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1. INTRODUCTION 

This paper deals with combinatorial properties of multidimensional 
stochastic matrices. Our main tool is a covering technique, developed earlier 
[l] for the purpose of dealing with Latin squares, doubly stochastic 
matrices and multidimensional (0,l) matrices. In its original form, this 
technique applies to covering with lines only, but the aspects required here 
easily generalize to covering with e-flats. The results are related to a problem 
of Jurkat and Ryser [3], of finding all extremal matrices within a multidimen- 
sional stochastic class. The purpose of our paper is to illuminate this 
fundamental problem from a new angle. 

We assume a familiarity with the relevant (two-dimensional) theorems of 
Kanig, Hall, and Birkhoff. Good introductions to these can be found in 
Ryser [6], M. Hall [4] and elsewhere. For multidimensional matrices, Kiinig’s 
theorem is not true in the sense, that the covering number (of degree e) does 
not necessarily equal to the term rank (of degree e) of the matrix. This spoils 
the possibility of trivial generalizations of important two-dimensional 
theorems. Looking at the multidimensional case however, one gets a deeper 
insight into the two-dimensional K&rig theory. 

In Section 2.1 we define patterns as sets of lattice points, and we list some 
basic geometric concepts, which are natural extensions of the familiar two- 
dimensional ones. In Section 2.2 we introduce crosspoints, restricted patterns, 
and critical patterns. These concepts form the basis of our entire discussion 
about stochastic matrices. 

Paragraph 3 deals with matrices. After defining (multidimensional) matrices 
we associate patterns with them, and extend some familiar two-dimensional 
concepts to higher dimensions again. In Section 3.2 we introduce stochastic 
matrices, and prove that stochastic matrices have restricted patterns and that 
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only extremal stochastic matrices can have critical patterns. A conjecture is 
stated, namely that every nonempty restricted pattern is a stochastic pattern. 
This is true for the two-dimensional case. 

In the final paragraph we give illustrative examples. 

2. PATTERNS 

2.1 Bask geometric concepts 

Let Jdfi be the set of all d tuples (i1 , is ,..., id) in which the components 
are positive integers between 1 and n inclusive. In the rest of this paper we 
assume that d and n are fixed values, and exclude the trivial cases when 
d = 1 or n = 1. An element of Jdn is called a point or a place. The subsets of 
Jdn are called patterns. If in (ii , iz ,... , id) we keep d - e components fixed 
and let e components take up all the values from 1 to n, then the pattern (set) 
of the ne points so obtained is called an e-flat. The only d flat is Jdn , the 
(d - I)-flats are the hyperplanes, the l-flats are the lines and the O-flat is the 
empty set. In the future we assume that e is some fixed integer between 1 and 
d - 1. Two e-flats are parallel if they have common variable components. 
Two parallel e-flats are of course either identical or disjoint. A set of rid-e 
distinct parallel e-flats is called a direction. The set of all e-flats can be 
partitioned into exactly I’:) directions. Let S be a pattern. Then a set L of 
e-flats is called a k-cover of degree e of S whenever 1 L 1 = k and S C UxEL X. 
(Remark. We often suppress the expression “of degree e” but its presence in 
the interpretation of the text is always assumed.) If L is a c-cover of S and no 
k-cover of S exists with k < c then we say that L is a minimum cover (of degree 
e) of S and that c is the covering number (of degree e) of S. A direction is of 
course an t+-cover of any pattern. Hence, every pattern has at least one 
minimum cover and a unique covering number. Since Jdn has n* points, 
at least tFe e-flats are required to cover Jd,, . Hence, every direction is a 
minimum cover of Jan and the covering number of Jan is rid-e. 

We say that the points x and y are independent (of degree e) if no e-flat 
contains them both. The points xi , x2 ,..., x, are said to be independent if 
they are pairwise independent. We say that the rank (of degree e) of a pattern S 
is r whenever r is the largest number such that S has a subset of I independent 
points. It is an immediate consequence of the definitions that the rank of a 
pattern can not exceed its covering number. If d = 2 (and necessarily 
e = 1) the well-known K6nig theorem says that the rank and covering 
number of a pattern are equal. This is not true in general when d > 2. 
A permutation pattern of degree e (if it exists) is a pattern of nd-# independent 
points. If a permutation pattern P is a subset of a pattern S we say that P is a 
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support of S and the points of P are supporting points of S. It is an immediate 
consequence of the definitions that S has a support if and only if the rank of S 
is nd-e. 

2.2 Restricted patterns 

We will now focus our attention on rid-e-covers. The reason for this will 
become apparent later. In the future the noun cover (without prefix and 
without the adjective minimum) will stand for an rid-e-cover. We say that the 
point x E Jdn is a crosspoint (of degree e) with respect to S if there exists a cover 
C of S and two distinct e-flats in this cover such that both contain the point x. 
We denote by Sx the set of all crosspoints with respect to S, and say that S 
is restricted if S r\ Sx = ia. 

LEMMA 2.1. The union of restricted patterns is restricted. 

Proof. Let S be the union of the restricted patterns S, , S, ,..., S, . 
Then any cover of S is a cover of each of the Si . If Sx = IZ( then S is of 
course restricted and there is nothing left to prove. If Sx # ,D let x E Sx be 
an arbitrary crosspoint with respect to S. Then also x E Six (i = 1, 2,..., k) 
since every cover of S is also a cover of Si . But then x $ Si (i = 1, 2,..., K) 
implies x $ S and S is restricted. 

We remark here that if S is a two-dimensional pattern then S - Sx is 
restricted. This is not necessarily true when d > 2. In the next paragraph 
we introduce multidimensional matrices and their patterns and prove that 
stochastic matrices have restricted patterns. This means that we can learn 
about combinatorial properties of multidimensional stochastic matrices by 
studying restricted patterns. The concepts of crosspoints and restricted 
patterns (the latter with the name “reduced set”) were originally introduced 
[l] in an attempt to isolate the supporting points of a pattern. It is 
clear that all the supporting points of S must lie withing S - Sx. If S - Sx = 0 
then S has no support. If S is a planar pattern (d = 2) then S - Sx is 
restricted and the set of supporting points of S is precisely S - Sx. This is 
not true in general when d > 2. In this case we can define S, = S and 
Sg = Si-1 - LY~“_~ for i = 1,2 ,..., VI where m is the first positive integer such 
that S, = S, - Smx. It is a simple matter to show that the supporting 
points of S are those of S, . It is not true in general however that S,,, is the 
set of supporting points of S. Since S,,, is restricted it seems natural to call S, 
the restriction of S. This definition however is not very appealing because it 
is given with the help of an algorithm. A more compact and far more powerful 
approach is to define the restriction of S as the union of its restricted subsets. 
We remark that the two definitions are equivalent but will not indulge 
ourselves in this matter any further here, because it is beyond the scope of this 
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paper. Combinatorial properties of restricted patterns form the subject of a 
forthcoming paper [2] and of Chapter 5 of [l]. 

We say that a nonempty restricted pattern S is critical if S has no proper 
restricted subsets apart from the empty set. In view of Lemma 2.1 the union 
of critical patterns is restricted. When d = 2 the critical patterns are precisely 
the permutation patterns and every restricted pattern is the union of critical 

(i.e., permutation) patterns. When d > 2 there are other critical patterns 
besides permutation patterns and we do not know if there exists a nonempty 
restricted pattern which is not the union of critical patterns. Theorem 3.5 
links this problem to a problem regarding patterns of stochastic matrices. 

The following theorem concerns the number of points in a critical pattern. 

THEOREM 2.1. If S is a critical pattern then either S has rank nd+ and S 
is apermutationpattern, or else the rank of S is less than r+ and 1 S j > T+. 

Proof. Since the covering number of S is rid-e we have 1 S 1 3 r@. 
Let T be an arbitrary nd-e-subset of S. Then if T is a permutation pattern it is 
restricted and T = S. On the other hand if T is not a permutation pattern 
then there exist two distinct points x E T, y  E T in a common e-flat. It follows 
that the covering number of T is at most r@ - 1. Hence, T # S and 
1 S I :> I T 1 = r@. 

3. MATRICES 

3.1 Multidimensional cubic matrices 

We de&e a matrix of order n and dimension d as a function M : Jdn -+ F 
where F is the field of real numbers. We say that M(x) is the entry in M at 
the place or point x. A point x is a nonzero place of M whenever M(x) # 0. 
The pattern of M is the set of nonzero places of M. Every pattern (i.e., 
subset of Jdn) is the pattern of its own characteristic function. The charac- 
teristic functions are precisely the (0,l) matrices. 

If  M is a matrix, the term rank of M is the rank of the pattern M, and the 
covering number of M is the covering number of the pattern of M. Other 

concepts defined earlier in connection with patterns can be freely used in 
connection with matrices if there is no danger of ambiguity. 

3.2 Stochastic matrices 

We say that M is stochastic of degree e whenever M(x) > 0 for all x E Jdn 
and CZES M(x) = 1 for all e-flats S. A stochastic matrix M is a permutation 
matrix of degree e whenever M has exactly one nonzero entry in each e-flat. 
It follows from the definition that permutation matrices are (0,l) matrices 
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having permutation patterns. We say that a pattern is stochastic if it is the 
pattern of a stochastic matrix. Stochastic matrices of dimension 2 (and 
necessarily of degree 1) are the doubly stochastic matrices. We state without 
proof the next theorem, which characterizes patterns of doubly stoschastic 
matrices. This characterization was obtained [l, p. 6.21 independently 
from the (diflerent) characterizations of Perfect and Mirsky [5]. 

THEOREM 3.1. A two-dimensional pattern S is the pattern of a doubly 
stochastic matrix if and only if S is nonempty and restricted. 

For completeness we also state the characterizations of Perfect and Mirsky 
here. 

THEOREM 3.2. (Perfect and Mirsky). The following statements are 
equivalent. 

(i) S is the pattern of a doubly stochastic matrix. 

(ii) The (0,l) matrix M having pattern S can not be brought by permutation 
of rows and columns to the form 

A 0 
!! II B C 

whereAisoforderkwith0 <k < n,andB # 0. 

(iii) The pattern S is nonempty and every point of S is a supporting point. 

In the Perfect-Mirsky theorem both (ii) and (iii) characterize patterns of 
doubly stochastic matrices. The multidimensional analogue of (iii) is not 
true and the statement of (ii) has no immediate multidimensional analogue. 
Neither has the alternative statement given in a footnote of [5]. As for 
Theorem 3.1, we do not know whether its multidimensional analogue is true 
or false. We can only prove the following: 

THEOREM 3.3. Stochastic patterns are nonempty restricted patterns. 

Proof. Let M be a stochastic matrix with pattern S. Let D be a direction 
(i.e., a set of rid-e parallel e-flats) and let C be an arbitrary cover of S. Then 

rid-e = C C M(x) = 1 M(x) < 1 c M(x) = c 1 = nd-+ (1) 
XED xeX SGJdti xec o&r xec 

We must have equality everywhere in (1) but this is possible only if no 
positive place appears in two e-flats of C. But this applies to every cover C, 
and we conclude that no crosspoint belongs to S and the theorem is proved. 

We conjecture that the converse of Theorem 3.3 is also true. As a first step 
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towards a proof, one should perhaps try to prove Theorem 3.1 without using 
KBnig’s theorem. 

The next theorem is about extremal stochastic matrices. A stochastic 
matrix M is extremal if for 0 < 01 < 1 and A, B stochastic matrices the 
equality M = OVA + (1 - OI)B holds only when A = B = M. The extremal 
doubly stochastic matrices are the permutation matrices. When d > 2 the 
permutation matrices (if they exist) are extremal but there are some other 
extremal matrices besides. 

THEOREM 3.4. If the pattern of a stochastic matrix M is critical then M is 
extremal. 

Proof. Let M be a stochastic matrix with critical pattern P such that 
M = clA + (1 - CX)B where A and B are stochastic matrices and 0 < (Y < 1. 
Let /3 be the largest entry in B - A. All we need to show is that /3 = 0. 
Assuming that fl > 0 we define C = /!-‘(A - B + BB). Then C is stochastic 
with a (restricted) pattern which is a proper subset of P. This is of course a 
contradiction and the theorem is proved. 

In the proof of the next two theorems we need the following: 

LEMMA 3.1.* Let A and B be extremul stochastic matrices with patterns 
S and T, respectively. Then T C S if, and only if, A = B. 

Proof. If A = B, then of course T C S trivially. Let us now consider the 
case when T C S. We remark that if M is an arbitrary nonnegative matrix 
such that M(x) > B(x) for all x E T, and M # B then 

c M(x) > c B(x) = nd+ 
~EJd?I ZSJd, 

and M cannot be stochastic. Hence, if we let 01 = min,,r A(x)/B(x) then 
0 < 01 < 1, and to prove the Lemma it suffices to show that OL = 1. Let 
us assume on the contrary that 0 < OL < 1, and let C = (1 - or)-‘(A - OrB). 
Then C is stochastic, A = B + (1 - a)C and C # A (C(y) = 0 # A(y) 
whenever = A(y)/B(y)). Th is contradicts the extremality of A and the proof 
is concluded. 

We remark that if our conjecture is correct then Lemma 3.1 implies the 
converse of Theorem 3.4. The next theorem gives another implication. 

* It was brought to our attention by the referee that our Lemma 3.1 is a trivial 
consequence of a corollary of Theorem 3.1 of Jurkat and Ryser (6, p. 200, line 8from 
bottom). Jurkat and Ryser stated and proved this theorem for matrices of dimension 
3 only, but indicated the possibility of generalization for higher dimensions (6, p. 210, 
line 6). 
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THEOREM 3.5. If the statement that “Every nonempty restricted pattern 
is a stochastic pattern” is true then the following statement is also true. “Every 
nonempty restricted pattern is the union of critical patterns.” 

Proof. Let us assume that every nonempty restricted pattern is a stochastic 
pattern. Let S be the pattern of the stochastic matrix A. Then A is the convex 
combination of some extremal matrices A,, A, ,..., A, with patterns 

s, 9 s, y Sk * But then A = &, qAi, 01~ > 0 i = 1,2 ,..., K implies 
S = Ui=r Si . It follows from our remark after the proof of Lemma 3.1 that 
& 7 s, ,“., SI, are critical, and the proof is concluded. 

We remark here that if our conjecture is correct then the minimal types of 
Jurkat and Ryser [3] are precisely the characteristic functions of our critical 
patterns. We would like to emphasize however that while the definition of 
a minimal type depends on the definition of a stochastic class and on the 
existence of at least one stochastic matrix with the type in question, critical 
patterns are defined by simple covering criteria which do not depend for 
instance on the addition of real numbers. 

Our final theorem is analogous to Theorem 2.1. 

THEOREM 3.6. If M is an extremal stochastic matrix then either M is a 
permutation matrix or else the term rank of M is less than rid-e and M has more 
than n-e positive entries. 

Proof. Let S be the pattern of M. Then S has a critical pattern T as a 
subset. If T is a permutation pattern then its characteristic function is a 
permutation matrix and it follows from Lemma 3.1 that T = S and M is a 
permutation matrix. If T is not a permutation pattern then from Theorem 2.1 
rid-e < / T 1 < j S / and the proof is concluded. 

4. EXAMPLES 

The matrix A, of Fig. 1 is a three-dimensional line-stochastic (i.e., 
stochastic of degree 1) matrix for 0 < a: < l/2. The matrices A,, and A,,, 
are both extremal, but only A, is a permutation matrix. Observe, that A,,, 
has term rank 8 and covering number 9. 

The matrix B, in Fig. 2 is a three-dimensional plane-stochastic (i.e. 
stochastic of degree 2) matrix for 0 < ,9 < l/2. The matrices B, and BI,2 
are both extremal, but none of them is a permutation matrix. They both 
have term rank 1 and covering number 2. The matrix Bl,4 is the convex 
combination of B, and B,,, , but B,,, is also the convex combination of 
four permutation matrices. 
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