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This paper presents a number of constructions based on the
Heisenberg group that are relevant to the problem of radar wave-
form design. All of the constructions are based on the modifica-
tion of the Weil transform of a waveform. © 1995 Academic Press, Inc.

1. INTRODUCTION

It has been clear since the time of Woodward [21] that
the goal of producing radar waveforms having prescribed
ambiguity surfaces is not a realizable one. In his book,
Woodward [21] states, “... the form of [the ambiguity func-
tion] cannot be arbitrarily chosen. The precise nature of the
restrictions which must be placed on [ambiguity functions]
have not been fully investigated.” It is certainly the case
that the last forty years have produced a vast literature deal-
ing with the design of waveforms having specific ambiguity
properties. The literature on the so-called “thumbtack” am-
biguity surface, from Klauder [17] to Costas [11], provides
one with a good case study on the nature of the work in
this field up to now (see Blahut [9] or Cook and Bernfeld
[10]). A great deal of progress has been made via special
constructions, but no algorithm has been developed for syn-
thesizing a waveform with an arbitrary ambiguity surface.
One of the problems of course is that Woodward’s above
remark about the lack of knowledge concerning ambigu-
ity functions still holds true, albeit not to the same extent.
The set of all ambiguity functions, or “ambiguity space”,
is still a largely unexplored object (see Blahut [9] for more
on ambiguity functions).

In this paper we propose new uses for certain Heisen-

1063-5203/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

berg group structures to aid in the exploration of ambiguity
space. A good deal has been written on the applications
of Heisenberg group theory to the theory of radar signal
processing, but little of any practical engineering value has
come of it. Throughout the theoretical development, the
Weil transform has played a central role. Our goal is to re-
veal the modification of the Weil transform of a waveform
as a tool for investigation of ambiguity surfaces in a very
general and practical sense. We will define a waveform
modification procedure that will have many of the classical
radar construction as special cases.

The paper begins with a presentation of the group-theo-
retic setting in which we work, and this leads into a study of
the important properties of the Weil transform. We define
a discrete data structure called the “winding number data”
of the Weil transform of a waveform and discuss some of
its properties. We also detail the actual computation of this
data. The role played by this data is a fundamental one in
all of our investigations.

Three motivating examples using the winding number
data follow in the next section. The first two examples
present ways of constructing new waveforms from given
ones. In the first the effects in terms of ambiguity are posi-
tive but a price is paid in the form of increased bandwidth.
The second of the two examples produces a new waveform
having better time-bandwidth properties than the original,
but with some possible deleterious effects on the ambiguity
surface. However, these negative effects may not necessar-
ily hurt one in some particular applications. The last exam-
ple uses the construction of the previous example to build
waveforms for a multiresolution analysis of radar returns.
We construct an example of a signal which has components
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on different scales, enabling one to look at a radar scene on
more than one scale with the use of only one signal. This al-
lows one to greatly reduce the amount of computation done
by restricting the region where fine-scale calculations are
done based on a large-scale calculation already performed
on the same return.

2. MATHEMATICAL PRELIMINARIES

2.1. Heisenberg Group Theory

The essential tool in measuring the efficacy of a wave-
form s(t) for a particular radar task is the ambiguity func-
tion

9

st — T)e T s(r) dt
(N

Ar ) = (st — Pe 201 s(1)) = /

— 2

where s(?) is the complex conjugate of s(¢). Consider
S(r)(s()) =st —7) TER (2)
and
M(f)(s()) = e *'s() fEeR. (3)

Then 7 — S(7) is a representation of the reals R by a group
of unitary operators on the Hilbert space L2(R). Similarly,
f — M(f) is a representation of R by a group of unitary
operators on L?(R). Noticing that M(f)S(r)M(—f)S(—7) =
e 2"/7], where [ is the identity operator, we find that the
set of unitary operators {M(f)S(7)(e*™I)} is a group A".
We will call 4 the Heisenberg group, as an abstract group,
and the above representation of .4 the Dirac representation
2. It is one of the major results of classical harmonic
analysis that the Dirac representation is irreducible. This
means that there is no proper closed subspace V C L*(R)
such that DV = V for all D € &. 1t is easily verified
that *™I is the center of &. In representation theory the
function defined for n € A" by
P(n) = (D(n)s,s) s € L*R) ()
is called the matrix coefficient of the Dirac representation
determined by s. This shows that the ambiguity function
of s is essentially the matrix coefficients of the Dirac rep-
resentation of 4" determined by s.
Now, consider the Heisenberg group A" realized as
{(x,y,2)|x, y,z € R} with multiplication defined by

(i, i, 21002, ¥2, 22} = (x) + x2, Y1 + 2,21 + 22 +x1y2), (5)

together with its lattice subgroup defined by
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A function F invariant under the left action of the group
I will naturally define a function on the coset space I'/A".
The collection of all F € L*('/A") satisfying

F(x,y,z + u) = e"™F(x,y,2) o)

forms a Hilbert space H,. We note here one important
property of the space H,: any continuous function in H,
must take on the value zero. The space H, may be used to
define another representation of A", Given (n;,n3,n3) € A
and F € H,,

UnF = F((x,y,2)(n|, n2,n3)) 8

defines U(n) as a unitary operator from H, to H,. This de-
fines a representation of 4" on H, which is unitarily equiva-
lent to the Dirac representation. The operator ® providing
the unitary equivalence is called the Weil transform (see
[20]) and is defined by

O(f)x,y,2) = € Zf(x + a)e’miay 9)

a€l

for f a Schwartz function on R and (x,y,z) € 4. This
operator extends to a unitary operator from L*(R) to H,
which acts as an intertwining operator between our two
representations of A"

For the purpose of radar computations we may consider
the z variable in the definition of ©(f) to be equal to zero
and deal with ®(f) as a function of two variables. The
following properties are immediate from the definition:

O(f)x,y + 1) = O(f)x, y) (10

O)x + 1,y) = e 7™O(f)x, y). (11)

Thus, O(f) is nearly a doubly-periodic function and it is
determined by its values on the unit square. Note that the
operator O is essentially the same as Zak or the Weil-Brezin
transform common in the literature (see Folland [14]).

For more details of the mathematics, we refer the reader
to Folland [14] or Miller [18].

2.2. The Weil Transform and Radar Waveforms

Pulse trains, signals consisting of a sequence of nonover-
lapping copies of a fundamental signal or pulse, were intro-
duced as an attempt to achieve the goal of a thumbtack-like
ambiguity surface. Such signals were generalized to those
having the form
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N-l
s(t) = Z p(t — IT)e 2" /su!

1=0

(12)

where ; = 6,/T and {6y,...,6y_,} is a permutation of
{1,...,N}, T is the pulse repetition rate, and the support
of p(t) has length less than T. The irregular pattern of fre-
quencies introduced by the permutation, sometimes called
the firing sequence, accounts for the thumbtack-like ambi-
guity surface of the pulse train. Particularly successful such
permutations relying on combinatorial properties of arrays
were introduced by Costas [11].

These pulse trains are all special cases of signals of the
form

(13)

S(t) = Z Z Amng(t - n)elrriml

m n

where

ZZ |A"lll|2 < o op

m n

(14)

The formation of such signals from a basic signal g(z) has
a natural interpretation in terms of the representation the-
ory of the Heisenberg group. The Weil transform plays
the central role in this interpretation. Consider s(f) =
Yo S, Anng(t — n)e?™™ and let p(x, y) be the doubly-peri-
odic function with Fourier expansion given by

p(x, y) = Z Z Amn627ri(mx+ny)‘ (15)
m n

Then it is easy to show that O(s) and O(g) are related by
the equation

O(s) = plx, y)O(g). (16)

The formation of pulse trains in “signal space” thus amounts
to multiplication by doubly-periodic functions in “Weil
space” or H,. The significance of this for the problem
of creating a particular ambiguity surface is that we may
compute the ambiguity function of f directly from O(f) by
correlating O(f) with itself over the Heisenberg group:

1l
Af(r,v) = /; /0 O(f)x, YB(f)x + 7,y + v)e ™™ dxdy.
(17

Thus, cancellation properties of a signal s(r) which may
make it ideal for range and Doppler resolution are reflected
in B(s).
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2.3. The Winding Number Data and Its Discretization

In this section we will associate to any waveform a data
set derived from the information contained in the phase of
the Weil transform of the function.

We begin with a general definition. Let F be a continuous
function from R? to R” and let C be an isolated, simply
connected component of F~!'({0}). Let I' be a simple closed
curve which winds exactly once around C and zero times
around any other component of F~'({0}). The curve F(I')
may be continuously deformed into a curve I'y defined by

Tw() =N 1 e0,1), (18)
where N is a uniquely determined integer. The winding
number of F around C is defined to be this value N. It
merely measures the total change in the phase of F, mod-
ulo 27, around the boundary of a small neighborhood of a
component of F~'({0}).

Now we may define the winding number data for a given
waveform s(f). We consider the components of @(s)~'({0})
and associate with each component of the winding number
of @(s) about that component. The components together
with these winding numbers constitutes the winding number
data for s.

The computation of winding numbers for the Weil trans-
form of a function may be restricted to the unit square by
equations (10) and (11). When we are dealing with the
Weil transform of a waveform in practice we are using dis-
crete data and we must take some care in measuring the
phase change of the function. We proceed in a direct and
computationally simple manner. Consider the unit square,
[1,0] X [0, 1], and divide the square into and array of M XM
equal size boxes. To each oriented edge of each box we as-
sociate either 0, 1, or —1 as follows. Let F be the Weil
transform of f and let v, and v, be consecutive vertices
of one edge of a box. We want to measure the change in
phase of F along the edge connecting v| and v;. If we let
F(v;) = r;je*™ for j = 1,2, the change in phase modulo =
is then 26, — 26, = A,,. The integer N, assigned to the
edge is then given by

|
Ny = 0
-1

After this computation is done, the winding number for a
square in the grid with vertices v, v2,v3, and v4 is given
by N2y + N3 + Na3 + Ny 4. Thus, given a Weil transform
O(f) that is sampled at a sufficiently high rate, and given
an integer M’ dividing M (M is the smallest scale of com-
putation), the winding number data is an M’ X M’ matrix
of integers whose nonzero elements correspond roughly to
the zeros of @(f). These zeros play a role in attempting to

iflﬁAz,] <2
if —1 <Ay <1
if “ZSAz'] = —1

(19)
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perform a windowed Fourier analysis using the function f
as discussed in Section 3.1.1.

3. EXAMPLES OF WAVEFORM MODIFICATION

In this section we present a few examples of how the Weil
transform may be used to construct or modify waveforms.
In each case the zeros of the Weil transform will play an
important role.

3.1. Approximate Orthonormal Bases

3.1.1. Ambiguity Functions and the Windowed Fourier
Transform. The windowed Fourier transform arises natu-
rally in the calculation of ambiguity functions. If we re-
strict out attention to integer lattice points (m,n), we see
that As(m, n) is given by

/_ ) f(t — m)e™ 2" f(s) dt, (20)

which is just a windowed Fourier coefficient of f with re-
spect to the windowing function f. It is clear that the family
of functions

{fnn = flt = m)e”™™ |m,n € Z} @1
will be an orthonormal basis for L*(R) if and only if the
ambiguity function As is zero on the integer lattice away
from the origin. One can easily show that this condition
holds if and only if |@(f)| = 1 almost everywhere.

There are some immediate problems in trying to take ad-
vantage of the above characterization of windowed bases.
In general, one would like to compute with waveforms
that have good smoothness properties as well as having

The waveform s
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The absolute value of the Weil transform of s
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fast decay at infinity. In this case, Balian’s Theorem (see
Daubechies [12]) implies that the collection of functions
{fmn} defined above will not be a basis (in fact, it will not
even be a frame). We must also deal with the fact that &(f)
will be a function in H, and if it is even continuous, it must
have a zero and will not satisfy the condition |@(f)| = 1
almost everywhere.

One way around some of these difficulties is to approx-
imate in the following way: given a waveform f, replace
O(f) by @'(f) defined as

o) = O

00/ (22)

and then approximate @'(f) by some nicer function in H,.
We refer to a sequence of functions F; € H, converging
in L? to ©'(f) as an approximate orthonormal basis. See
Auslander and Geshwind [2] and [3].

3.1.2. Example of Approximate Orthonormal Basis Cal-
culation. For a given waveform s, one method of achieving
the approximation described in the last section is simply to
force the absolute value of the ©(s) towards one away from
the zeros of G(s). We begin our example with Fig. 1, which
presents the waveform s that we will be working with. We
will postpone a description of the construction of s until
Section 3.2.

We will construct a new waveform by modifying O(s),
whose absolute value is pictured in Fig. 2. In order to force
the absolute value to be close to one we replace |{@(s)| by
some root of |®(s)|, while keeping the phase of ©(s) the
same. For the example presented here, the limited dynamic
range of the data allows us to produce a reasonable ©’(s)
using only the tenth root (in general, one might take a much
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The almost orthonormal version of s
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larger root). “That is, if @(s)(x, y) = re” we replace r by the
tenth root of r and we do not change 8. This produces a
new H | function ®'(s) and we produce our new waveform’s
by the applying the inverse Weil transform:
s =07 1(@'()). (23)

The new waveform, the “almost orthonormals” in the fig-
ures, and its Weil transform are shown in Figs. 3 and 4.
Computing the two ambiguity surfaces we see a very simi-
lar scene with some significant differences. Figures 5 and 6
show cross-sections of the two surfaces with the frequency
variable set equal to zero. The surface for s’ reveals pre-
cisely the effect of replacing s by s": the largest sidelobe at

The absolute value of the Weil transform of the almost orthonormal s

FIGURE 4
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Time cross-section of ambiguity surface s

1 T —— T T v T T T

0.9 4

0.8+ 4

0.7r 4

0.6f 4

Q.51 B

0.4 B

0.3r

0.2

o

) f s s {
-3.00 -2.40 -1.80 -1.20 -0.60

I h

0.00 060
time

FIGURE 5

1.20 1.80 240

the first lattice point decreases in size from nearly .4 to just
above .25, and the next second largest sidelobe decreases
from slightly over .2 to a little more than .15. However, the
violent modification of absolute value produces a significant
increase in bandwidth.

3.2. Prescribing Winding Number Data

The waveforms s and s’ of the previous section have
by construction the same winding number data. Though
that data was not explicitly used, it is clear from the exam-
ple that the zeros and the phase around the zeros of ©(s)
are playing a significant role in determining the ambigu-
ity properties of s. In this section we detail a method of

Time cross-section of ambiguity surface for almost orthonormal s
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constructing waveforms having prescribed winding number
data.

3.2.1. The Details of the Construction. Consider a wave-
form s together with its winding number data. The winding
number data now will play a role of input for the construc-
tion of a new signal whose Weil transform has a similar
winding number pattern. Let g(r) = e ™ and O(g) = G.
On the unit square, the function G(x, y) is essentially equal
to the product of e ™ and 5, the third classical Jacobi
theta function. Hence, G has one zero in the unit square,
at (%, %), with a winding number of one (see Auslander and
Tolimieri [6]). Denote by G, , the Weil transform of g
shifted in time and frequency so that its zero in the square
is at (r,a). Each such location (r,a) can be thought of
as a location in the winding number matrix in the obvious
way. Given this identification, we define G, to be G, , if
the winding number is 1 and G, , if the winding number
is —1. In general, if the winding number at location (7, @)
is n,G;, 18 derived from G, by keeping its modulus the
same and multiplying its argument by n at every point in
the unit square. We then form the following product

!
H GT,,a,v
i

where the product is taken over all non-zero winding num-
bers in the winding number matrix. Our new waveform
derived from the winding number data for s is denoted s’
and is given by

(24)

(25)

s =0 (1"[ G’w‘) :

Now we may describe explicitly the waveform used in

the coded waveform
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winding number data for coded waveform

frequency '

FIGURE 8

the example of the previous section. Its construction is just
that given above for a specific choice of winding number
matrix. We have chosen five zeros along the diagonal with
winding numbers 1, 7, 10, —13, and —4. Nothing in the
above construction says we must start with a waveform.
It is just as reasonable to begin with a winding number
matrix, provided the winding numbers are chosen to add to
one. This choice of winding numbers gives us a function
in H, and we obtain the waveform by applying ®~'.

Note that in general one must be careful when applying
®~! since not all functions on the square are in the im-
age of ®. However, if the winding number data of s is
calculated correctly (or chosen judiciously), then we will
necessarily have the correct number of complex conjugates
in the product used to define s’ and applying ©~' will be
legitimate.

the Gaussian-based waveform
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time cross-section of ambiguity surface of coded waveform
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FIGURE 10

3.2.2. An Example. For our example we take a rectan-
gular pulse and form a frequency-hopped pulse train s(z)
given by

S0 =D xionlt = eV (26)
=
having Weil transform is given by
Bls)x,y) = D_ et @7
=1

where o is a permutation of {0,1,...,n — 1}.

lime cross-section of ambiguity surface of Gaussian-based waveform
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frequency cross-section of ambiguity surface of coded waveform
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The permutation o is given by (13240), and the signal,
called the “coded waveform”, and its winding number data
are shown in Figs. 7 and 8. The white squares in the wind-
ing number picture correspond to Is in the matrix and the
black squares to —ls, with the gray representing 0. The
constructed signal s', referred to as the “Gaussian-based
waveform”, is shown in Fig. 9.

A comparison of the ambiguity surfaces of the two wave-
forms reveals some interesting similarities and differences.
For each of the ambiguity surfaces we consider four cross-
sections: the time-axis section, the frequency axis section,
and the two diagonal sections. These are shown in pairs by
cross-section in Figs. 10-17, with the full surfaces shown
for completeness in Figs. 18 and 19. It is reasonable to

freq. cross-section of ambiguity surface of Gaussian-based wavelorm

1 T —
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RADAR WAVEFORM DESIGN

diagonal cross-section of ambiguity surface of coded waveform
1T— T v T T

-3 -2 -1 0 1 2 3
x coordinate

FIGURE 14

say that the cross-sections in each case are quite similar in
that the size, if not the location, of the highest sidelobes
differs by no more than .1. Of the two diagonal compar-
isons, the one with the very bad behavior in the Gaussian
case is worth a particularly close look. In the case of the
coded waveform, the surface levels off fairly close to the
main lobe, revealing the cancellation present in the wave-
form that is absent from the Gaussian waveform. However,
both sections show high sidelobes in a small neighborhood
of the main lobe, and these could have been predicted by
examining the winding number data in Fig. 8 (note the di-
agonal alignment of the zeros).

It is also of interest to consider one of the motivations
for this construction. In the approximate orthonormal ba-
sis example, a big problem is the large increase in band-

diag. cross-section of ambiguity surface of Gaussian-based wavetorm
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FIGURE 15
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diagonal cross-section of ambiguity surface of coded waveform
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width caused by the modification. In this case, a compari-
son of the Fourier transforms of s and s', whose real parts
are shown in Figs. 20 and 21, reveals something very dif-
ferent but not unexpected (see Auslander et al. [5]): the
Fourier transform of s’ is less oscillatory and (essentially)
compactly supported, in contrast to that of s. Our building
block of G)(e‘"’:) was chosen with this in mind. In fact,
one of the virtues of this construction is the production
of waveforms with similar winding number data but with
much better bandwidth properties.

3.3. Multiresolution Analysis of Radar Returns

The classical goal of radar is to determine the position
and velocity of the target in question. We procede by send-

diag. cross-section of ambiguity surface of Gaussian-based wavelorm

1 T v T T
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FIGURE 17
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Ambiguity surface of coded waveform
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ing out a signal s(r), and, under the narrow-band assump-
tion, we receive a return of the form r(r) = s(z + 7)e2™®".
Our task is to determine the range shift + and the Doppler
shift # as accurately as possible in a computationally effi-
cient manner.

3.3.1. The Multiresolution Idea. What we propose to do
is to send out a signal s(r) which is an orthogonal sum of
signals s)(z) and s,(¢). The processing of the return r(¢) then
proceeds by first computing the cross-ambiguity surface of
s(r) and r(r) at a particular scale, giving us bins where we
believe the targets are located. We then restrict our at-
tention to these particular binds, in which we compute the

Ambiguity surface of Gaussian-based waveform
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Fourier transform of the coded waveform
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FIGURE 20

cross-ambiguity function of r(t) and s,(¢) on a much finer
scale. The careful selection of the radar waveforms s,(¢)
and s»{(r) will allow the determination of fine-scale struc-
ture present in the return r(r), without having to compute
at this resolution over the entire scene.

3.3.2. Particulars of the Construction. We begin with
two functions §; and S> in Weil space (H;) chosen so that:

1. The main lobe of the autoambiguity function of
B®71(S,) is relatively narrow compared with that of ®~'(5,).
2. §| and §; are orthogonal to one other.

In general, we may modify our initial choice of functions by
“shaping” them with some doubly periodic function p(x, y)
with the property that |p(x, y)| = 1 everywhere. This pro-

Fourier transform of the Gaussian-based waveform
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vides a way of modifying ambiguity surfaces without de-
stroying orthogonality. However, “nice” shaping functions
will have zeros and hence they will destroy orthogonal-
ity between the waveforms. This can be dealt with using
the approximate orthonormal construction to preserve the
zseros and phase of p(x,y), which are the factors truly at
work in doing the “shaping”. Denote the resulting doubly
periodic function by M. The two functions s,(r) and s,(7)
are then given by:

51y =07'MS)) and s5(1) = ©7'(MS)). (28)
Since M has absolute value one nearly everywhere and © '
is unitary, s () is nearly orthogonal to s,(¢) and we let s(t) =
s1(t) + 55(z) be the signal we send out.

The basic procedure for multiresolution analysis of radar
returns is now easy to state precisely. We send out the signal
s(t) as defined above, and we receive a return r(z). We then
compute the cross-ambiguity surface |A; .| (defined exactly
as A, with r playing the role of the second occurrence of
s in the integral) on a grid whose size is determined by
the width of the main lobe of the ambiguity surface |A,,|.
We select the bin or bins corresponding to high correlation,
and we then compute |A,,,| inside these bins on a grid
whose size comes from the main lobe of |A,, ,,| and which
is finer than the original grid by construction. There are
some immediate benefits to doing this:

1. The narrower peak of |A,, ;,| will serve to tell us where
inside the larger bin the target actually lies, something that
computing only with the fatter ambiguity surface would not
do.

2. We only do the fine-scale calculation in a very lim-
ited region given to us by the coarse-scale calculation, thus
saving valuable time in computing.

the waveform st
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time cross-section of ambiguity surface for s1
0.9, v T Y

T T T T T

0.8F 4

0.7 4

0.6r 4

0.5+ 4

0.4f y

0.31 4

0.2f ]

0.1} ]

-3.00 -240 -180 -1.20 -060 0.00 060 120 180 240
time (frequency = 0)

FIGURE 23

3. We obtain coarse-scale and fine-scale information us-
ing only one signal.

The key point in all of this is that the main lobe of |A,,,
should resemble that of |A,,,| due to orthogonality. This
analysis can be extended to more than two levels of resolu-
tion—we need only start with a greater number of functions
with the requisite orthogonality properties.

3.3.3. A Numerical Example. Here we present an ex-
ample based on the previous section. We must construct
waveforms s, and s, such that the ambiguity surface of s,
has a very broad main lobe and that of s, a narrow main
lobe, with s, orthogonal to s;. Our choice of waveforms
is motivated by the Gaussian product construction of sec-
tion 3.2. In order to have a broad main lobe, the waveforms
Weil transform should have few zeros and an uncomplicated
phase. To narrow the main lobe, we should add zeros and
increase the complexity of the winding number structure.

With this in mind, we begin with a winding number ma-
trix having a 1, 1, and —1 clustered around the center of
the square, and no other nonzero values. §| will be the
Gaussian product derived from this matrix. Its phase is
essentially that of ®(¢~™") and its modulus approximates
|@(e "))}, The third power serves to broaden the main
lobe of the ambiguity surface. The waveform s; = ©7'(S,)
and a cross-section of its ambiguity surface are pictured in
Figs. 22 and 23. The time and frequency cross-sections are
identical so we include only one here.

In order to define S, we first consider the function §
defined as

S = ﬁ G;’,vf,’ (29)
=1
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where the winding numbers are the same as those of ©(s)
from section 3.1 (1, 7, 10, —4, —13), with the zeros being in
a slightly different pattern. The waveform obtained from §
via @' will certainly have a more narrow main lobe than
s1, however it will not in general be orthogonal to s;. This
is easily remedied. One may verify the following: S, is
orthogonal to § — a where a = a|/a; with

S| 1,
ay =/ $18dxdy and o =/ S\ dxdy.
0o Jo 0 Jo

(30)

In general care must be taken so that « is not large enough
to destroy the zero pattern of S (« is small enough in this
example). Our S, will then be § — @ and we define s, as
©°1(S2). As one might expect from its construction, s,
looks essentially the same as s from section 3.1, shown in
Fig. 1. Figures 24 and 25 depict the time and frequency
cross-sections of the ambiguity surface of s,.

We mention here as an aside that this construction may
be extended to more than two levels of resolution. The next
level in Weil space, S3, would be constructed by multiply-
ing 5> by a doubly periodic function with enough zeros to
narrow the main lobe a sufficient amount. That really is
what we have done in this example. The winding number
matrix for S| is an approximation to a submatrix of the
winding number matrix for S, (or, equivalently, the matrix
for S, is an actual submatrix of an approximation to the
matrix for S5).

Getting back to our example, we will assume that the
scene is a distribution of point sources, and we present nu-
merics for an example having two sources. Typically, given
a waveform such as our s(¢), one might transmit a signal of
the form

time cross-section of ambiguity surface for s2
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frequency cross-section of ambiguity surface for s2
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s(t)e?mifor (31)
where f is a carrier frequency. Because the carrier term
has no effect on the ambiguity calculations we are interested
in, we will consider the transmitted signal to be just s(z) =
81 + 52. The return will then have the form

r(t) = s(t + 7)™ + s(t + 7,)e¥ (32)

where in this example we have set 7| = —1,7, = —.8,8, =
.75, and #; = 1. Note that we are using seconds and Hz
as our units for 7 and . These can be converted easily to
actual range and Doppler values using 7 = R/c and 6 =
fov/c, where R is range, v is speed, and c is the speed
of light (see Blahut [9]). The separation of the two point
sources is found to be approximately 50 miles in range of
18 miles per hour in speed if we assume a carrier frequency
of 107 Hz and a bandwidth (from the Nyquist rate) of about
10% Hz. The relative location of the objects is the important
issue as their locations within the time-frequency plane can
be shifted (via translation and demodulation). Note also
that what we are trying to exhibit is a computation-saving
device for target recognition, not an advance in resolving
power. The particular waveforms involved are used merely
as an exercise in implementing the ideas of sec. 3.2.

The first processing of the return is computing the ambi-
guity surface |A,,| on a grid in time-frequency space, with
the computation being done on a coarse scale. The box
size in time-frequency space of .4 by 4 is chosen based
on the thickness of the main lobe for s;. The values of
the ambiguity surface in a neighborhood of its maximum
value are displayed below, and Fig. 26 shows a gray-scale
plot of the surface values. The peak values are sufficiently
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Absolute value of coarse-scale cross—ambiguity of s with r
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FIGURE 26

distinguished from the background to allow us to restrict
to a small subset of the scene in doing a calculation at a
finer scale. Note that the high values correspond to white
and low values to black in the gray-scale plot, which also
clearly tells us where to look for our target.

0872 .2552 4237 2729 .0296
3485 5607 .7677 .5163 2157
5122 7612 1.000 7464 4405
1305 4151 7627 5556 2172
1100 .1683 5160 .3239 .0390

To obtain finer-scale information, we compute |A,,| on a

Absolute value of fine—scale cross—ambiguity of s with r

0.5 06 07 08 09 1 11
frequency

FIGURE 27
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Absolute value of fine—scale cross~ambiguity of s2 with r

05 06 0.7 08 09 1 11
frequency

FIGURE 28

grid of bins in time-frequency space of size .05 by .05. But
s(2) itself is too coarse for this resolution, and in the area
surrounding the two point sources we get a collection of
ambiguity surface values that do not clearly distinguish a
small part of the scene from the background. Too many of
the values are very close to the maximum. The gray-scale
plot in Fig. 27 shows this as a predominant glow around
the center of the scene.

9187 .8266 .8138 .8903 .8998
9993 9987 .8551 .8599 .8972
8765 9879 9983 9451 .9249
9256 9375 9730 9659 .9564
9483 9455 9712 9655 .9402

To resolve this dilemma, we merely compute the ambigu-
ity surface |A,, .| on the .05 by .05 boxes in time-frequency
space. The values from a neighborhood of the source cor-
responding to 7 = —1 and # = .75 are shown below, clearly
delimiting a small part of time-frequency space in which to
search for our target. Similar numbers occur in a neigh-
borhood of the other source. Compare also the very black
background of the corresponding gray-scale plot in Fig. 28
with that of Fig. 27.

4733 7308 6198 3656 .1944
7825 1.000 .7378 4276 .2313
6022 5872 3887 .2146 .1227
2403 2340 1107 .0022 .0586
A514 1402 0479 0762 1714

Note that the ambiguity surface values here have been
normalized to have maximum equal to one for purposes of
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comparison. This example extends with success to more
than two sources using the same computational scales.

4. CONCLUDING REMARKS

Each of the examples in Section 3, as well as the forma-
tion of pulse trains and their generalizations, may be consid-
ered as a technique for generating waveforms by modifying
functions in H, through multiplication by doubly periodic
functions. The general case is the generation of the wave-
form s defined by

s = O YFp(x,y), (33)

where F is any H, function and p(x, y) is any doubly peri-
odic function. This operation is discussed in more mathe-
matical terms in Auslander et al. [4]. Applications of this
idea to problems in multi-access and spread-spectrum com-
munications will be presented in Auslander and Warner [8].
Further investigation and expansion of this idea is warranted
as evidenced by the interesting and potentially beneficial re-
lationship of this idea to the problem of ambiguity surface
generation and its relationship with communications.
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