 1
b1−λ1

(f1, f2))(x) = C∥b2∥BMOMε(T 1
b1(f1, f2))(x).

It remains to estimate the last term IV. We split each fi as fi = f 0i + f ∞

i where f 0i = fiχQ∗ and f ∞

i = fi − f 0i . Let

c =

3
j=1

cj,

where

c1 = T ((b1 − λ1)f 01 , (b2 − λ2)f ∞

2 )(x),

c2 = T ((b1 − λ1)f ∞

1 , (b2 − λ2)f 02 )(x),
c3 = T ((b1 − λ1)f ∞

1 , (b2 − λ2)f ∞

2 )(x).

Then,

IV =


C

|Q |


Q

|T ((b1 − λ1)f1, (b2 − λ2)f2)(z) − c|δdz
1/δ

≤


C

|Q |


Q

|T ((b1 − λ1)f 01 , (b2 − λ2)f 02 )(z)|δdz
1/δ

+


C

|Q |


Q

|T ((b1 − λ1)f 01 , (b2 − λ2)f ∞

2 )(z) − c1|δdz
1/δ

+


C

|Q |


Q

|T ((b1 − λ1)f ∞

1 , (b2 − λ2)f 02 )(z) − c2|δdz
1/δ
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+


C

|Q |


Q

|T ((b1 − λ1)f ∞

1 , (b2 − λ2)f ∞

2 )(z) − c3|δdz
1/δ

:= IV1 + IV2 + IV3 + IV4.

Note that δ < 1/2, by the Kolmogorov inequality and the boundedness of T , we easily obtain

IV1 ≤ C∥b1∥BMO∥b2∥BMOML(log L)(f1, f2)(x).

Since IV2 and IV3 are symmetric, we consider for example IV2, and estimateT ((b1 − λ1)f 01 , (b2 − λ2)f ∞

2 )(z) − T ((b1 − λ1)f 01 , (b2 − λ2)f ∞

2 )(x)


≤


Q∗×(Rn\Q∗)


|K(z, y1, y2) − K 0

t (z, y1, y2)| + |K 0
t (z, y1, y2) − K(x, y1, y2)|


× |(b1(y1) − λ1)f 01 (y1)(b2(y2) − λ2)f ∞

2 (y2)|dy1dy2
:= V.

Since z ∈ Q , and y2 ∈ Rn
\ (8

√
n + 4)Q , taking t = (2

√
n l(Q ))s, we have

|y2 − z| > (4
√
n + 1)l(Q ) > 2t1/s,

and

|z − x| ≤
√
n l(Q ) ≤

1
2
t1/s.

By (1.17) of Assumption (H2), we obtain

V ≤ C

Q∗

|(b1(y1) − λ1)f1(y1)|dy1


(Rn\Q∗)

tε/s|(b2(y2) − λ2)f2(y2)|
|z − y2|2n+ε

dy2 +


(Rn\Q∗)

|(b2(y2) − λ2)f2(y2)|
|z − y2|2n

dy2


≤ C


Q∗

|(b1(y1) − λ1)f1(y1)|dy1


∞
k=0

|Q ∗
|
ε/n

(2k|Q ∗|1/n)2n+ε


2k+1Q∗

|(b2(y2) − λ2)f2(y2)|dy2

+

∞
k=0

1
(2k|Q ∗|1/n)2n


2k+1Q∗

|(b2(y2) − λ2)f2(y2)|dy2



≤ C∥b1∥BMO ∥f1∥L(log L),Q∗ |Q ∗
|


∞
k=1

k
2kϵ

∥b2∥BMO

|2kQ ∗|
∥f2∥L(log L),2kQ∗ +

∞
k=1

1
2k|Q ∗|

k∥b2∥BMO ∥f2∥L(log L),2kQ∗


≤ C∥b1∥BMO∥b2∥BMO


ML(log L)(f1, f2)(x) + M{1},L(log L)(f1, f2)(x)


,

which implies that

IV2 ≤ C∥b1∥BMO∥b2∥BMO

ML(log L)(f1, f2)(x) + M{1},L(log L)(f1, f2)(x)


.

Similarly,

IV3 ≤ C∥b1∥BMO∥b2∥BMO

ML(log L)(f1, f2)(x) + M{2},L(log L)(f1, f2)(x)


.

Finally, we estimate the term IV4 by consideringT ((b1 − λ1)f ∞

1 , (b2 − λ2)f ∞

2 )(z) − T ((b1 − λ1)f ∞

1 , (b2 − λ2)f ∞

2 )(x)


≤


(Rn\Q∗)2

K(z, y1, y2) − K 0
t (z, y1, y2)

+ K 0
t (z, y1, y2) − K(x, y1, y2)


×
(b1(y1) − λ1)f ∞

1 (y1)(b2(y2) − λ2)f ∞

2 (y2)
 dy1dy2

:= VI.

Since z ∈ Q , and y1, y2 ∈ Rn
\ (8

√
n + 4)Q , we have

|yj − z| > (4
√
n + 1)l(Q ) > 2t1/s, for j = 1, 2,

and

|z − x| ≤
√
n l(Q ) ≤

1
2
t1/s.
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Hence φ(
|yj−z|
t1/s

) = 0 for j = 1, 2. By (1.17) again, we obtain

VI ≤ C


(Rn\Q∗)2

Atε/s

(|z − y1| + |z − y2|)2n+ε
|(b1(y1) − λ1)f1(y1)(b2(y2) − λ2)f2(y2)| dy1dy2

≤ C
∞
k=0

|Q ∗
|
ε/n

(2k|Q ∗|1/n)2n+ε


(2k+1Q∗)2

|(b1(y1) − λ1)f1(y1)(b2(y2) − λ2)f2(y2)| dy1dy2

≤ C∥b1∥BMO∥b2∥BMO

∞
k=1

k2

2kϵ
∥f1∥L(log L),2kQ∗ ∥f2∥L(log L),2kQ∗

≤ C∥b1∥BMO∥b2∥BMOML(log L)(f1, f2)(x).

This finishes the proof of Proposition 5.1. �

Remark 5.1. More generally, by the same arguments as in Proposition 5.1, we can obtain analogous estimates to (5.1) for
j-iterated commutators involving j < m functions in BMO(Rn). That is estimates of the form

M♯
δ


TΠ b⃗σ

(f⃗ )

(x) ≤ C

j
k=1

∥bσ(k)∥BMO


ML(log L)(f⃗ )(x) +


∅≠ϱ ϱ0

Mϱ,L(log L)(f⃗ )(x)


+ ‘‘lower order terms’’ (5.3)

for σ = (σ (1), . . . , σ (j)), where the lower order terms are
ς σ


k∈ς ′

∥bk∥BMOMε


TΠ b⃗ς

(f⃗ )


(x),

where ς ′
= σ \ ς .

Proposition 5.2. Assume that T is a multilinear operator in m − GCZO(A, s, η, ϵ) and satisfies the assumptions in Theorem 1.2.
Let w be an A∞ weight, 0 < p < ∞ and b⃗ ∈ BMOm, ϱ0 = {1, . . . ,m}. Then, there exists a constant Cw > 0 (independent of b⃗)
such that

Rn

TΠ b⃗(f⃗ )(x)
p w(x)dx ≤ Cw

m
j=1

∥bj∥
p
BMO


Rn

ML(log L)(f⃗ )(x)pw(x)dx +


∅≠ϱ ϱ0


Rn

Mϱ,L(log L)(f⃗ )(x)pw(x)dx


,

for all bounded measurable vector functions f⃗ = (f1, . . . , fm) with compact supports.

Proof. Our proof follows the same outline as the proof of Theorem 3.2 in [5]. We briefly indicate it in the case m = 2. As
the reader will immediately notice, an iterative procedure using (5.1) and (5.3) can be followed to obtain the general case.
By the same arguments as in [4, p. 1254] (also see [5, p. 14]), we can use the Fefferman–Stein inequality and getTΠ b⃗(f⃗ )


Lp(w)

≤

Mδ(TΠ b⃗(f⃗ ))

Lp(w)

≤ C
M♯

δ (TΠ b⃗(f⃗ ))

Lp(w)

.

Invoking (5.2) and the Fefferman–Stein inequality again,M♯
δ (TΠ b⃗(f⃗ ))


Lp(w)

≤ C∥b1∥BMO∥b2∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)

+

Mε(T (f⃗ ))

Lp(w)


+ C∥b2∥BMO

Mε(T 1
b1(f⃗ ))


Lp(w)

+ C∥b1∥BMO

Mε(T 2
b2(f⃗ ))


Lp(w)

≤ C∥b1∥BMO∥b2∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)

+

M♯
ε (T (f⃗ ))


Lp(w)


+ C∥b2∥BMO

M♯
ε (T

1
b1(f⃗ ))


Lp(w)

+ C∥b1∥BMO

M♯
ε (T

2
b2(f⃗ ))


Lp(w)

.

Taking ε small enough and using the results in Propositions 4.1 and 4.3, we haveM♯
ε (T (f⃗ ))


Lp(w)

≤ C

M(f⃗ )

Lp(w)

+

2
j=1

M{j}(f⃗ )

Lp(w)



≤ C

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)


;
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and for ε < ε′,Mε(T 1
b1(f⃗ ))


Lp(w)

≤ C∥b1∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)

+

Mε′(T (f⃗ ))

Lp(w)



≤ C∥b1∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)

+

M♯

ε′(T (f⃗ ))

Lp(w)



≤ C∥b1∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)


.

Similarly,Mε(T 2
b2(f⃗ ))


Lp(w)

≤ C∥b2∥BMO

ML(log L)(f⃗ )

Lp(w)

+

2
j=1

M{j},L(log L)(f⃗ )

Lp(w)


.

The desired inequality now follows. �

Proof of Theorem 1.2. By Lemma 2.1, w⃗ ∈ AP⃗ implies that vw⃗ ∈ A∞. Therefore, Proposition 5.2 tells us that
Rn

TΠ b⃗(f⃗ )(x)
p vw⃗(x)dx ≤ C

m
j=1

∥bj∥
p
BMO


Rn

ML(log L)(f⃗ )(x)pvw⃗(x)dx +


∅≠ϱ ϱ0


Rn

Mϱ,L(log L)(f⃗ )(x)pvw⃗(x)dx


.

This together with Proposition 3.1 and Corollary 3.1 leads to the inequality (1.19) and completes the proof of
Theorem 1.2. �
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