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Abstract 

We study a model on the non-negative half line Zt, {0,1,2,. . .} in which particles created 
at the origin at rate 1 jump to the right at rate 1. If a particle jumps onto an already occupied 
site the two particles annihilate each other. In addition, whenever a particle jumps its closest 
neighbor to the right jumps along with it. We find that the spatial decay rate of the particle 
density in the stationary state is of order l/fi at distance x from the origin. This model provides 
an approximation to the dynamics of an anchored Toom interface which can be represented as 
a spin-exchange model. 

Keywords: Interacting particle systems; Coalescing random walk; Annihilating random walk; 
Voter model; Toom model; Interfare problems 

1. Introduction 

The process we consider here, is motivated by a seemingly unrelated model, namely 

the probabilistic cellular automaton known as the Toom model (Toom, 1974). The 

system consists of Ising spins (Oij = f 1) located on the two-dimensional integer lattice 
which evolve in discrete time. At each time step, all spins aij are updated according 

to the rule 

( 

si&oi,j+l(t) + ai+l,j(t) + aij(t)] with probability l-p-q, 
Gij(t+l)= +l with probability p, (1.1) 

-1 with probability q, 

with 0 d p + q d 1. The parameters p + q and (p - q)/( p + q) are called noise and bias, 
respectively. For p =q =O, the evolution is deterministic: each updated spin becomes 
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equal to the majority of itself, its northern, and its eastern neighbor. Toom (1974) 
proved that for p and q sufficiently small (low noise), but otherwise unrestricted, two 
phases exist, in which the spins are predominantly + 1 or - 1, respectively; these two 
phases are called low-noise phases. (See also Bramson and Gray (1991) for a different 
proof of this fact. For further discussion of this model we refer the reader to Bennett 

and Grinstein (1985) and Lebowitz et al. (1990).) 
Using suitable initial or boundary conditions, one can introduce a non-equilibrium 

interface between the two low-noise phases. Such interfaces were studied by Derrida 

et al. (1991). They considered the system in the third quadrant only and imposed the 
following boundary conditions: oio = +I and goI = - 1 for all i < 0 and all t. That 

is, the spins were all fixed as $1 along the negative x-axis and -1 along the negative 
y-axis. With these boundary conditions, the Toom model with low noise exhibits an 
interface which separates the + phase in the upper portion of the quadrant from the 
- phase in the lower portion. 

Derrida et al. (1991) introduced a low-noise approximation of this interface which 

we now describe (see Fig. 1). The interface is anchored at the origin and, at the zero- 
noise level (p = q = 0), forms a staircase with all spins equal to +l above the staircase 

and -1 below the staircase. All such staircases are stationary and can be represented 
as a sequence of spins {S, : n >O} with S, = 0 or 1 where “0” represents a horizontal 
edge and “1” a vertical edge in the staircase. Under the effect of noise there will be 
spin flips. When the noise is very weak flips away from the interface will have a very 
short lifetime whereas flips adjacent to the interface will typically change the staircase 

rapidly to another staircase. This change of the interface is described by exchanging 
the spin S,,, which corresponds to the edge adjacent to the spin oij flipped by noise, 
with the first spin following S, which has a value different from S, (see Fig. 2). 
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Fig. 1. Staircase configuration of the 
anchored interface in the third quad- 
rant as described in Derrida et al. 
( 1991). A fluctuation at the circled 
site causes the staircase to quickly 
change into a new staircase indi- 
cated by the broken line. 

10111101~~00111000000011 

10111101011100111000000011 

Fig. 2. The staircase from Fig. 1 written as a sequence of spins. 
A fluctuation at the circled spin in Fig. 1 together with the sub- 
sequent change of the staircase corresponds to the exchange of 
the underlined spins on the first line resulting in the configuration 
on the second line. 
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Fig. 3. Successive transitions in the first approximation of the spin exchange model together with the border 
process. 

Derrida et al. (1991) showed that under suitable scaling of noise and time, the time 
evolution of the interface can be represented by a continuous time Markov process 
where a 1 (respectively, a 0) is exchanged with the first 0 (respectively, 1) to its right 
at rate Ir (respectively, no). Rigorous results for the semi-infinite model are difficult 
to come by. Derrida et al. (1991) performed computer simulations which indicate that 

fluctuations in this system are much smaller than in equilibrium interfaces. Furthermore, 
the system exhibits long-range correlations. Various approximations for the interface 
are studied in their paper which reproduce the observed behavior at least qualitatively. 

In Appendix 3 of their paper, a family of related spin exchange models, {S@)(n) : 
n aO}k2 1, is defined which can be thought of either as a sequence of approximations 
to the original spin-exchange model or as a scaling limit of a modified Toom model 
in the unbiased case (i.e., J*r = 2,). In the kth approximation of this spin-exchange 

model, {S@)(n) : n >O}, only the k left-most spins in any block of O’s or l’s in a 
configuration may exchange spins. 

We will investigate the first approximation, {S(‘)(n) : n 30}, in which only the 
left-most spin in any block of O’s or l’s may exchange spins. Instead of studying 
{S(‘)(n) : n >O}, we keep track of the borders between blocks of O’s and 1 ‘s. We 

denote this border process by {$ : t 3 0} (the significance of the superscript “6’ in 
r~; will become clear after we define the dynamics). The process v]F is a set-valued 
process defined on the non-negative half line 77; = (0, 1,2,. . .}. For x E Zl we set 
x E qc if S(‘)(x) # S(‘)(x + 1) and x $! +, otherwise. If x E qc, we say x is occupied 
by a particle; if x 6 $, we say x is vacant. The dynamics are as follows: 

(i) Each particle and its closest neighbor to the right jump one unit to the right at 

rate 1. We call this coupled jumping co-jumping. 
(ii) Particles are born at the origin at rate 1 and, together with their closest neighbor 

to the right, jump immediately one unit to the right. 
(iii) If a particle jumps to an already occupied site, annihilation occurs. 

We refer to this process as annihilating random walks with co-jumping and source 

at the origin. 
It is not hard to see that the process $ (the superscript “c” refers to co-jumping) 

is indeed the border process of the first approximation of the spin-exchange model 
described above. Fig. 3 illustrates three successive transitions in both processes SC’) 
and qc. The O’s and l’s are the values in the process SC’); the .‘s and x’s are the values 
in the border process @, i.e., a “.” stands for a vacant site and an “x” for an occupied 
site in the process $. The underlined digits initiate the exchange with the first spin 
to the right that has a different value (indicated by an arc). For instance, when the 
underlined 0 in the first line exchanges with the first 1 to the right, we see that the x 
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to the left of the 0 jumps one unit to the right and, simultaneously, the closest x to the 
right jumps to the right as well annihilating the x at the neighboring site. Spontaneous 
births in the process $ correspond to exchanges initiated by the first spin as can be 
seen in the second and third transition. 

We are interested in properties of the equilibrium measure. (A simple coupling 

argument, which we sketch at the end of this section, shows that there exists a unique 
equilibrium.) Derrida et al. (1991) observed in simulations that at distance n from the 

origin, the typical block size in the first approximation of the spin-exchange model is 
of order fi or - in terms of the process VF - the distance between nearest particles 
in & is of order fi at distance x from the origin. Our main theorem confirms this 

observation. 

Theorem 1. Let {$ : t 20) be the unnihilating random walk with co-jumping defined 
above. Then starting from any initial configuration, the process converges (weakly) 
to a unique equilibrium, denoted by n”,. Furthermore, 

lim 2fiP(x E r&) = 1. (1.2) x-00 

This behavior is already displayed by a simplified version of this model, namely one 
in which there is no co-jumping. We denote the simplified process by {Q : t 2 0) (the 

lack of the superscript “c” indicates that there is no co-jumping) and call it annihilating 
random walks with source at the origin. The process {ql : t 2 0} is a set-valued process 
on Z$ as well and its dynamics are given by 

(i) If a particle is at x, it jumps to x + 1 at rate 1. 

(ii) Particles are born at the origin at rate 1 and jump immediately to +l. 
(iii) If a particle jumps to an already occupied site, then the particles annihilate each 

other. 

The analogue of Theorem 1 is contained in the following result. 

Theorem 2. Let {nr : t > 0) be the annihilating random walk defined above. Then 
starting from any initial conjiguration, the process converges (weakly) to a unique 
equilibrium, denoted by no3. Furthermore, 

lim 2J;;;;P(x E qoo) = 1. 
X-+00 (1.3) 

The reason for investigating both Y$ and nt is twofold: Firstly, it shows that the 
limiting behavior of the density of particles is not changed by introducing the more 
complicated coupled jumping of particles (at least at the scale we are looking at). 
Secondly, the ideas that go into the proofs of Theorems 1 and 2 are basically the 
same, however, the proof of Theorem 2 is more transparent since we do not have to 
deal with some of the technical difficulties due to the co-jumping of particles. 

Existence and uniqueness of the equilibrium distribution follows from the following 
simple observation. We couple the process with given initial configuration to the process 
starting from the empty configuration and observe that for any interval [0, I] n H, the 
two processes will agree for all sufficiently large times since the process on [0, I] n Z 
is a finite state Markov chain. 
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The paper is organized as follows. In Section 2 we investigate the simplified model 

q1 and prove Theorem 2. The key to proving Theorem 2 is that (i) if we replace 
annihilation in the process nr by coalescence, we obtain a process & whose equilibrium 

density is twice that of yap and (ii) the process & has a dual which is easier to deal 
with than the dual of qr and which allows us to compute the density of particles in &. 
Section 3 is devoted to the proof of Theorem 1. 

2. The simplified model 

In this section we study the simplified version of the first approximation of the spin 
exchange model introduced in the last section, namely the annihilating random walk 

qr with source at the origin. It will be useful to introduce two other processes as well 
which are closely related to qt, namely the coalescing random walk with source at the 
origin and the completely asymmetric voter model. 

The three processes are each defined on the non-negative half line Zi = (0, 1,2,. . .}. 
We denote the annihilating random walk with source at the origin by { nr : t 3 0}, the 

coalescing random walk with source at the origin by { & : t > 0}, and the completely 
asymmetric voter model with drift by { il : t > O}. The state space of each system is 
9 = {all subsets of Z,‘}, where x E Q or x E t1 or x E it if there is a particle 
present at site x at time t. The dynamics of the random walk qt were given in the 
introduction. We repeat them here since the dynamics of & are very similar and can 

easily be described together: 
(i) Particles are born at the origin at rate 1 and jump immediately to +l. 

(ii) If a particle is at x, it jumps to x + 1 at rate 1. 
(iii) If a particle jumps to an already occupied site, then in the process Q, the 

particles annihilate each other, whereas in the process &, the particles coalesce. 
The dynamics of the completely asymmetric voter model with drift, it, are as follows: 

(i) If x is vacant and x + 1 is occupied, then at rate 1, x becomes occupied. 
(ii) If x is occupied and x + 1 is vacant, then at rate 1, x becomes vacant. 

If we think of vacant and occupied as opinions of voters, then the dynamics of cl can 
be formulated as follows: At rate 1, the voter at x imitates the opinion of the voter 
at x + 1. The voter model on Zd was introduced independently by Holley and Liggett 

(1975) and by Clifford and Sudbury (1973). 
The three processes can be defined using a graphical representation, a technique 

which was introduced in Harris (1972). This is standard fare (see, e.g., Durrett (1988) 
for an account on graphical representation). Since the graphical representation will be 

used explicitely throughout the paper, we present the details. The percolation substruc- 
ture for the graphical representation is defined on Zl x [O,oo) which is thought of 
as giving a time line to each x E Zi. We begin with constructing the annihilating 

random walk Q. For each x E Zl, let { Ut : n > 1) be the successive arrival times of 
independent Poisson processes with rate 1. At each time Ui, draw an arrow from x to 
x + 1 and place the symbol 6 at x, the tail of the arrow. The coalescing random walk 
& is constructed in exactly the same way. For the completely asymmetric voter model 
it, we only need to reverse the direction of the arrows, that is, arrows go from x + 1 
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to x, the symbol 6 is at x, the tip of the arrow. An idea of Harris (1972) allows us to 
construct each process starting from any initial configuration in Zz. 

For x, y E Zi and 0 bs d t, say there is a path from (x, s) to (y, t) (notation: (x, s) + 
(v, t)) if (JI, t) can be reached along an alternating sequence of upward and horizontal 
edges (traversed in the direction of the arrow) in such a way that no 6 lies in the interior 
of an upward edge, and there is no 6 at (JJ, t) itself. By reversing time, we can define 
dual paths, which will be used below to relate the completely asymmetric voter model 
to both the coalescing and the annihilating random walk with source at the origin. For 

x, y E Zi and 0 ds d t, say that there is a dual path from (x, t) to (y,s) (notation: 

(x, t)~(y,s)) if (y,s) can be reached along an alternating sequence of downward and 
horizontal (traversed in the opposite direction of the arrow) edges in such a way that 

no 6 lies in the interior of a downward edge, and there is no 6 at (v,s) itself. 
We are now ready to give the relationship between the three processes. Let tf 

(respectively, y!) denote the coalescing (respectively, annihilating) random walk with 

source at the origin in which all sites in ZJ are initially vacant. Let [f denote the 

completely asymmetric voter model in which initially y 4 & if y # x and x E &$. The 
voter model with drift and the coalescing random walk with source at the origin are 
related via the following duality equation: 

{x E [f} = ((0,s) -+ (x,t) for some O<sdt) 

= {(x,t) -5 (0,s) for some O<s<t} 

= (0 E [: for some O<s<t}, (2.1) 

where the dual paths (x, t) 3 (0, s) are constructed on the graphical representation of 
&. Similarly, the voter model with drift and the annihilating random walk with source 
at the origin are related via the following duality equation: 

{x E $} = {the number of dual paths from (x, t) to (0,s) 0 ds dt, is odd}.(2.2) 

The duality equations (2.1) and (2.2) are extensions of the well-known duality equa- 
tions for the voter model (see, e.g., Liggett, 1985, Chapter V, or Durrett, 1988, Chapter 
2) and follow easily from the graphical representation. We wish to show the following 
result which was stated as Theorem 2 in the introduction. 

lim 2J.NcP(x E qoo) = 1. 
X-DC, (2.3) 

Two main ideas go into the proof of this Theorem and we will explain them first 
before embarking on the proof. Looking at (2.1) and (2.2), it seems to be easier to 
prove results about coalescing random walks than about annihilating random walks. 
So, we will first prove the analogous result for the coalescing random walk &. This is 
the content of the following proposition. 

Proposition 1. Let & be the coalescing random walk with source at the origin dejined 
above with equilibrium distribution 5,. Then 

lim &EP(x E 5,) = 1. 
X-C0 (2.4) 
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As the reader can see, the only difference between (2.3) and (2.4) is the factor of 2. 
So, we need to show that asymptotically, as x tends to infinity, the ratio of the densities 
of particles in equilibrium in the two processes Q and & goes to one-half. That this is 

true, can be explained intuitively as follows: Twice as many particles are eliminated in 
a collision in the annihilating random walk compared to the coalescing random walk, 
therefore, the density in the annihilating random walk should be one-half the density 
of the coalescing random walk. This “one-half thinning” is contained in the following 
proposition. (This has actually been made rigorous for a class of coalescing/annihilating 
random walks by Griffeath, 1979 (see, Proposition 5.4, Chapter III and Arratia, 1981.) 
It turns out that the proof of our result needs a different argument, primarily since in 
our process there is a source of particles at the origin.) 

Proposition 2. 

Combining the two propositions thus implies Theorem 2. 

From now on we define the graphical representation so that the coalescing (anni- 
hilating) random walks evolve downwards on the graph and the voter model evolves 
upwards on the graph. We need to introduce some notation. The completely asymmet- 
ric voter model starting at x at time 0 remains a “block” (i.e., a completely occupied 
interval) until absorption at 0. We denote the location of the left edge of this interval 

at time t by L(t) and the right edge by R(t). (To keep the notation simple, we drop 
the dependence on x.) Let Nf = ICI. Then, Nr = R(t) - L(t) + 1. 

The left edge and the right edge each perform independent random walks which 
jump one unit to the left at rate 1 until i: is absorbed at 0. (Note, i: is absorbed 
at Q) at the first time when R(t) < L(t).) We can think of the movement of the two 

edges as governed by a rate 2 exponential clock: At each event time, we toss a fair 
coin to determine whether the left or the right edge moves. In the following it will 

be convenient to embed this process into a discrete time process: Let A, denote the 
number of times the left edge moves and B, the number of times the right edge 

moves by time n in the embedded process. Note that A, + B, = n and A, - B, is 
equal to the length of the interval [L(t),R(t)] after IZ steps if n corresponds to time t. 
Let 

W = inf{n : A, = x}, (2.5) 

that is, W is the first time the left edge hits the origin. We will extend the mo- 
tion of the two edges past the time of absorption of [f by simply letting them con- 
tinue to evolve as independent rate 1 random walks so that W is always defined. 
Using the discrete time process, we can reformulate the duality equation (2.1), that 
is, 

P(x E 5,) = P(0 E [, for some ~30) 

= P(A,3B, for all 1 <n< W). 

We can now prove Proposition 1. 

(2.6) 
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Proof of Proposition 1. Both of the edges R(t) and L(t) defined above start at x and 
we are interested in the event that the left edge reaches the origin before the right edge 
crosses over the left edge. Using the discrete time embedding, we claim that 

P(A,BB, for all lbndW)=P(A,>B, for all ldn62x). (2.7) 

To see why this is true, first note that 2x trials are enough to decide whether A,, falls 
below B, before A, occurs x times. (If A,, has not occurred x times by time 2x, then 

there must have been an m E { 1,2,. . . ,2x} with A, <B,. To see that we can replace 
W by 2x, note that if W occurs by time 2x and A,, 2 B, for all 1 bn d W, then A,, B B, 
for all 1 <n <2x. On the other hand, if A,, 2 B, for all 1 <n <2x, then W must occur 
by time 2x, otherwise there must have been an m E { 1,2,. . . ,2x} with A,,, < B,. 

Now, A, - B, is a simple random walk which takes steps f 1 with equal probabilities. 
The event {A,, > B, for all 1 < 12 ,< 2x} can then be interpreted as the event that a discrete 

time random walk starting at 0 which takes steps f 1 with equal probabilities does not 
touch the horizontal line through -1 for the first 2x steps. The asymptotic behavior of 
this is well-known and can be found, for instance, in Durrett (1992, p. 172). It is a 

simple application of the reflection principle (or ballot theorem): 

lim &EP(A, >B, for all 1 Gnb2.x) = 1. 
x-+00 

•i (2.8) 

Proposition 2 is a bit more difficult to prove and we split the proof up into several 
lemmas. The idea is the following: Starting the voter model at x at time 0, we need 

to know the location of the right edge at the (random) time when the left edge hits 
the origin conditioned on survival of the process. Denote the time when the left edge 
hits the origin by r. By convention, r = cc if the voter model dies out before the left 

edge reaches 0. Suppose r < 00 and R(r) = m. Then the voter model clearly survives 
until the right edge hits 0. We denote this time by r + 0,. That is, crm is the time it 
takes the right edge starting at m to reach 0. Note that during that time, the right edge 

is simply a random walk that jumps to the left at rate 1. Proposition 2 then follows 
upon showing that conditioned on survival, R(z) + cc as x + 03 and that the number 
of Poisson events with rate 1 between r and OR(r) is odd with probability approaching 
l/2 as x -+ co. 

We need some notation. Let 

T = inf {t : (: = 8) 

and let 

(2.9) 

V, = # of dual paths from (x, 0) to (0,s) for s < t, (2.10) 

in particular, V, counts the number of paths starting at (x,0) that will reach the origin. 

Set 

r = inf{t: L(t) = 0). (2.11) 

It follows from the duality equations (2.1) and (2.2) that 

P(x E %o) P( I’, odd) P( I’, odd) 

P(x E 503) = P(V,>O) = P(T>z) ’ 
(2.12) 



J.L. Lebowitz et al. IStochastic Processes and their Applications 64 (1996) 187-208 195 

To compute the numerator in (2.12), we decompose the event {V, odd} according 
to the location of the right edge of the voter model at time r. We denote by IS,,, the 

additional time it takes R(.) to reach 0 when starting from m and by M(s) the number 

of occurrences by time s in a Poisson process with rate 1. Then 

P( V, odd) = P( V, odd; V, > 0) = 2 P( V, odd; T > z; R(z) = m) 
m=O 

= ~P(M(o,) even; T > z; R(T) = m) 
m=O 

= ~P(M(o,) even 1 T > z;R(z)= m)P(T >qR(z)= m) 
m=O 

= FP(M(G~) even)P(T > z; R(r) = m). 
m=O 

(2.13) 

We switched from {V, odd} to {M(o,) even} since there is already one particle 
at the origin at the time when the let? edge hits the origin and we do not count this 

particle in the process M(.). To continue our computation of (2.13) (and hence (2.12)) 

we show the following lemma. 

Lemma 1. 

P(M(a,) even) = i[l + (i)m]. 

Proof. Note that g,,, is the time of the mth arrival in a 
1. Hence, o,,, is Gamma distributed with parameters m 
write 

P(M(a,) even) = P(M(s) even) dP(a, = s) 

=r 0 
e-'k(e' + e+)E ds 

=-J 2 1 03 

o 

(m-l)!dS+Z $?-le-s 1 s 00 Sm-le-3s 

o (m - l)! ds’ 

Poisson process with rate 
and 1. We can therefore 

The first integral is simply 1 since the integrand is the density of a Gamma distribution 
with parameters m and 1. The second integral can be evaluated by change of variables 
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and we obtain 

;+; J O” um-‘e-” du 
= () 3”-‘(m - l)! 3 

1 lrn Do Urn--lee-u = ;+- 
2 5 OS s (m-l)!du 

0 

m 
=;+; f ) 

since the integrand obtained after the change of variables is again the density of a 
Gamma distribution with parameters m and 1. 0 

Using Lemma 1, it is easy to obtain a lower bound on (2.13): 

P(Voo odd) 2 2 fp(T > r;R(z) = m) = $‘(T > r;R(r)>O) 
m=O 

= iP(T > z), (2.14) 

since {T > r} c{R(z) 3 0). After dividing by P( T > z), this shows that i is a lower 
bound for (2.12). To obtain an upper bound on (2.13) we let g(x) = x0.* and use 
Lemma 1. This yields 

P(I’m odd) = 2 ;[I + (;)mlf’(T > z;R(z) = m) 
Ill=0 

<P(T > z;R(z)<g(x)) + i[l + (f)+(T > r;R(z) > g(x)) 

<P(T > z;R(z)<g(x)) + i[l + (;)q(X’]P(r > r). (2.15) 

To obtain an upper bound on P( 2’ > z; R(r) d g(x)), we will use the discrete time 
embedding defined above (before the proof of Proposition 1). In addition, let S, = 
A, - B, with SO = 0 and let S, be an independent copy of S,,, that is, SO = 0 
and S, evolves according to the same law as S,,. Note that if Aw - Bw <g(x), then 
2x - W <g(x) which is the same as W 32x - g(x). We denote by ?- the first time IZ 
where A,, < B,. Since {F > W} = {f > 2x}, it follows that 

P(Aw - Bw <g(x);f > W) d Z'(S2x<g(x) + [g(x)1°.6;f z=- 2x) 

+fY &(X) I ’ [sw”~6 1. (2.16) 

To estimate P(Sh <g(x) + [g(x)]“.6; ri’ > 2x), we need the following discrete time 
version of a result by Bramson and Griffeath (1980): 

Lemma 2. There exists Cl > 0 so that 
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Using Lemma 2, we can estimate the first term on the right-hand side of (2.16) and 
obtain for sufficiently large x 

P(S2x <g(x) + [g(x)]o.6; f > 2x1 

= P(S2, <x0.* + x0.12 1 F > 2x)P( F > 2x) 

< P(&* <xo,3 I F > 2x)P( f > 2x) < Cl [x-0.q2P( F > 2x). (2.17) 

The second term on the right-hand side of (2.16) can be bounded in the following way 

s cx 

P( I&x) I ’ M~>1°.6) G c2 
1 

e -u2J2 dudC2------e -_[8(x)loz/2 

Mx)1° ’ kI(X)lO~’ 
(2.18) 

for some appropriate constant C2 < cc. Combining (2.17) and (2.18) we can bound 

(2.15): 

< C~X-O.~P(? > 2x) + C2x-“~02e-xo”/2 + 4 [ 1 + ( ~)g(x’],( T > r). (2.19) 

We need the following Lemma which follows immediately from a simple large devi- 

ations estimate and we omit the proof. 

Lemma 3. For any F > 0, there exists Y(E) > 0 so that 

P(lz -xl > EX I T > 7)6e-‘(E)X. (2.20) 

Now 

P(T > z) = P(T > z; Iz -xl <a) P(T > z; /z -x( > a) 

P(T > 2x) P(f > 2x) 
+ 

P( T > 2x) 

d 
P(T > (1 - a)~) + P(~T - XI > WC) 

P(? > 2x) P(T > 2x) 

Using (2.8) and Lemma 3, there are constants C3, Cd > 0 so that 

(2.21) 

c3 < P(T ’ (1 - 6)X) < c3 + c4fie--7w 

P(T>2x) ’ 
(2.22) 

A similar argument together with (2.8) also shows that the second term in (2.19) goes 

to 0 after dividing by P(T > z) and letting x -+ co. Therefore, after dividing (2.19) by 
P(T > z), the upper bound for (2.13) tends to l/2 as x + co. This proves Proposition 2. 

3. The co-jumping case 

In this section we prove Theorem 1. We begin by introducing two processes which 
are analogous to the processes qt and & defined in the previous section. The processes 
are again defined on the non-negative half line Zt = (0, 1,2, . . .}. We denote the 
annihilating random walk with co-jumping and source at the origin by { $ : t 3 0) and 
the coalescing random walk with co-jumping and source at the origin by {<F : t >,O}. 
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The state space of each system is 9’ = {all subsets of Z,‘} where x E $ or x E t; if 
and only if there is a particle present at site x at time t. The dynamics of the random 
walks $ and r; are as follows: 

(i) Particles are born at rate 1 at the origin and jump immediately to +l. 

(ii) If a particle is at x, then at rate 1, the particle at x and its closest neighboring 
particle to the right each jump (simultaneously) one unit to the right. 

(iii) If a particle jumps to an already occupied site, then in the process $, the 
particles annihilate each other, whereas in the process t:, the particles coalesce. 

One can again use the graphical representation introduced in the previous section to 
define the processes. We omit the details. 

The basic strategy in proving Theorem 1 is the same as in the previous section. 

Asymptotically, the annihilating random walk $ will again be a “one-half thinning” 
of the coalescing random walk 5: (this is the content of Proposition 6, which is the 
analogue of Proposition 2). Proving the analogue of Proposition 1 (which is contained 
in Proposition 5) is harder. In the simplified version there was a simple relationship 
(2.1) which allowed us to relate the coalescing random walk & to a voter model it. 
That is, a site x was occupied in the coalescing random walk if and only if the voter 

model starting at x reached the origin at some time sbt. The survival of the voter 
model until it hit the origin could be investigated by studying the left and the right 

edge in the voter model. The difference between the right and the left edge behaved 

like a random walk. 
We can again define a “cone” with a left edge and a right edge which is the analogue 

of the voter model dual in Section 2 and relate the survival of this cone to occupancy of 
a site in the coalescing random walk process (this is Eq. (3.3) below). But, as we will 
see, due to co-jumping events, the motion of the left and the right edges are not always 
necessarily independent. In analogy with the previous section, we call this backward 
process the modijied voter model and denote it by CF. From now on, we stipulate that 

the modified voter model starts at .x at time 0 and moves upwards on the graphical 
representation, whereas the particles move downward on the graphical representation. 
Fig. 4 shows a realization of coalescing random walks with co-jumping and source at 
the origin. For ease of reading, we drop the 6’s at the tails of the arrows. Particles 
in the coalescing random walk are born at the origin. Their movement is downward 
on the graphical representation and to the right whenever they encounter an arrow or 

are forced to jump due to a co-jumping event. In Fig. 4, the thickened lines are paths 

taken by particles, the dashed horizontal segments indicate jumps due to co-jumping 
events. The hatched area is the cone defined by the modified voter model. Note that 
particles in the coalescing random walk move to the right, whereas the edges of the 
cone jump to the left. 

To keep the notation simple, we drop all dependency on x. We denote the left edge 
at time t by L”(t) and the right edge at time t by F(t) and set L’(O) = Z?(O) = x. 
Let Z(t) E [LC(t),Rc(t)] and let N(l(t)) denote the number of particles in Z(t). We 
would like to point out that the movement of the edges is not defined by just giving 
the graphical representation but also includes the realization of the particle process. 
Given the particle configuration at time t and the locations of the left and the right 
edge, we can now describe the movement of the edges and hence the movement 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Fig. 4. Coalescing random walks with co-jumping and source at the origin. 

of the difference process Z(t) = RC(t) - LC(t). The dynamics of the edges are as 
follows. 

The left edge L”(t) jumps one unit to the left whenever it encounters an arrow from 

LC(t) - 1 to L’(t) or whenever the rightmost particle in [O,L”(t) - 21 jumps. 
The right edge RC(t) jumps one unit to the left whenever it encounters an arrow 

from RC(t) to RC(t) + 1 or whenever the rightmost particle in [O,RC(t) - l] jumps. 
It is clear from the above rules that there are cases where the left and the right edge 

jump simultaneously, namely, (i) when at least one of the edges is occupied and the 
interval [LC(t) + l,RC(t) - l] is empty, and (ii) when [LC(t),RC(t)] is empty. In all 
other cases, the left and the right edge evolve independently of each other. In the first 

case, the left and the right edge jump simultaneously if either the left edge is occupied, 
[L”(t) + l,RC(t) - I] is empty (the right edge may or may not be occupied) and the 

particle on the left edge jumps, that is, there is an arrow from Lc(t) - 1 to Lc(t), or 
the left edge is vacant, the right edge is occupied, [LC(t) + l,RC(t) - l] is empty and 
the rightmost particle in [O,LC(t) - 21 jumps. The second case will not be important to 
us since if [Lc(t),Rc(t)] is empty, it will remain empty. 

The evolution of the left edge process L’(s), O<S< t, is defined in such a way that 
when we follow the evolution from t to 0, the following two conditions hold true: (1) 
A particle starting on or to the right of the left edge at time t remains on or to the 
right of the left edge during [0, t], and (2) a particle which starts to the left of the left 
edge at time t, remains to the left of the left edge during [0, t]. The evolution of the 
right edge process RC(s), O<s< t, is defined in such a way that when we follow the 
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evolution from t to 0, the following two conditions hold true: (1) A particle starting 
on or to the left of the right edge at time t remains on or to the left of the right 
edge during [O,t], and (2) a particle which starts to the right of the right edge at time 
t, remains to the right of the right edge during [0, t]. This allows us to define the 

above-mentioned cone. 
We observe that the evolution of F(s)+ 1 is defined by rules which are identical to 

the rules defining the evolution of L’(s). Therefore, we conclude that F(s), O<s <t, 
evolves like L’(s), 0 <s<t, and statements about the evolution of the left edge hold 
as well for the right edge. 

Our first lemma states that the path of the left edge between time 0 and time f 
does not depend on the exact location of the particles to its left at time t. That is, 
if we denote by _S?([O,t]) the random variable which describes the path of Lc(s) for 

0 <s < t, by 1;;;; a realization of the left edge starting at (x,0) and ending at (y,t), and 

by $ the configuration of the coalescing random walks at time t, then the following 
holds: 

Lemma 4. Let ~7 and @ be two subsets of [l, y]. Then 

P(~([O, fl> = g;j I v; n [LY] = ~1;) = P(~(]O,t]) = @J I v:: n [l,~] = v;). 

Proof. Assume L’(s) = z. The movement of the left edge is governed by two inde- 

pendent processes: (i) arrows from z - 1 to z and (ii) jumps of the rightmost particle 
in [O,z - 21 if [O,z - l] n Z # 0, and a birth at 0 otherwise. If v]y n [ 1, y - l] # 8, 
then there are particles to the left of the left edge throughout [0, t] and hence there is 
always a rightmost particle which jumps at rate 1 (following arrows) regardless of its 
position. 0 

The next lemma describes the movement of the left (or right) edge. 

Lemma 5. The left edge jumps at rate 2, that is, 

P(F(t + h) = y - W(t) = y) = 2hP(P(t) = y) + o(h). 

Proof. The key ingredient is Lemma 4 which states that the movement of L’(s), 

0~s <t, is independent of the particle configuration to the left of it at time t. The 
statement in Lemma 5 then follows immediately from 

P(LC(t + h) = y - l,,?(t) = y) 

+P(LC(t) = Y; Nt+h([ 1, y - 21) = 0) .2h + o(h), 

since the left edge jumps at rate 1 whenever it encounters an arrow, or - if there are 
particles to its left - whenever the rightmost particle to its left jumps, or - if there 
are no particles to its left - whenever a birth occurs at the origin. The last two events 
each happen at rate 1. 0 
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We conclude that the motion of the difference process Z(t) = F(t) - LC(t) is 
thus a rate 4 random walk as long as the edges are not in states where they jump 

simultaneously (in which case Z(t) stays put and hence Z(t) only jumps at rate 2). 

Note that it follows from the above construction that if there is a particle in the 
interval Z(t), then Z(t) will never become negative. However, if there is no particle in 
I(t), then the right edge can jump over the left edge in which case Z(t) < 0 and we 
say that the cone has died. 

To obtain a “duality” equation we let 

Tc = inf{t: [F = S} = inf{t: Z(t) < 0} (3.1) 

and 

rC = inf{t: LC(t)<O}. (3.2) 

Then the following will serve as the duality equation: 

{x E r;> = {r’ < 7-C). (3.3) 

As in the case without co-jumping we need the asymptotic behavior of the probability 
of survival of the interval I(t) and the asymptotic behavior of the length of the interval 

Z(t) conditioned on survival. This is made more difficult by the fact that the left and 
the right edge may co-jump. The first step will therefore be to find an a priori estimate 

on the total number of times the left edge and the right edge co-jump. Let K(x) denote 
the total number of co-jumping events in the dual process when starting from [k = {x} 
until either the left edge hits the origin or the dual process dies out. The following 
result provides us with an a priori estimate on IX(x). 

Proposition 3. There exists y > 0 so thut 

EK(x) < ;$& (3.4) 

The proof of Proposition 3 involves several steps of which the first one is to find 

an a priori estimate on the total amount of 
co-jump. We will suppress the dependency 

Ils = l{co-jumping possible ac tune .s} 

and 

s f T, = xs ds. 
0 

time the left edge and the right edge may 
on x below to simplify notation. Let 

(3.5) 

(3.6) 

As explained above, co-jumping can have different sources: When there are particles 

in I(s), then co-jumping can only occur when both edges are occupied by neighboring 
particles or when there is only one particle in I(s) and the particle is at either L’(s) 
or F(s). We can decompose xS into two parts: 

il.7 = l{,,,.S, or R’(s) occupled, M([L’(.s),R’(.s)]) = I,RK(s)2Lc(s)} 

fl{LW and RC(s) occupled. N([LL(c).RL(s)])=2,R‘(s)>L’(s)} 

= 1(‘, ’ ) +  x,i’ ) (3.7) 
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and write t 
Tt = T(l) + T(‘) t t with T(‘) = t J $1 ds. 

0 
(3.8) 

We need the following definition. If z is occupied in the forward process (i.e., the 

coalescing random walk 5:) then set 

C(z) = location of the nearest neighbor to the right. 

Then we can rewrite xi2’ as 

(3.9) 

$’ = 1 {c(Lc(J))=Rc(~),Lc(~) occupied). 

The following lemma contains an estimate on ET,(‘) and ETj2) 

Lemma 6. There exists C > 0 so that 

ET’*’ < c & t --. 2 . 

(3.10) 

(3.11) 

(3.12) 

Proof. The idea of the proof is the following. We start a voter model at x at time 
0 and run it for s units of time. If it is still alive at time s, then it is an interval of 

length N,. The length is random and if we denote by Z(s) the random walk defined 
above, and set 

TC = inf{r: N, < 0}, (3.13) 

then 

P(N, = z) = P’(Z(s) = z; z > s) <P’(Z(s) = z - 1) (3.14) 

where the superscript at P is the starting point. It follows from the local central limit 
theorem that there exists a constant C > 0 which does not depend on s or z such that 

PO(Z(s) = z) d s- 
4fi’ 

(3.15) 

Note that for the estimate in (3.15), we do not need to know the exact distribution of 
xs. It suffices to know that Z(s) is a mixture of the two random walks described. 

We stop the voter model at time s and think of it as “landing” on the stationary 
distribution of the coalescing random walk with source at the origin. Of course, neither 
L’(s) nor F(s) need to be occupied by a particle. We estimate Ei” and E12) separately. 
We begin with E12’. Then 

P[C(L’(s)) = RC(s),LC(s) occupied] 

= c P[F(s) = L’(s) + y,L’(s) occupied, C@‘(s)) = L’(s) + y] 
y>l 
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= c P[P(s) = L’(s) + y 1 L’(s) occupied, C(L’(s)) = L’(s) + y] 
Y>l 

xP[C(F(s)) = L’(s) + y 1 L’(s) occupied] P[P(s) occupied]. 

(3.16) 

Given that the left edge lands on an occupied site and that the co-jumper of that 

particle is y steps to the right of it, the probability that the width of the interval created 
by the modified voter model is y, is bounded by C/44. The reason why this is true is 
the following. We first run the forward process long enough so that we get a stationary 

distribution at time s. The graphical representation in [O,s) is independent of that. We 
just need to put down rate 1 arrows. What is not independent, is the amount of time 
co-jumping events occur in the modified dual in [O,s). We know from Lemma 4 that 
the motion of the left and right edges in [O,s) given the occupation number of the 
edges at time s are rate 2 random walks. Since no matter how often both edges are 
occupied by neighboring particles, the difference is either a rate 2 or a rate 4 random 

walk. The estimate (3.15) holds for any mixture of that sort. Hence, using (3.15) 

t ET,(*) < J’ P[C(L’(s)) = RC(s),LC(s) occupied] ds 
0 

P[C(L”(s))-L”(s)= y 1 LC( s occupied] P[L’(.s) occupied] ds ) 

=s f c 
-P[C(Lc(s)) - L’(s) 2 1 1 L’(s) occupied] P[L”(s) occupied] ds 

0 44 

=J’ f c 
-@‘[L’(s) occupied] ds d 

s 

t c 

0 

-ds= $i, 
0 w 

(3.17) 

To estimate ET,(‘), we define D(z) = sup{y E Z+, y < z: y is occupied}. Then 

P(L’(s) occupied,N([L’(s),P(s)]) = 1) 

= P@?(s) empty, D(F(s)) = L’(s)) 

R’(S)- 1 

= c P(F(s) empty,P(s) -L’(s) = y, @I?(s)) = RC(s) - y). (3.18) 
v=l 

Since the events {D(P(s)) = F(s) - y)} and {F(s) empty} are independent of 
{F(s) - Lc(s) = y} by Lemma 4, we obtain, using the a priori estimate (3.15) the 

following upper bound on (3.18). 
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< sRCF’ P(F(s) empty,D(F(s)) = v) 
1’=I 

_-$F P(F(s) empty,RC(s) = z,D(z) = y) 
221 y--l 

= $$x $f!P(z empty,D(z) = y ) F(s) = z)P(P(s) = z) 
s z>l y=l 

A similar argument proves an identical estimate in the case when the right edge is 

occupied and N([LC(s),RC(s)]) = 1. Hence, 

f ET,“) <2 
J’ 

P(L’(s) occupied,N([LC(s),RC(s)]) = 1)ds 
0 

QC 4 ot-$ds= ;ti. 
s 

This completes the proof of Lemma 6. 0 

(3.19) 

It is now straightforward to prove Proposition 3. 

Proof of Proposition 3. Lemma 6 implies that 

If M(t) is a Poisson process with rate R, then M(t) - 3~ is a martingale. Applying 
the optional stopping theorem to K(x) and observing that the rate at which co-jumping 

occurs is finite (in fact, d 4) then finishes the proof. 0 

The a priori estimate in Proposition 3 will be used to show a local central limit 

theorem for the discrete time embedding of Z(t). This is the analogue of (2.8) and 
one of the key estimates in the proof. 

Let Z(t) be the continuous time random walk defined above as a mixture of a rate 
4 and rate 2 random walk. It changes by +l or - 1 with equal probabilities. We can 
also think of Z(t) as run by a rate 4 exponential clock and, whenever Z(t) is in one of 
the co-jumping cases, it stays put with probability i, thus yielding the rate 2 random 
walk; we denote by S,C its discrete time embedding. We can then write Sz as a sum 
of Xi’s and Yi’s where the Xl’s take values fl with equal probabilities and the Yi’s 
take value 0 with probability i and values &l with probability $ each. That is, the 
Xi’s correspond to the jumps in the rate 4 random walk and the Y,‘s to the jumps in 
the rate 2 random walk. Denote by M the number of occurrences of the Yj’s by time 
n. Then 

n-M 
s; = c&+eYk. (3.20) 

k=l k=l 
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We cannot say much about the order in which the Xi’s and the Yi’s occur. But this 

is not needed. All we need is an estimate on the total expected number of times 

the random walk stays put (that is, when co-jumping occurs). This is provided by 
Proposition 3. That is, we assume that there exists a constant y > 0 so that 

EK(x) d yfi. (3.21) 

As in Section 2 we denote by Ai (II;) the number of times the left (right) edge jumps 
by time n. (Note in a co-jumping event, both Ai and Bfi increase by one simultaneously 
so that the change in S,, is zero.) Let WC = inf{n : A: = x} and TC = inf{n : Ai < Bi}. 

We wish to show the following Proposition. 

Proposition 4. Under assumption (3.2 I), 

lim &P[Ai > Bi for all n d WC] = 1. 
X’CC 

Proof. As in Section 2, 

P(,4C, >, Bi for all n < WC) = P(Ai >,B”, for ah n d 2x). 

Furthermore, by the reflection principle 

P(Six = y, TC 62x) = P(S& = -y - 2) = P(S& = y + 2) 

for all y 30, so that 

P(& = y, TC > 2x) = P(SL = y) - P($, = y + 2) 

for y 3 0. Therefore, 

P(S,C 30 for all n 62x) = C [P(S& = y) - P(S& = y + 2)] 
Y>O 

=P(s&=o)-P(s;x= 1) (3.22) 

That is, we need to investigate the asymptotic behavior of &[P(S& = 0) - P(S& = 
I)]. We will use a standard harmonic analysis argument to do this (see, e.g., Spitzer, 
1964, Section 7). We set 

4,((j) = EeiBX” = i(eiN + e-j”) = cos 0 

and 

&(H) = EeioY” = i + i(eiu + e-‘O) = l(l + cos 0). 

Since Si = 0, it follows that 

(3.23) 

(3.24) 

= 2 c#l,(e)n-m(0)c#l~(~)P(A4 = m). 
m=O 

(3.25) 
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A standard argument then yields 

P(S:=y)=&lle-‘*‘g q5,(Q’-m(0)~;r(tl)P(M = m)df?. (3.26) 

Setting n = 2x and using (3.23) and (3.24) we get 

P(Sg. = y) = FP(M = m)& I_’ epioy 
m=O R 

(cos e)2x--m [;(l -cos H)]li do. 

(3.27) 

To carry out the integration, we use the same trick as in Spitzer (1964, p. 78), together 
with the observation that terms for odd m do not contribute in the limit and obtain 

P(SL = y) = 22 P(A4 = 2m& 
2m 

m=O s 

44 
e-i+(COs q2@-m) cos e) 

-n/4 
;(l - ] dt3. 

(3.28) 

We make the substitution 96 = 2, then the right-hand side of (3.28) is 

= 22 P(M = 2F&&_ 
m=O 

J’ 
7[v5/4 

X 

-nJZ;l4 

e-i~~‘~(~os~)2’x-“‘[~ (1 -cos&)]2nd; (3.29) 

We split the sum into two parts, namely CkIl’ . . + x,,xob . . . It follows from Propo- 

sition 3 that 

from which it follows that the second term will not contribute. For the first sum, note 
that for 0 <m d [x’“j, 

as x tends to infinity. Hence, the right-hand side of (3.29) is asymptotically 

- 2kP(M = 2m)Ll N 1 
m=O 

2x6 d&z 
(3.30) 

since P(M even)/P(M odd) + 1 as x -+ co. Combining (3.22) and (3.30) shows the 
claim. 0 

Following the program in Section 2, the next step is to modify Lemma 2. Not 
surprisingly, the result looks the same. 
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Lemma 7. Under assumption (3.21), there exists Cl > 0 so that 

P(S&dufi 1 TC > 2x)<C,u2. (3.31) 

The proof is essentially the same as for Lemma 2 whose proof can be found in 
Liggett (1985, Chapter V, Theorem 4.9(b)). The only modification needed is that (3.26) 
replaces the simpler form of P(& = v) in the case without co-jumping. The same tricks 
as in the proof of Proposition 4 then allow us to obtain the result. We omit the details. 

It is now easy to prove the analogue of Proposition 1. 

Proposition 5. 

lim &P(xE&)= 1. 
I’00 

Proof. By duality (Eq. (3.3)) 

{rc,<w”} = {x $! &}. 

Hence using Proposition 4, we can obtain lim,,, fip(x E &): 

(3.32) 

The analogue of Proposition 2 is contained in the following proposition. 

Proposition 6. 

The proof of Proposition 6 is the same as the proof of Proposition 2. Putting everything 

together as in Section 2 then implies Theorem 1. 
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