
J. Math. Anal. Appl. 368 (2010) 623–635

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Mean curvatures and Gauss maps of a pair of isometric helicoidal and
rotation surfaces in Minkowski 3-space

Fenghui Ji a,b,∗,1, Young Ho Kim b,2

a School of Mathematics and Computational Science, China University of Petroleum (East China), Dongying, 257061, PR China
b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 August 2009
Available online 27 March 2010
Submitted by H.R. Parks

Keywords:
Minkowski space
Helicoidal surface
Rotation surface
Isometry
Mean curvature
Gauss map

It is proved that, in Minkowski 3-space, a CSM-helicoidal surface, i.e., a helicoidal surface
under cubic screw motion is isometric to a rotation surface so that helices on the helicoidal
surface correspond to parallel circles on the rotation surface. By distinguishing a CSM-
helicoidal surface as three cases, that is, the case of type I , the case of type II with negative
and positive pitch, the relations are discussed between the mean curvatures or Gauss maps
of a pair of isometric helicoidal and rotation surface. A CSM-helicoidal surface of Case 1 or
2 and its isometric rotation surface with null axis have same mean curvatures (resp. Gauss
maps) if and only if they are minimal. But each pair of isometric CSM-helicoidal surface of
Case 3 and rotation surface with spacelike axis have different Gauss maps.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A helicoidal surface in R3 is defined as the orbit of a plane curve under a screw motion, which is a natural generalization
of a rotation surface. A well-known result about a helicoidal and rotation surface in R3 is

Bour’s Theorem. (See [2,7].) A helicoidal surface is isometric to a rotation surface so that helices on the helicoidal surface correspond
to parallel circles on the rotation surface.

Particularly, a right helicoid is isometric to a catenoid. Moreover, a pair of these two surfaces have interesting properties.
That is, they are both members of a one-parameter family of isometric minimal surfaces and have the same Gauss map.

Denote by E3
1 the Minkowski 3-space with an inner product of signature (1,2) given by

g(x, y) = −x1 y1 + x2 y2 + x3 y3,

where x = (x1, x2, x3), y = (y1, y2, y3). Many of the classical results from Euclidean geometry have a Minkowski counterpart,
like the existence of Delaunay surface. But the presence of null vectors often causes important and interesting differences.
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As the screw motion in R3, a Lorentzian screw motion can be defined as a Lorentzian rotation around an axis together
with a translation in the direction of the axis. Depending on the axis being spacelike, timelike or null, there are three types of
so-called Lorentzian screw motions as following( x
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There are many papers about helicoidal surfaces under a so-called Lorentzian screw motion. Sasahara [11] studied space-
like helicoidal surfaces with constant mean or Gauss curvatures. Beneki et al. [1], Ji and Hou [7] constructed the helicoidal
surfaces with prescribed mean or Gauss curvatures. In [1,7], it was also proved that, locally, there exist helicoidal surfaces
with prescribed smooth functions as mean or Gauss curvatures. Choi et al. [3,4] classified helicoidal surfaces with pointwise
1-type Gauss maps and harmonic Gauss maps. Ikawa [10], Güler and Vanli [6] gave Bour’s theorem in Minkowski 3-space.
Especially, Ikawa proved that, other than a helicoidal surface with non-null axis, a pair of helicoidal surface with a null axis
and its isometric rotation surface have same profile curves, same first and second fundamental forms. Therefore, they have same Gauss
maps, mean curvatures and Gauss curvatures (see Theorem 5.1 and Corollary 5.1, p. 394 in [10]).

In fact, the so-called helicoidal surface with null axis has so special properties is because it is still rotation surface. Dillen and
Kühnel [5] pointed out that the so-called Lorentzian screw motion above works fine for the case with non-null axis. How-
ever, a Lorentzian rotation around a null axis, together with a translation in the direction of the axis, is again a Lorentzian rotation
around a null axis (see Remark 2.1 below). That means the helicoidal surfaces with null axes discussed by Ikawa and other authors
of [1,6,7,9,11] are still rotation surfaces.

Besides, there exist other non-trivial 1-parameter families of translations that, together with a Lorentzian rotation around
a null axis, constitute a 1-parameter group of Lorentzian motions, the so-called cubic screw motion [5], which is expressed
as: ( x

y
z

)
�→

⎛
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Obviously, a cubic screw motion, which have no counterpart in R3, is different from a non-cubic case. A non-cubic screw
motion has the property that, if we take a point of the axis, then the orbit of that point is simply the axis (or the point
itself if the screw motion is a rotation). A cubic screw motion does not have that property. In fact, the orbit of the origin
under a cubic screw motion is a cubic null curve, just given by the translational part of the cubic screw motion.

For ease of elaboration, a helicoidal surface under cubic screw motion is abbreviated to a CSM-helicoidal surface. For more
details of a CSM-helicoidal surface, see [8] or Section 2 of this paper. In Section 3, for ease of discussion, a CSM-helicoidal
surface is distinguished as three cases, that is, the case of type I , the case of type II with pitch h < 0 and the case of type II
with pitch h > 0. It is proved that Bour’s theorem is still true for all the cases of CSM-helicoidal surfaces (see Theorems 3.1,
3.4, 3.7).

The main purpose of this paper is to study the relations between the mean curvatures or Gauss maps of a pair of iso-
metric CSM-helicoidal surface and rotation surface. As for the first two cases, a minimal CSM-helicoidal surface is isometric
to a minimal rotation surface with null axis (see Corollaries 3.1, 3.2). Moreover, a CSM-helicoidal surface of Case 1 or 2 and
its isometric rotation surface have same mean curvatures (resp. Gauss maps) if and only if they are minimal (see Theo-
rems 3.2, 3.3, 3.5, 3.6). As for Case 3, each pair of isometric CSM-helicoidal surface and rotation surface with spacelike axis
have different Gauss maps (see Theorem 3.8). Besides, a minimal CSM-helicoidal surface of the third case is isometric to a
non-minimal rotation surface with spacelike axis.

2. CSM-helicoidal surfaces in E3
1

We remark that a cubic screw motion can be written in a simpler form. Now, we consider a pseudo-orthonormal basis
of E3

1, i.e., a basis {e1, e2, e3} such that

g(e1, e1) = g(e1, e2) = g(e2, e3) = g(e3, e3) = 0, g(e1, e3) = g(e2, e2) = 1.

In such a basis, we get

g(x, x) = 2x1x3 + x2
2, x =

∑
xkek.
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Let

(e1, e2, e3) = (η1, η2, η3)X, (2.1)

where {η1, η2, η3} is an orthonormal basis such that
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Then the cubic screw motion around the axis e3 can be written as( x
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Remark 2.1. Incidentally, it is easily to see that
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This indicates that a rotation around the null coordinate axis O e3, together with a translation in the direction of O e3, is
again a rotation around the null line l:

x

0
= y − h

0
= z

1
.

Definition 2.1. Let γ : I = (a,b) ⊂ R → P be a curve in a plane P in E3
1 and denote by L a straight line that does not

intersect the curve γ . A CMS-helicoidal surface in E3
1 is defined as a non-degenerate surface that is generated by a cubic

screw motion around L.

We distinguish the following two cases.

Case 1. Let γ1(u) = (u,0, f (u)), u > 0 be a curve in the O e1e3 plane. Suppose that S be the helicoidal surface generated by
γ1(u) under a cubic screw motion with pitch h, the position vector r of which has the form

r(u, v) =
(

u + hv, uv + hv2

2
, f (u) − uv2

2
− hv3

6

)
, u > 0, v ∈ R. (2.3a)

Case 2. Let γ2(u) = (0, u, f (u)), u > 0 be a curve in the O e2e3 plane. Suppose that S be the helicoidal surface generated by
γ2(u) under a cubic screw motion with pitch h, the position vector r of which has the form

r(u, v) =
(

hv, u + hv2

2
, f (u) − uv − hv3

6

)
, u > 0, v ∈ R. (2.3b)

A CSM-helicoidal surface S given by (2.3a) (resp. (2.3b)) is called a CSM-helicoidal surface of type I (resp. type II).
Especially when h = 0, a CSM-helicoidal surface of type I is called a rotation surface with null axis e3.



626 F. Ji, Y.H. Kim / J. Math. Anal. Appl. 368 (2010) 623–635
Remark 2.2. A helicoidal surface given by (2.3b) is degenerate when h = 0.

If S is of type I , the first and the second fundamental forms I and II of S are given by

I = 2 f ′ du2 + 2hf ′ du dv + u2 dv2, (2.4)

and

II = |D|−1/2[u f ′′ du2 + 2hf ′ du dv + (
h2 f ′ − u2)dv2], (2.5)

where D = EG − F 2 = 2u2 f ′ − h2 f ′ 2 and the prime denotes derivative with respect to u.
The mean curvature H of S is thus

H = u3 f ′′ − 2u2 f ′

2D|D|1/2
. (2.6)

If S is of type II, the first fundamental form I , the second fundamental form II of S are

I = du2 + 2hf ′ du dv − 2hu dv2 (2.7)

and

II = |D|−1/2(−hf ′′ du2 + 2h du dv + h2 f ′ dv2), (2.8)

where D = EG − F 2 = −2hu − h2 f ′ 2 and the prime denotes derivative with respect to u.
The mean curvature H of S is thus

H = h2(2u f ′′ − f ′)
2D|D|1/2

. (2.9)

From (2.6) and (2.9), we can see that a minimal CSM-helicoidal surface is independent of its pitch h. By solving two
differential equations H = 0, we get

Proposition 2.1. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Then a minimal CSM-helicoidal surface
of type I is

r(u, v) =
(

u + hv, uv + hv2

2
, c1u3 − uv2

2
− hv3

6

)
, (2.10)

where c1 is a non-zero integration constant and c1h2 	= 2/3. Especially, any rotation surface with the axis e3 can be expressed as (2.10)

with h = 0.

Proposition 2.2. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Then a minimal CSM-helicoidal surface
of type II is

r(u, v) =
(

hv, u + hv2

2
, c2u3/2 − uv − hv3

6

)
, (2.11)

where c2 is an integration constant and c2
2h 	= −8/9.

Remark 2.3. If c1 = 0 or c1h2 = 2/3 (resp. c2
2h = −8/9), then the helicoidal surface given by (2.10) (resp. (2.11)) is degen-

erate.

3. Main results

Let S and Sr be a CMS-helicoidal surface and a rotation surface respectively. In this section, we study an isometric
relation between S and Sr . Especially, we discuss the sufficient and necessary condition of S and Sr having same mean
curvature or Gauss map. For ease of discussion, we distinguish S the following three cases.

Case 1. S is of type I .
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Consider the rotation surface Sr generated by γ (ū) = (ū,0, g(ū)), ū > 0, i.e., the rotation surface with the following
parametrization.

r(ū, v̄) =
(

ū, ū v̄, g(ū) − ū v̄2

2

)
. (3.1)

From (2.4), the first fundamental forms of S and Sr can be respectively expressed as

I =
(

2 f ′ − h2 f ′2

u2

)
du2 + u2

(
dv + hf ′

u2
du

)2

(3.2)

and

I = 2gū dū2 + ū2 dv̄2. (3.3)

Comparing (3.2) with (3.3), if

2gū dū2 =
(

2 f ′ − h2 f ′2

u2

)
du2, ū2 = u2/c2 and dv̄ = c

[
dv + hf ′

u2
du

]
, (3.4)

where c is a positive constant, then we have an isometry between S and Sr .
(3.4) implies that

ū = u/c, v̄ = c

[
v + h

∫
f ′

u2
du

]
and g(ū) = c

[
f (u) − h2

2

∫
f ′2

u2
du

]
. (3.5)

So we have proved the following

Theorem 3.1. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Locally, a CSM-helicoidal surface of type I S

r(u, v) =
(

u + hv, uv + hv2

2
, f (u) − uv2

2
− hv3

6

)
(3.6)

is isometric to the one-parametric rotation surface Sr

r(u, v) =
(

u/c, u

(
v + h

∫
f ′

u2
du

)
, c

[
f (u) − h2

2

∫
f ′2

u2
du − u

2

(
v + h

∫
f ′

u2
du

)2])
, (3.7)

so that helices on the helicoidal surface correspond to parallel circles on the rotation surface, where c is a positive constant.
Especially, when c = 1, S is isometric to rotation surface Sr0

r(u, v) =
(

u, u

(
v + h

∫
f ′

u2
du

)
, f (u) − h2

2

∫
f ′2

u2
du − u

2

(
v + h

∫
f ′

u2
du

)2)
. (3.8)

Remark 3.1. For any positive constant c, the rotation surface Sr can be obtained by applying a rotation σ around spacelike
axis e2 on Sr0 , where σ is written as( x

y
z

)
�→

( 1/c 0 0
0 1 0
0 0 c

)( x
y
z

)
. (3.9)

Corollary 3.1. Locally, a minimal CSM-helicoidal surface of type I

r(u, v) =
(

u + hv, uv + hv2

2
, c1u3 − uv2

2
− hv3

6

)
(3.10)

is isometric to the minimal rotation surface

r(u, v) =
(

u/c, u(v + 3c1hu + c3), c

(
c1 − 3

2
c1

2h2
)

u3 − c

2
u(v + 3c1hu + c3)

2
)

, (3.11)

where c1 and c3 are integration constants, c1 	= 0 and c1h2 	= 2/3.
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Now we discuss the mean curvatures and Gauss maps of a pair of isometric helicoidal surface S and rotation surface Sr

in Theorem 3.1. From (2.6), we get the mean curvature of Sr is

Hr = ū3 gūū − 2ū2 gū

2D̄|D̄|1/2
, (3.12)

where g is given by (3.5) and D̄ = 2ū2 gū .
By differentiating the third equation of (3.5) with respect to ū twice, we get

gū = c2
(

f ′ − h2 f ′2

2u2

)
(3.13)

and

gūū = c3
(

f ′′ + h2 f ′2

u3
− h2 f ′ f ′′

u2

)
. (3.14)

Substituting (3.13) and (3.14) into (3.12), we have

Hr =
(

1 − h2 f ′

u2

)
H, (3.15)

where H and Hr are mean curvatures of S and Sr in Theorem 3.1 respectively. And H is given by (2.6). This follows that
Hr = H is equivalent with f ′H = 0. Notice that f ′ 	= 0 (otherwise S is degenerate). Thus we have

Theorem 3.2. Locally, a pair of isometric CSM-helicoidal surface of type I S and rotation surface Sr in Theorem 3.1 have same mean
curvature if and only if they are minimal.

Remark 3.2. From (3.15), we can see that the mean curvature of Sr in Theorem 3.1 is independent of parameter c. Moreover,
by a direct computation, we can see that the coefficients of the first and second fundamental form of Sr are independent of
parameter c.

Let n (resp. nr ) be the normal vector field on the surface S and Sr given by (3.6) (resp. (3.7)). An easy computation
leads to

n = |D|−1/2
(

u,hf ′ + uv,−u f ′ − hf ′v − u

2
v2

)
(3.16)

and

nr = |D|−1/2
(

u/c, u

(
v + h

∫
f ′

u2
du

)
,−c

[
u

(
f ′ − h2 f ′2

2u2

)
− u

2

(
v + h

∫
f ′

u2
du

)2])
, (3.17)

where D = EG − F 2 = 2u2 f ′ − h2 f ′ 2.
Comparing (3.16) with (3.17), we can see that n = nr if and only if⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c = 1,

hf ′ = hu

∫
f ′

u2
du,

−u f ′ = −u

(
f ′ − h2 f ′2

2u2

)
− u

2

(
h

∫
f ′

u2
du

)2

.

(3.18)

The general solution of (3.18) is

c = 1, f = c1u3 + c4, and
∫

f ′

u2
du = 3c1u, (3.19)

where c1 and c4 are integration constants.
This implies that S and Sr have same Gauss map if and only if S and Sr are minimal surfaces given by (3.10) and (3.11)

with c = 1 and c3 = 0. In general, a pair of minimal isometric helicoidal and rotation surfaces in Corollary 3.1 have different
Gauss maps.

Denote by S ′
r0

the minimal rotation surface given by (3.11) with c = 1 and c3 = 0 and S ′
r the general case given by (3.11).

Obviously, the coefficients of the first and second fundamental form of S ′
r are independent of parameters c and c3. From

Remark 3.2 and (3.11), we can see that S ′
r can be obtained by applying a rotation σ1 around spacelike axis e2 together
0
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Fig. 1.

with a rotation σ2 around null axis e3 on S ′
r . σ1 and σ2 are respectively written as

σ1 = σ−1 =
( x

y
z

)
�→

( c 0 0
0 1 0
0 0 1/c

)( x
y
z

)
, (3.20)

where σ is given by (3.9) and

σ= A(v) =
( x

y
z

)
�→

( 1 0 0
v 1 0

− v2

2 −v 1

)( x
y
z

)
, v = −c3. (3.21)

Thus we prove the following

Theorem 3.3. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Locally, a pair of isometric helicoidal surface
and rotation surface in Theorem 3.1 have same Gauss map, regardless of a rotation σ1 around e2 together with a rotation σ2 around
e3 on the rotation surface, if and only if they are minimal.

Example 3.1. A pair of isometric CSM-helicoidal surface of type I (see Fig. 1) and rotation surface (see Fig. 2) with same
mean curvature (H = 0) and Gauss map

r(u, v) =
(

u + 2v, uv + v2, u3 − uv2

2
− v3

3

)

and

r(ū, v̄) =
(

ū, ū v̄,−5ū3 − ū v̄2

2

)
, ū = u, v̄ = v + 6u.

Here the Gauss map is given by

n = 1√
30u2

(
u,6u2 + uv,−3u3 − 6u2 v − u

2
v2

)
.

Case 2. S is of type II with the pitch h < 0.

From (2.7), the first fundamental forms of S can be expressed as

I =
(

1 + hf ′2 )
du2 − 2hu

(
dv − f ′

du

)2

. (3.22)

2u 2u
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Fig. 2.

Comparing (3.22) with (3.3), if

2gū dū2 =
(

1 + hf ′2

2u

)
du2, ū2 = −2hu/c2 and dv̄ = c

[
dv − f ′

2u
du

]
, (3.23)

where c is a positive constant, then we have an isometry between S and Sr . Here Sr is given by (3.1).
(3.23) implies that

ū =
√

−2hu/c, v̄ = c

[
v −

∫
f ′

2u
du

]
and g(ū) = c

[
−

√−2h

3h
u3/2 −

√−2h

4

∫
u−1/2 f ′2 du

]
. (3.24)

So we have proved the following

Theorem 3.4. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Locally, a CSM-helicoidal surface of type II S
with pitch h < 0

r(u, v) =
(

hv, u + hv2

2
, f (u) − uv − hv3

6

)
(3.25)

is isometric to the one-parametric rotation surface Sr

r(u, v) =
(√

−2hu/c,
√

−2hu

(
v −

∫
f ′

2u
du

)
, c

[
g1(u) −

√−2hu

2

(
v −

∫
f ′

2u
du

)2])
(3.26)

so that helices on the helicoidal surface correspond to parallel circles on the rotation surface, where

g1(u) = −
√−2h

3h
u3/2 −

√−2h

4

∫
u−1/2 f ′2 du,

and c is a positive constant.
Especially, when c = 1, S is isometric to rotation surface Sr0

r(u, v) =
(√

−2hu,
√

−2hu

(
v −

∫
f ′

2u
du

)
, g1(u) −

√−2hu

2

(
v −

∫
f ′

2u
du

)2)
. (3.27)

Remark 3.3. In Theorem 3.4, for any positive constant c, the rotation surface Sr can be obtained by applying a rotation σ
around spacelike axis e2 on Sr0 , where σ is given by (3.9).
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Corollary 3.2. Locally, a minimal CSM-helicoidal surface of type II with pitch h < 0

r(u, v) =
(

hv, u + hv2

2
, c2u3/2 − uv − hv3

6

)
, (3.28)

is isometric to the minimal rotation surface

r(u, v) =
(√

−2hu/c,
√

−2hu

(
v − 3

2
c2u1/2 + c3

)
, c

[
g0(u) −

√−2hu

2

(
v − 3

2
c2u1/2 + c3

)2])
, (3.29)

where

g0(u) =
(

1

6h2
+ 3c2

2

16h

)
(
√

−2hu )3,

c2 and c3 are integration constants and c2
2h 	= −8/9.

Now we discuss the mean curvatures and Gauss maps of a pair of isometric helicoidal surface S and rotation surface Sr

in Theorem 3.4. By differentiating the third equation of (3.24) with respect to ū twice, we get

gū = c2
(

−u

h
− f ′2

2

)
(3.30)

and

gūū = c3
√

−2hu

(
1

h
+ f ′ f ′′

)
/h. (3.31)

Substituting (3.30) and (3.31) into (3.12), we have

Hr = h3 f ′
√−2hu

H, (3.32)

where H and Hr are mean curvatures of S and Sr in Theorem 3.4 respectively. And H is given by (2.6). This follows that
Hr = H is equivalent with (h3 f ′ − √−2hu)H = 0. From Proposition 2.2, we can see that h3 f ′ − √−2hu = 0 implies H = 0.
Thus we have Hr = H is equivalent with Hr = H = 0. So we prove the following

Theorem 3.5. Locally, a pair of isometric CSM-helicoidal surface of type II S with pitch h < 0 and rotation surface Sr in Theorem 3.4
have same mean curvature if and only if they are minimal.

Remark 3.4. From (3.32), we can see that the mean curvature of Sr in Theorem 3.4 is independent of parameter c. Moreover,
by a direct computation, we can see that the coefficients of the first and second fundamental form of Sr are independent of
parameter c.

Let n (resp. nr ) be the normal vector field on the surface S and Sr given by (3.25) (resp. (3.26)). An easy computation
leads to

n = |D|−1/2
(

−h,h
(

f ′ − v
)
,−u − hf ′v + h

2
v2

)
(3.33)

and

nr = |D|−1/2
(

−h/c,h

( ∫
f ′

2u
du − v

)
,−c

[
−u − h

2
f ′2 + h

2

(
v −

∫
f ′

2u
du

)2])
, (3.34)

where D = EG − F 2 = −2hu − h2 f ′ 2.
Comparing (3.33) with (3.34), we can see that n = nr if and only if⎧⎨

⎩
c = 1,

f ′ =
∫

f ′

2u
du.

(3.35)

The general solution of (3.35) is

c = 1, f = c2u3/2 + c4, and
∫

f ′

2u
du = 3

2
c2u1/2, (3.36)

where c2 and c4 are integration constants.
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Fig. 3.

This implies that S and Sr have same Gauss map if and only if S and Sr are minimal surfaces given by (3.28) and
(3.29) with c = 1 and c3 = 0. In general, a pair of minimal isometric helicoidal and rotation surfaces in Corollary 3.21 have
different Gauss maps.

Denote by S ′
r0

the minimal rotation surface given by (3.29) with c = 1 and c3 = 0 and S ′
r the general case given by (3.29),

with similar discussion in Case 1, S ′
r0

can be obtained by applying a rotation σ1 around spacelike axis e2 together with a
rotation σ2 around null axis e3 on S ′

r , where σ1 and σ2 are given by (3.20) and (3.21) respectively.
Thus we prove the following

Theorem 3.6. Let [O ; e1, e2, e3] be the pseudo-orthogonal frame with e3 as a null vector. Locally, a pair of isometric helicoidal surface
and rotation surface in Theorem 3.4 have same Gauss map, regardless of a rotation σ1 around e2 together with a rotation σ2 around
e3 on the rotation surface, if and only if they are minimal.

Example 3.2. A pair of isometric CSM-helicoidal surface of type II (h < 0) and rotation surface (see Figs. 3, 4) with same
mean curvature (H = 0) and Gauss map

r(u, v) =
(

− v

2
, u − v2

4
,2u3/2 − uv + v3

12

)

and

r(ū, v̄) =
(

ū, ū v̄,−5

6
ū3 − ū v̄2

2

)
, ū = √

u, v̄ = v − 3
√

u.

Here the Gauss map is given by

n =
∣∣∣∣5u

4

∣∣∣∣
−1/2(1

2
,−3

2
u1/2 + v

2
,−u + 3

2
u1/2 v − v2

4

)
.

Case 3. S is of type II with the pitch h > 0.

Comparing (3.22) with (3.3), we can see that −2hu < 0 and ū2 > 0. Therefore, we cannot find an isometry condition as
(3.23) between S and Sr , where Sr is given by (3.1). We have to consider rotation surface with non-null axis.

Let [O ;η1, η2, η3] be the considered orthogonal frame, where {η1, η2, η3} is an orthonormal basis given by (2.1). Then
S can be written as

r(u, v) =
(

hv, u + hv2

2
, f (u) − uv − hv3

6

)
X
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Fig. 4.

i.e.,

r(u, v) =
√

2

2

(
f (u) − uv − hv − hv3

6
, f (u) − uv + hv − hv3

6
,
√

2

(
u + hv2

2

))
. (3.37)

Similarly, the Gauss map of S is written as

n =
√

2

2
|D|−1/2

(
−u − hf ′v + h

2
v2 + h,−u − hf ′v + h

2
v2 − h,

√
2h

(
f ′ − v

))
. (3.38)

Let γ (ū) = (0, ū, g(ū)), ū > 0 be a curve in the Oη2η3 plane. Suppose that S̄r is the rotation surface generated by γ (ū)

under a rotation around the axis η3, the position vector r of which has the form

r(ū, v̄) = (
ū sinh v̄, ū cosh v̄, g(ū)

)
, ū > 0, v̄ ∈ R. (3.39)

An easy computation leads to the first fundamental form, the mean curvature and Gauss map respectively being

I = (
1 + gū

2)dū2 − ū2 dv̄2, (3.40)

H̄r = ū3 gūū + ū2 gū(1 + gū
2)

2D̄|D̄|1/2
(3.41)

and

n̄r = |D̄|−1/2(ūgū sinh v̄, ūgū cosh v̄, ū), (3.42)

where D̄ = −ū2(1 + gū
2).

Comparing (3.40) with (3.22), if

(
1 + gū

2)dū2 =
(

1 + hf ′2

2u

)
du2, ū2 = 2hu/c2 and dv̄ = c

[
dv − f ′

2u
du

]
, (3.43)

where c is a positive constant, then we have an isometry between S and S̄r .
(3.43) implies that

ū = √
2hu/c, v̄ = c

(
v −

∫
f ′

2u
du

)
and g(ū) =

∫ √
1 + h(c2 f ′2 − 1)

2c2u
du. (3.44)

Substituting (3.44) into (3.39), we prove the following



634 F. Ji, Y.H. Kim / J. Math. Anal. Appl. 368 (2010) 623–635
Theorem 3.7. Let [O ;η1, η2, η3] be the considered orthogonal frame. Locally, a CSM-helicoidal surface of type II S with pitch h > 0

r(u, v) =
√

2

2

(
f (u) − uv − hv − hv3

6
, f (u) − uv + hv − hv3

6
,
√

2

(
u + hv2

2

))
, (3.45)

is isometric to the one-parametric rotation surface S̄r

r(u, v) =
(√

2hu

c
sinh

[
c

(
v −

∫
f ′

2u
du

)]
,

√
2hu

c
cosh

[
c

(
v −

∫
f ′

2u
du

)]
,

∫ √
1 + h(c2 f ′2 − 1)

2c2u
du

)
(3.46)

where c is a positive constant, so that helices on the helicoidal surface correspond to parallel circles on the rotation surface.

Now we discuss the Gauss maps and mean curvatures of a pair of isometric helicoidal surface S and rotation surface S̄r

in Theorem 3.7. (3.44) implies

∂(ū, v̄)

∂(u, v)
=

√
2h

2
√

u
> 0.

Therefore, the Gauss map of S̄r can be expressed as

n̄r = |D̄|−1/2(ūgū sinh v̄, ūgū cosh v̄, ū), (3.47)

where D̄ = −ū2(1 + gū
2), ū, v̄ and g(ū) are given by (3.44).

Comparing (3.47) with (3.38), we get the third coordinates of n and nr are different. In fact, |D|−1/2h( f ′ − v) depends
on parameters u and v but |D̄|−1/2ū is independent of parameter v .

Thus we prove

Theorem 3.8. Each pair of isometric CSM-helicoidal surface of type II with h > 0 and rotation surface with spacelike axis in Theorem 3.7
have different Gauss maps.

By differentiating the third equation of (3.4) with respect to ū, we get

gū =
√

c2
(

f ′2 + 2u/h
) − 1 (3.48)

i.e.,

gū
2 = c2( f ′2 + 2u/h

) − 1. (3.49)

Taking derivative with respect to ū on (3.49), we get

gū gūū = c3

√
2u

h

(
1/h + f ′ f ′′). (3.50)

Substituting (3.48)–(3.50) into (3.41), we have

Proposition 3.1. Let H and H̄r be the mean curvatures of a pair of isometric CSM-helicoidal surface and rotation surface with spacelike
axis in Theorem 3.7 respectively. Then we have

H̄r = λ1(u)H + λ2(u), (3.51)

where

λ1(u) = h3 f ′

[2hu(c2 f ′2 − 1) + 4u2]1/2
(3.52)

and

λ2(u) = c2h(2u + hf ′2)2

−2(2hu + h2 f ′2)|2hu + h2 f ′2|1/2[2hu(c2 f ′2 − 1) + 4u2]1/2
. (3.53)

Remark 3.5. Unlike Cases 1 and 2, H̄r depends on parameter c.

Remark 3.6. From Theorem 3.8 and Proposition 3.1, it’s naturally to ask a question: Is there a pair of isometric CSM-helicoidal
surface of type II with h > 0 and rotation surface with same mean curvature? That’s an open problem.
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