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Consider a long term study, where a series of possibly censored failure times is
observed. Suppose the failure times have a common marginal distribution function
F, but they exhibit a mode of dependence characterized by positive or negative
association. Under suitable regularity conditions, it is shown that the Kaplan�
Meier estimator F� n of F is uniformly strongly consistent; rates for the convergence
are also provided. Similar results are established for the empirical cumulative
hazard rate function involved. Furthermore, a stochastic process generated by F� n is
shown to be weakly convergent to an appropriate Gaussian process. Finally, an
estimator of the limiting variance of the Kaplan�Meier estimator is proposed and
it is shown to be weakly convergent. � 1998 Academic Press
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1. INTRODUCTION, ASSUMPTIONS, AND STATEMENT
OF MAIN RESULTS

Let T1 , ..., Tn be a sequence of the true survival times for n individuals
in a life table. These random variables (r.v.s) are not assumed to be
mutually independent (see Assumption (K1) below for the kind of
dependence stipulated); it is assumed, however, that they have a common
unknown continuous marginal distribution function (d.f.) F(x)=P(Ti�x),
and that F(0)=0. Let the r.v.s. Ti be censored on the right by the r.v.s. Yi ,
so that one observes only

Zi=Ti 7 Yi and $i=I(Ti�Y i), (1.1)
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where 7 denotes minimum and I( } ) is the indicator r.v. of the event
specified in the parenthesis. In this random censorship model, the censoring
times Yi , i=1, ..., n, are assumed to be independent identically distributed
(i.i.d.) r.v.s. with d.f. G( y)=P(Yi� y) such that G(0)=0; they are also
assumed to be independent of the Ti 's. The problem at hand is that of
drawing nonparametric inference about F, based on the censored observa-
tions (Zi , $i), i=1, ..., n. For this purpose, for any t�0, define three
stochastic processes on [0, �) as follows:

Nn (t)= :
n

i=1

I(Zi�t, $i=1)= :
n

i=1

I(Ti�t 7 Yi), (1.2)

the number of uncensored observations less than or equal to t;

Yn (t)= :
n

i=1

I(Zi�t), (1.3)

the number of censored or uncensored observations greater than or equal
to t; and

Mn (t)=Yn (&�)&Yn (t+)&Nn (t)= :
n

i=1

I(Zi�t, $i=0), (1.4)

the number of observations censored at a value less than or equal to t. The
Kaplan�Meier (K�M) estimator F� n of F (Kaplan and Meier, 1958), based
on the censored data (Zi , $i), i=1, ..., n, is defined through the relation

1&F� n (t)= `
s�t \1&

dNn (s)
Yn (s) + , (1.5)

where dNn (s)=Nn (s)&Nn (s&). As is known (see, for example, Gill,
1980), for a d.f. F on [0, �), the cumulative hazard function 2(t) is given
by:

2(t)=|
t

0

dF(s)
1&F(s&)

, (1.6)

and 2(t)=&log(1&F(t)) for the case that F is continuous. The empirical
cumulative hazard function 2� n (t) is taken to be

2� n (t)=|
t

0

dNn (s)
Yn (s)

, (1.7)

which is referred to in literature as Nelson estimator of 2(t).
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For the case that the failure time observations are mutually independent,
the K�M estimator F� n (t) has been studied extensively by many
investigators during the last three decades. For example, uniform con-
sistency, weak convergence and other asymptotic properties were obtained
by Breslow and Crowley (1974), Peterson (1977), Gill (1980, 1983), Wang
(1987), Stute and Wang (1993), and Stute (1994) among others. However,
there are preciously few results available for the case that these observa-
tions exhibit some kind of dependence. For instance, for positively
associated r.v.s., Bagai and Prakasa Rao (1991) discussed the strong con-
sistency and asymptotic normality of the empirical survival function; weak
convergence of the empirical process was obtained by Yu (1993). However,
these authors focused on the uncensored observations. Voelkel and
Crowley (1984) used an approach, based on semi-Markov processes, to
establish a reasonable model in Cancer Research Clinical Trials assuming
that each patient may either remain in an initial state, or progress, or
respond and then possibly relapse. Ying and Wei (1994) explored con-
sistency and asymptotic normality of F� n (t) in the ,-mixing context. An
application of the right censoring model was also given for a special
dependent case, in which survival times are highly stratified.

In this paper, we study the large sample properties of the K�M estimator
F� n (t) for the case in which the underlying failure times are assumed to be
positively or negatively associated (see Definition 1.1 below). More
precisely, the main results obtained in this work are as follows. The K�M
estimator F� n , defined through (1.5), is shown to be uniformly strongly con-
sistent under either positive or negative association (see Theorem 1.2);
rates of convergence are also provided (see Theorem 1.4). The proofs of
these theorems are facilitated by first establishing similar results for the
empirical cumulative hazard function 2� n (t) defined by (1.7) as an estimate
of the cumulative hazard function 2(t), given in (1.6) (see Theorems 1.1
and 1.3). Next, consider the stochastic process generated by the estimator
F� n (t) and defined by (1.12). It is then shown that this process converges
weakly to a suitable Gaussian process (see Theorem 1.5) with specified
covariance structure, given by (4.12), and (4.7). Finally, a valid estimate is
constructed for the variance of the Gaussian process just mentioned; this is
the content of Theorem 1.6.

The definition of the underlying dependence considered here is as follows.

Definition 1.1. The r.v.s. [Xj ; 1� j�n] are said to be positively
associated (PA), if for every G, H: Rn � R, which are coordinatewise
nondecreasing, and for which E[G2 (X j , 1� j�n)]<�, E[H2 (Xj ,
1� j�n)]<�, it holds that:

Cov[G(Xi , 1�i�n), H(Xj , 1� j�n)]�0.
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The above r.v.s. are said to be negatively associated (NA), if for every non-
empty proper subset A of [1, 2, ..., n] and for every G: R*A � R,
H: R*Ac

� R, which are nondecreasing as above, and for which
E[G2 (Xj , j # A)]<�, E[H 2 (Xj , j # Ac)]<�, it holds that:

Cov[G(Xi , i # A), H(Xj , j # Ac)]�0;

here and in the sequel, *A denotes the cardinality of A. Infinitely many
r.v.s. are said to be PA(NA), if any finite subset of them is a set of PA(NA)
r.v.s.

Positive association has found extensive applications in systems
reliability and various problems in statistical mechanics. See, for example,
Harris (1960), Esary et al. (1967), Fortuin et al. (1971), Barlow and
Proschan (1975), and Newman (1980, 1990). On negative dependence, in
the paper by Ebrahimi and Ghosh (1981), it is argued (see Section 5) that
this kind of dependence holds in many multivariate distributions, and has
an impact on certain reliability problems. Block et al. (1982) undertook a
systematic study of negative dependence. The concept of NA was intro-
duced in Joag-Dev and Proschan (1983). They compared it with other
proposed concepts of negative dependence, and justified the claim that NA
possesses certain advantages over competing notions of negative
dependence. The authors emphasized that NA is not simply dual to PA,
but it differs from it in important respects. They also derived, as a
byproduct of their main results, that many well-known multivariate dis-
tributions are NA. The papers by Joag-Dev (1983), and Brindley and
Thompson (1972) are also relevant references. Bozorgnia et al. (1993)
derives a wealth of results regarding limiting theorems for negatively
dependent r.v.s, in general, and NA r.v.s in particular, including Weak and
Strong Laws of Large Numbers, and Roussas (1994) established the
asymptotic normality for random fields under either PA or NA. Perhaps,
the significance of NA may lie, however, in the perception that NA is the
appropriate modeling for several species competing for the same limited
resources.

The additional assumptions under which the main results of this paper
are derived are gathered below for easy reference.

Assumptions. (K1) [Tj ; j�1] is a stationary sequence of ( positively or
negatively) associated r.v.s. with marginal d.f. F, having a bounded density
and finite second moment.

(K2) The censoring time variables [Yj ; j�1] are i.i.d. r.v.s with
bounded density, and are independent of [Tj ; j�1].

(K3) ��
j=2 j&2 � j&1

i=1 |Cov(Ti , Tj)|1�3<�.
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(K4) �n
j=2 j2 |Cov(T1 , Tj)|1�3=O(n{0), for some 0�{0<1.

(K5) ��
j=n+1 |Cov(T1 , Tj)| 1�3=O(n&(r&2)�2), for some r>2.

For the d.f.s F and G, define (the possibly infinite) times {F and {G by:

{F=inf[ y: F( y)=1], and {G=inf[ y: G( y)=1]. (1.8)

Then for the marginal d.f. H of the Zi 's, it holds (see, for example, Stute
and Wang, 1993):

{H={F 7 {G . (1.9)

At this point, it is mentioned that all limits are taken as n � �, unless
otherwise stated, and proceed with the statement of the main results of this
paper.

Theorem 1.1. Suppose that Assumptions (K1)�(K2) hold. Then, for any
0<{<{H , where {H is given by (1.9), we have:

(i) If the r.v.s. [Tj ; j�1] are PA, and Assumption (K3) is satisfied,
it holds:

sup
0�t�{

|2� n (t)&2(t)| � 0 a.s. (1.10)

(ii) If the r.v.s [Tj ; j�1] are NA, then, (1.10) holds.

Theorem 1.2. Suppose that Assumptions (K1)�(K2) hold. Then, under
the additional assumptions either in part (i) or part (ii) of Theorem 1.1, it
holds:

sup
0�t�{H

|F� n (t)&F(t)| � 0 a.s., and

sup
0�t�Zn : n

|F� n (t)&F(t)| � 0 a.s., (1.11)

where Zn : n=maxi�n Zi .

Theorem 1.3. Let the r.v.s [Tj ; j�1] be either PA or NA, and suppose
that Assumptions (K1), (K2) and (K5) hold. Then, for any 0<{<{H , we
have:

sup
0�t�{

|2� n (t)&2(t)|=o(n&%) a.s.,
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where 0<%<(r&2)�(2r+2+\) for any \>0, and r is given in Assumption
(K5).

Theorem 1.4. Let the r.v.s [Tj ; j�1] be either PA or NA, and suppose
that Assumptions (K1), (K2), and (K5) hold. Then, for any 0<{<{H , we
have:

sup
0�t�{

|F� n (t)&F(t)|=o(n&%) a.s.,

where % is defined in Theorem 1.3.

Next, let Z� n (t) be defined by

Z� n (t)=
- n[F� n (t)&F(t)]

1&F(t)
, (1.12)

and let W( } ) be a zero-mean Gaussian process in D[0, {] for some { such
that {<{H and F({)<1, and W(0)=0; the covariance structure of W( } ) is
given by (4.12) and (4.7). Then the following result is true.

Theorem 1.5. Let W( } ) be the zero-mean Gaussian process with
covariance function defined by (4.12) and (4.7). Then, under Assumptions
(K1), (K2) and (K4), and the additional condition that [Tj ; j�1] are either
PA or NA, the process Z� n ( } ) defined in (1.2) converges weekly as follows:

Z� n ( } ) w�D W( } ) in D[0, {],

for any {<{H such that F({)<1. This implies that - n(F� n&F ) converges
weakly to (1&F )W.

Remark 1.1. The asymptotic behavior of the stochastic process under
consideration here was studied by Yu (1993) for the uncensored case under
PA. The author proved that, under suitable conditions, two versions of
the process converge weakly to a zero-mean Gaussian process
(see Theorem 2.2 and Corollary 1 in Yu, 1993, p. 360). However, there are
differences in two points between what Yu (1993) obtained and what is
derived here. First, the space D[0, 1] in Yu (1993) is replaced by the space
D[0, {] (0<{<{H) here, and second the covariance structures of the two
limiting processes in the two papers are not identical. Both differences are
due to the random censorship assumed here. Incidentally, Theorem 1.5
here also holds for the NA case as well, not treated in Yu (1993). Finally,
the basic assumption (2.5) in Yu (1993) implies the corresponding assump-
tion here stated in (K4) for some {0>0. Indeed, setting for convenience
cj=|Cov(T1 , Tj)|, the left-hand side of (K4) is
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:
n

j=2

j2c1�3
j = :

n

j=2

j(13�2+&)�3c1�3
j j&(1+2&)�6

�\ :
n

j=2

j13�2+&cj +
1�3

\ :
n

j=2

j&(1+2&)�4+
2�3

(by the Cauchy�Schwarz Inequality)

�C \ :
n

j=2

j&(1+2&)�4+
2�3

(by (2.5) in Yu (1993))

�C((1�(&#+1))(n&#+1&1))2�3

�C((1�(&#+1)) n&#+1)2�3, where #=(1+2&)�4

=55Cn(3&2&)�6=Cn{0;

that is, �n
j=2 j2 |Cov(T1 , Tj)|1�3=O(n{0), as asserted.

Finally, the result below provides for a consistent estimate of the
variance _2 (t, t) of the limiting process W( } ), given by (4.7) (for s=t).
More precisely, we have:

Theorem 1.6. Let _2 (t, t) and V� n (t) be given by (4.7) (with s=t) and
(5.4), respectively, and suppose Assumptions (K1), (K2), and (K5) hold.
Then, if the r.v.s [Tj ; j�1] are either PA or NA, the quantity nV� n (t) is a
weakly consistent estimate of _2 (t, t).

The proofs of Theorems 1.1 through 1.4 are given in Section 3.
Theorem 1.5 is established in Section 4 along with some auxiliary results.
Finally, a justification of Theorem 1.6 is presented in the final section of the
paper, Section 5.

2. SOME PRELIMINARY RESULTS

In this section, some preliminary results are discussed to be used in the
proofs of the theorems stated.

Lemma 2.1. Let [Xj ; j�1] be a stationary sequence of r.v.s. Then:

(i) If the r.v.s are PA, having finite variance and satisfying the condi-
tion:

:
�

j=2

j&2 :
j&1

i=1

Cov(Xi , Xj)<�, (2.1)
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it follows that:

1
n

:
n

i=1

(X i&EX i) � 0 a.s. (2.2)

(ii) If the r.v.s are NA with finite first moment, the convergence in
(2.2) holds true.

Proof. Case (i) is discussed in Birkel (1989), Theorem 1, and case (ii) is
found in Theorem 5.1 of Bozorgnia et al. (1993). K

Lemma 2.2. Let U
�

=(U1 , ..., Un)$ and W
�

=(W1 , ..., Wm)$ be two inde-
pendent random vectors. Then:

(i) If Xi =
d gi (Ui , W

�
), i=1, ..., n, where gi is nondecreasing in each

wj , 1� j�m, for fixed ui , and W
�

are PA, then so are X
�

=(X1 , ..., Xn)$.

(ii) For m=n, if Xi =
d g i (U i , Wi), i=1, ..., n, and gi is nondecreasing

in wi , for fixed ui , and W
�

are NA, then X
�

are also NA.

Proof. Case (i) is discussed in Egeland (1992), Theorem 2.2. We will
present the proof of (ii). Let A be any nonempty subset of [1, ..., n], and
let H1 : R*A � R, H2 : R*Ac

� R be coordinatewise nondecreasing, and
suppose that:

E[H 2
1(Xj , j # A)]<�, and E[H 2

2(Xj , j # Ac)]<�. (2.3)

Also, let FU denote the joint d.f. of U
�
. Then it follows by the independence

of U
�

and W
�

that:

Cov[H1 (Xi , i # A), H2 (Xj , j # Ac)]

=|
Rn

Cov[H1 (gi (ui , Wi), i # A), H2 (g j (uj , Wj), j # Ac)]

_dFU (u1 , ..., un).

For fixed uj , 1� j�n, let H*1 (Wi , i # A)=H1 (gi (ui , Wi), i # A) and H*2(Wj ,
j # Ac)=H2(gj (uj , Wj), j # Ac). Clearly, H*1 : R*A � R and H*2 : R*Ac

� R
are coordinatewise nondecreasing and satisfy (2.3). Therefore, for fixed uj ,
1� j�n, it follows by negative association that:

Cov[H*1 (Wi , i # A), H*2 (Wj , j # Ac)]�0,

which implies that:

Cov[H1 (Xi , i # A), H2 (Xj , j # Ac)]�0.

This inequality completes the proof of the lemma. K
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The following lemma extends Theorem 2 in Birkel (1988) for the PA case
to the NA case. This theorem is stated as part (i) of the lemma below.

Lemma 2.3. Let [Xj ; j # N] be a sequence of r.v.s satisfying the
requirements: E(Xj)=0 and |Xj |�C<� for j # N, the set of all positive
integers. Then:

(i) If the r.v.s are PA and satisfy the condition:

sup
k # N

:
j: | j&k|�n

|Cov(Xj , Xk)|=O(n&(r&2)�2) (2.4)

for some r>2, it follows that, for all n # N, there exists a constant B>0, not
depending on n, such that:

sup
m # N _ [0]

E } :
m+n

j=m+1

Xj }
r

�Bnr�2. (2.5)

(ii) If the r.v.s are NA, the inequality in (2.5) holds true for any r�1.

Proof. As already mentioned, case (i) is discussed in Birkel (1988),
Theorem 2. We will present the proof of (ii). Indeed, it follows by Proposi-
tion 3.1 in Roussas (1996), the Hoeffding inequality for NA r.v.s, that, for
any r�1 and m�0:

E } :
m+n

j=m+1

Xj }
r

=rnr |
�

0
tr&1P \} :

m+n

j=m+1

Xj }>nt+ dt

�2rnr |
�

0
tr&1e&t2n�2C dt=Bnr�2,

where B=r(2C)r�2 1(r�2). This completes the proof of the lemma. K

Recall that F and G are the d.f.s of the Ti 's and the Yj 's, respectively, and
set

F
*

(t)=P(Z1�t, $1=1)=P(T1�t 7Y1), (2.6)

where Z1 and $1 are given in (1.1). Then we have:

F
*

(t)=|
�

0
F(t7 z) dG(z)=|

t

0
[1&G(z)] dF(z)=|

t

0
[1&G(z)] dF(z). (2.7)
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Next, let

:0=:0(F, G)=P(T1�Y1)=|
�

0
F(z) dG(z)=|

�

0
[1&G(z)] dF(z),

and assume that :0>0. Clearly, F
*

(t)�:0 is the conditional d.f. of Z1 , given
$1=1. Define {F*

by

{F*
=inf[t; F

*
(t)=:0]. (2.8)

Then it is easily seen that {F*
={F 7{G , where {F and {G are given in (1.8).

It follows that {H={F*
. Finally, with Nn (t) and Yn (t) given in (1.2) and

(1.3), respectively, set:

N� n (t)=Nn (t)�n, and Y� n (t)=Yn (t)�n. (2.9)

Then we have:

Proposition 2.1. Suppose that Assumptions (K1)�(K2) hold. Then:

(i) If the r.v.s [Tj ; j�1] are PA, and Assumption (K3) is fulfilled, it
holds:

sup
0�t�{H

|Y� n (t)&[1&H(t)]| � 0 a.s., and

sup
0�t�{H

|N� n (t)&F
*

(t)| � 0 a.s. (2.10)

(ii) If the r.v.s [Tj ; j�1] are NA, it follows that (2.10) holds true.

Proof. (i) By Lemma 2.2(i), we have that the r.v.s [Zi ; 1�i�n] are
PA, which implies that the r.v.s [I(Zi�t); 1� j�n] are also PA, for each
fixed t. By Corollary A.3 in Roussas (1991), there exists M0>0 such that, for
all i{ j,

Cov[I(Zi�t), I(Zj�t)]=P(Zi<t, Zj<t)&H2 (t)

�M0[Cov(Zi , Zj)]1�3.

Next, we will find an upper bound for Cov(Zi , Zj) for all i{ j. To this end,
by independence of [Ti] and [Yj], we have:

Cov(Zi , Zj)=|
R2

[E(Ti 7 y1)(Tj 7y2)&(EZ1)2] dG( y1) dG( y2)

=|
R2

Cov(Ti 7 y1 , Tj 7 y2) dG( y1) dG( y2). (2.11)
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Let fy(x)=min[x, y] for fixed y>0. Then fy (x) is a nondecreasing function
of x. Therefore, it follows from the Hoeffding equality (see, for example,
Lemma 2 in Lehmann, 1966, and (2.12) in Yu, 1993) that, for fixed y1>0
and y2>0:

Cov(Ti 7 y1 , Tj 7 y2)

=Cov[ fy1
(Ti), fy2

(Tj)]

=|
y1

0
|

y2

0
[P(Ti�r, Tj�s)&P(Ti�r) P(Tj�s)] dr ds

�|
�

0
|

�

0
[P(Ti�r, Tj�s)&P(Ti�r) P(Tj�s)] dr ds=Cov(Ti , Tj).

(2.12)

Hence, substitution of (2.12) into (2.11) gives an upper bound for Cov-
(Zi , Zj); namely,

Cov(Zi , Zj)�Cov(Ti , Tj), (2.13)

which implies that:

Cov(I(Zi�t), I(Zj�t))�M0[Cov(Ti , Tj)]1�3, (2.14)

for some constant M0>0, not depending on i, j and t. Clearly, Assumption
(K3) implies that the r.v.s [I(Zj�t); j�1] satisfy (2.1) for each fixed t.
Thus, an application of Lemma 2.1(i) yields, for all 0�t�{H ,

Y� n (t) � P(Z1�t)=1&H(t)=H� (t) a.s.

Since both 1&Y� n (t) and H(t) are d.f.s, we have by employing the same
arguments as those used in the proof of the Glivenko�Cantelli theorem
(see, for example, Theorem 1, pp. 127�128 in Tucker, 1967),

sup
0�t�{H

|Y� n (t)&H� (t)| � 0 a.s., (2.15)

which is what the first relation in (2.10) asserts. Next,

1&N� n (t)=
1
n

:
n

j=1

I(Tj>t 7 Yj),

and, for each fixed t, the r.v.s [I(Tj>t 7 Yj); 1� j�n] are PA by
Lemma 2.2(i). Therefore, an application of Corollary A.3 in Roussas (1991)
again gives:
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Cov[I(Ti>t 7 Yi), I(Tj>t 7 Yj)]

=Cov[I(Ti�t 7 Yi), I(Tj�t 7 Yj)]

=|
�

0
|

�

0
Cov[I(Ti�t 7 y1), I(Tj�t 7 y2)] dG( y1) dG( y2)

�M0[Cov(Ti , T j)]1�3. (2.16)

Clearly, Assumption (K3) implies that the r.v.s [I(Tj>t 7 Yj); j�1]
satisfy (2.1), for each fixed t. Hence, we have that, for all 0�t�{H , and
with F

*
(t) defined by (2.6):

N� n (t) � P(T1�t 7 Y1)=F
*

(t) a.s.

Then arguments similar to those used in establishing (2.15) yield:

sup
0�t�{H

|N� n (t)&F
*

(t)| � 0 a.s.

This completes the proof of part (i).

(ii) Follows by an argument similar to the one used in the proof of
part (i) and by utilizing Lemma 2.1(ii) and Lemma 2.2(ii). K

The results established in this section are employed throughout the
paper.

3. STRONG UNIFORM CONSISTENCY WITH RATES:
PROOFS OF THEOREMS 1.1�1.4

Proof of Theorem 1.1. By Lemma 2 in Gill (1981), we have that:

sup
0�t�{

|2� n (t)&2(t)|�
2\{ (N� n , F

*
)

Y� n ({)
+

\{ (Y� n , H� )[N� n ({)+\{ (N� n , F
*

)]
Y� n ({)[Y� n ({)&\{ (Y� n , H� )]

,

(3.1)

where \{ is defined by \{ (F, G)=sup[ |F(x)&G(x)|; x�{] for any two
functions F and G. An application of Proposition 2.1 concludes the proof
of the theorem. K

Suppose G1 is a bounded, nondecreasing, and right-continuous function
on R such that G1 (&�)=0. Let G be the set of all such functions. For
any pair (G1 , G2) # G, define (see relation (6) in Gill, 1981):

8(G1 , G2)(t)= `
s�t \1&

dG1 (s)
G� (s) + exp {&|

t

&�

dG1c (s)
G� (s) = ,
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where G=G1+G2 , G� (t)=G� 1 (t)+G� 2 (t)=G1 (�)&G1 (t)+G2 (�)&
G2 (t), and G1c is the continuous part of G1 . Note that 8(G1 , G2) is a
right-continuous, nonnegative, and nonincreasing function on R with
8(G1 , G2)(&�)=1 (see Gill, 1981, p. 856). Let

L1 (t)=P(Z1�t, $1=1), L� 1 (t)=P(Z1>t, $1=1),

L0 (t)=P(Z1�t, $1=0), and L� 0 (t)=P(Z1>t, $1=0).

Then:

H� (t)=L� 1 (t)+L� 0 (t), and L1 (t)=F
*

(t).

Clearly, (L1 , L0) # G and

8(L1 , L0)(t)= `
s�t \1&

dL1 (s)
H� (s) + exp {&|

t

0

dL1c (s)
H� (s) = .

If F
*

is continuous, then 8(L1 , L0) becomes 1&F(t). Since (Nn , Mn) # G,
it follows by relation (7) in Gill (1981) that:

8(N� n , Mn �n)(t)=1&F� n (t),

where Mn is defined in (1.4). By Proposition 2.1,

sup
0�t�{H

|Mn (t)�n&L0 (t)| � 0 a.s.

Now using Lemma 2 in Gill (1981), we have:

sup
0�t�{

|F� n (t)&F(t)| � 0 a.s., (3.2)

for any {�{H for which F({)<1. We may now proceed with the proof of
the next theorem.

Proof of Theorem 1.2. For the proof of the first relation in (1.11), in
view of (3.2), it suffices to consider the case F({H)=1. For an arbitrary
0<=<1, choose {<{H such that 1&=<F({)<1. Then for t # [{, {H], we
have:

F� n ({&)�F� n (t)�1, and 1&=<F({&)=F({)�F(t)<1.

Therefore,

sup
{�t�{H

|F� n (t)&F(t)|<max[=, 1&F� n ({&)].
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By combining this inequality with (3.2), and using the fact that = is
arbitrary, it follows that the first relation in (1.11) holds. Since H({H)=1,
then Zn : n = maxi�n Zi<{H . Hence, the second relation in (1.11) is a
consequence of the first one. The proof of the theorem is completed. K

Proof of Theorem 1.3. For the PA case, Assumption (K5) implies (2.4).
Then, apply Lemma 2.3(i), Remark 1.3 and Corollary 2.1 in Roussas
(1991) to conclude that:

sup
0�t�{

|Y� n (t)&H� (t)|=o(n&%) a.s., and

sup
0�t�{

|N� n (t)&F
*

(t)|=o(n&%) a.s. (3.3)

For the NA case, applying Lemma 2.3(ii) and the same arguments as those
used in the proof of Lemma 2.3 in Roussas (1991), we see that
Corollary 2.1 in Roussas (1991) still holds true. This implies that (3.3) is
true both for the PA and the NA case. Therefore, the theorem follows from
(3.1). K

Proof of Theorem 1.4. For any 0<{<{H , H(Zn : n) � 1 a.s. by
Theorem 1.2, so that 0<{<Zn : n for sufficiently large n. Therefore,
Lemma 1 in Breslow and Crowley (1974) gives:

0<&log(1&F� n (t))&2� n (t)<
n&Yn (t)

nYn (t)
.

This implies that:

\{ (&log(1&F� n), 2� n)�
n&Yn ({)

nYn ({)
�C({)�n (3.4)

for sufficiently large n, where 0<C({)<�, independent of n. Using Taylor
expansion, we have:

F� n (t)&F(t)=1&F(t)&[1&F� n (t)]=e&2(t)&elog(1&F� n(t))

=[e&2(t)&e&2� n(t)]+[e&2� n(t)&elog(1&F� n (t))]

=e&2� *n (t)[2� n (t)&2(t)]+e&2� **n (t)[&log(1&F� n (t))&2� n (t)],

(3.5)

where

\{ (2� *n , 2)�\{ (2� n , 2),
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and, from (3.4),

\{ (2� **n , 2� n)�\{ (&log(1&F� n), 2� n)�C({)�n.

Therefore, it follows from (3.5), (3.4) and Theorem 1.3 that:

\{ (F� n , F )�O \1
n++O(\{ (2� n , 2))=o(n&%) a.s.

This completes the proof of the theorem. K

4. WEAK CONVERGENCE: PROOF OF THEOREM 1.5

This section is devoted to showing that the process Z� n (t), defined by
(1.2), converges weakly to a suitable process. To this end, for any t�0, let

M� n (t)=Nn (t)&|
t

0
Yn (s) d2(s).

By (3.2.13) in Gill (1980), we have:

F� n (t)&F(t)
1&F(t)

=|
t

0

1&F� n (s&)
1&F(s)

dM� n (s)
Yn (s)

.

Then, by (1.12):

Z� n (t)=|
t

0

1&F� n (s&)
1&F(s)

d(n&1�2M� n (s))
n&1Yn (s)

. (4.1)

In order to show that Z� n ( } ) converges weakly to a zero-mean Gaussian
process W( } ) in D[0, {] for some { such that {<{H and F({)<1, with
W(0)=0, it suffices to show that n&1�2M� n converges weakly in D[0, {] to
a Gaussian process W1 with W1 (0)=0, EW1 (t)=0 and whose covariance
has the following structure:

E[W1 (s) W1 (t)]=M(s, t), (4.2)

where M(s, t) is defined by

M(s, t)=M11 (s, t)&|
s

0
M12 (t, v) d2(v)&|

t

0
M12 (s, u) d2(u)

+|
s

0
|

t

0
M22 (u, v) d2(u) d2(v); (4.3)
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here

M11 (s, t)=Cov(I(T1�s 7 Y1), I(T1�t 7 Y1))

+ :
�

j=2

[Cov(I(T1�s 7 Y1), I(Tj�t 7 Yj))

+Cov(I(T1�s 7 Y1), I(Tj�t 7 Yj))], (4.4)

M12 (s, t)=Cov(I(T1 7 Y1�s), I(T1�t 7 Y1))

+ :
�

j=2

[Cov(I(T1�s 7 Y1), I(Tj 7 Yj�t))

+Cov(I(Tj 7 Yj�s), I(T1�t7 Y1))], (4.5)

and

M22 (s, t)=Cov(I(T1 7 Y1�s), I(T1 7 Y1�t))

+ :
�

j=2

[Cov(I(T1 7 Y1�s), I(Tj 7 Yj�t))

+Cov(I(Tj 7 Yj�s), I(T1 7 Y1�t))]. (4.6)

This is so on account of the proof of Theorem 2 in Ying and Wei (1994).
Define the following two stochastic processes:

N� n (t)=
1

- n
[Nn (t)&nF

*
(t)], and Y� n (t)=

1

- n
[Yn (t)&nH� (t)].

Then

n&1�2M� n (t)=N� n(t)&|
t

0
Y� n (u) d2(u).

Define the function _2 (s, t) on R2
+ into R+=[0, �) in the following

manner:

_2 (s, t)=|
s

0
|

t

0

dM(u, v)
H� (u) H� (v)

. (4.7)

As has already been mentioned, in order to prove Theorem 1.5, it suffices
to show that the process n&1�2M� n ( } ) converges weakly in D[0, {]. To this
end, we need to show that (N� n , Y� n) converges weakly to (B1 , B2) for
suitable Gaussian processes B1 and B2 . This will follow by establishing the
following two premises: First, that all finite-dimensional distributions of
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(N� n , Y� n) converge weakly to the appropriate multidimensional normal
distribution, and second, that the processes are tight. The first premise is
stated here as Proposition 4.1 and proved later. The rest of this section,
revolves around the justification of the second premise. As it will be
explained below, this effort amounts to obtaining suitable bounds for the
moments E[N� n (t)&N� n (s)]4 and E[Y� n (t)&Y� n (s)]4, for any t, s # [0, {].
The relevant result is stated below as a proposition. All results in this sec-
tion are derived under the assumptions made in Theorem 1.5, unless
otherwise stated.

Proposition 4.1. For any integers k�1, l�1 and any t1 , ..., tk ,
s1 , ..., sl # [0, {], we have:

(N� n (t1), ..., N� n (tk), Y� n (s1), ..., Y� n (sl))

w�D (B1 (t1), ..., B1 (tk), B2 (s1), ..., B2 (sl)),

where B1 and B2 are two zero-mean Gaussian processes having the following
covariance structures:

E[B1 (s) B1 (t)]=M11 (s, t), E[B1 (s) B2 (t)]=M12 (s, t), (4.8)

and

E[B2 (s) B2 (t)]=M22 (s, t), (4.9)

where M11 , M12 and M22 are defined in (4.4)�(4.6).

Proposition 4.2. The stochastic processes [N� n (t); 0�t�{] and
[Y� n (t); 0�t�{] are tight.

Suppose temporarily that these propositions have been established and
proceed with the proof of the theorem.

Proof of Theorem 1.5. By Propositions 4.1 and 4.2,

(N� n ( } ), Y� n ( } )) ww�D[0, {] (B1 ( } ), B2 ( } )).

Let ,(N� n , Y� n)(t)=N� n (t)&� t
0 Y� n (u) d2(u). Then, by the continuity map-

ping theorem (see Theorem 5.1 in Billingsley, 1968, p. 30), we have:

1

- n
M� n ( } )=,(N� n , Y� n)( } ) ww�D[0, {] W1 ( } ), (4.10)
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where

W1 (t)=,(B1 , B2)(t)=B1 (t)&|
t

0
B2 (u) d2(u).

A simple computation establishes that E[W1 (s) W1 (t)]=M(s, t), which is
(4.2). By Theorem 1.2 and relation (4.10), it follows from Theorem 4.4 in
Billingsley (1968) that:

(F� n , n&1Yn , n&1�2M� n) ww�D[0, {] (F, H� , W1).

Therefore, by the Skorokhod�Dudley�Wichura Theorem (see Shorack and
Wellner, 1986, p. 47), there exists a special construction (F� *n , n&1Y*n , n&1�2M� *n),
which has the same distribution as (F� n , n&1Yn , n&1�2M� n) and which
converges to (F, H� , W*1) almost surely, where W*1 has the same probability
distribution as W1 . From this point on, a repetition of the arguments in
Ying and Wei (1994) (see pp. 27�28) leads to the following result:

sup
0�t�{ } |

t

0

1&F� *n (s&)
1&F(s)

d(n&1�2M� *n (s))
n&1Y*n (s)

&|
t

0

dW*1 (s)
H� (s) }� 0 a.s.,

which implies that:

sup
0�t�{ }Z� *n (t)&|

t

0

dW*1 (s)
H� (s) }� 0 a.s.. (4.11)

Let

W(t)=|
t

0

dW1 (u)
H� (u)

.

Then a simple computation yields the covariance structure of W( } );
namely, for any s, t # [0, {],

E[W(s) W(t)]=_2 (s, t), (4.12)

where _2 (s, t) is defined in (4.7). Therefore, (4.11) gives:

Z� n ( } ) w�D W( } ) in D[0, {],

and the theorem follows. K

Remark 4.1. It is worth pointing out here that the covariance structure
defined by (4.12) and (4.7) was also arrived at by Ying and Wei (1994) by
imposing a ,-mixing condition on the survival times rather than PA (see
relation (3.4) in Ying and Wei, 1994). That the two covariance structures
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are, indeed, the same can be seen by noting that 2(t) here (relation (1.6)
and the comment following it) equals 4(t) defined two lines after relation
(2.1) in Ying and Wei (1994). Also, their $i is denoted by 2i here. It follows
that M (n) (t) in Ying and Wei (1994) (defined two lines above relation
(3.2)) is the same as M� n (t) here. The process Z� n (t) defined by (1.12) here
is the same as that defined by (3.2) in Ying and Wei (1994) (where there
is a misprint: n1�2M (n) (s) should be n&1�2M (n) (s)). Furthermore, the
stipulated limit H(s, t) in (3.3) of Ying and Wei (1994) is our M(s, t)
defined right after relation (4.2). Finally, with F, G, and H standing for the
d.f.s of the r.v.s T1 , Y1 and Z1=T1 7 Y1 , respectively, we have H� (u)=
P(Z1>u)=P(T1>u) P(Y1>u) (by the independent assumption of the
Ti 's and Yi 's), and this is equal to G� (u)[1&F(u)]. The comparison is con-
cluded by noting that our G� (u) is denoted by G(u) in Ying and Wei (1994)
(see relation (2.1) and formulation of Theorem 2 in Ying and Wei, 1994).

In the proof of Proposition 4.1, we need the concept of weakly positive
(negative) association, which is now defined.

Definition 4.1. Let [X
�

1 , X
�

2 , ..., X
�

m] be Rd-valued random vectors.
They are said to be weakly positively associated (WPA), if whenever ? is a
permutation of [1, 2, ..., m], 1�k<m, and f: Rkd � R, g: R(m&k) d � R are
coordinatewise nondecreasing, then

Cov[ f (X
�

?(1) , ..., X
�

?(k)), g(X
�

?(k+1) , ..., X
�

?(m))]�0,

if the covariance is defined. The above r.v.s are said to be weakly negatively
associated (WNA), if the above inequality is reversed. An infinite family of
Rd-valued random vectors is WP(N)A, if every finite subfamily is
WP(N)A.

We may now proceed with the proof of the proposition.

Proof of Proposition 4.1. Without loss of generality, it suffices to show
that, for any t1 , t2 , s1 , s2 # [0, {],

(N� n (t1), N� n (t2), Y� n (s1), Y� n (s2)) w�D (B1 (t1), B1 (t2), B2 (s1), B2 (s2)).

By the Crame� r�Wold device, it suffice to show that, for any a1 , a2 , b1 ,
b2 # R,

a1 N� n (t1)+a2N� n (t2)+b1 Y� n (s1)+b2Y� n (s2)=
1

- n
:
n

j=1

! j w�D N(0, a
�
$7a

�
),
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where a
�
=(&a1 , &a2 , b1 , b2)$,

!j=a1 I(Tj�t1 7 Yj)+a2I(Tj�t2 7 Yj)

+b1I(Tj 7 Yj�s1)+b2I(Tj 7 Y j�s2)

&[a1F
*

(t1)+a2F
*

(t2)+b1 H� (s1)+b2 H� (s2)],

and

7=\
M11 (t1 , t1)
M11 (t2 , t1)
M12 (s1 , t1)
M12 (s2 , t1)

M11 (t1 , t2)
M22 (t2 , t2)
M12 (s1 , t2)
M12 (s2 , t2)

M12 (t1 , s1)
M12 (t2 , s1)
M22 (s1 , s1)
M22 (s2 , s1)

M12 (t1 , s2)
M12 (t2 , s2)
M22 (s1 , s2)
M22 (s2 , s2)

+;

the quantities M11 , M12 and M22 are defined in (4.4)�(4.6). For fixed t1 , t2 ,
s1 and s2 , let

'
�

j='
�

j (Tj , Yj)=\
&I(Tj�t1 7 Yj)
&I(Tj�t2 7 Yj)
I(Tj 7 Yj�s1)
I(Tj 7 Yj�s2)

+ , j�1.

Then, '
�

j is a nondecreasing function of Tj for fixed Yj , j�1, and

1

- n
:
n

j=1

!j=
1

- n
:
n

j=1

a
�
$('

�
j&E'

�
j).

Now, we wish to show that ['
�

j ; j�1] are WP(N)A corresponding to the
positive (negative) association of [Tj ; j�1]. To this end, let ? be a
permutation of [1, 2, ..., n], and for any 1�k<n, let f1 : R4k � R,
f2 : R4(n&k) � R be coordinatewise nondecreasing functions; also, let A=
[?(1), ..., ?(k)], Ac=[?(k+1), ..., ?(n)], and f *1 (Tj , Yj ; j # A)= f1 ('

�
j ; j # A),

f *2 (Tj , Yj ; j # Ac)= f2 ('
�

j ; j # Ac). Then, by Lemma 2.2, [ f *1 (Tj , Yj ; j # A);
f *2 (Tj , Yj ; j # Ac)] are P(N)A, according to the positive (negative) associa-
tion of [Tj ; j�1]. Therefore,

Cov( f1 ('
�

?(1) , ..., '
�

?(k)), f2 ('
�

?(k+1) , ..., '
�

?(n)))

=Cov( f *1 (Tj , Yj ; j # A), f *2 (Tj , Yj ; j # Ac))

={�0, if [Tj ; j�1] are PA,
�0, if [Tj ; j�1] are NA.
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This implies that ['
�

j ; 1� j�n] are WP(N)A. Clearly, (2.14), (2.16) and
Assumption (K4) yield:

E &'
�

1&2+2 :
�

j=2

:
4

i=1

|Cov('
�

(i)
1 , '

�
(i)
j )|<�.

Now, for the WPA case, by Theorem 2 in Burton et al. (1986), we have:

1

- n
:
n

j=1

('
�

j&E'
�

j) w�D N4 (0, 7).

Therefore,

1

- n
:
n

j=1

!j w�D N(0, a
�
$7a

�
). (4.13)

For the WNA case, it is not difficult to extend Theorem 2 in Burton et al.
(1986) to the WNA case. It follows then that (4.13) holds also for the
WNA case. Hence, there exist two zero-mean Gaussian processes B1 and
B2 such that B1 (0)=0, B2 (0)=0, having covariance structures as specified
in (4.8) and (4.9), and such that

(N� n (t1), N� n (t2), Y� n (s1), Y� n (s2)) w�D (B1 (t1), B1 (t2), B2 (s1), B2 (s2)).

This completes the proof of the proposition. K

The following two lemmas will be needed before we embark on the proof
of Proposition 4.2.

Lemma 4.1. There exists a constant C>0, not depending on n, such that,
for any 0�t1�t2�{:

E[Y� n (t2)&Y� n (t1)]4�C(n{0&1+(H(t2)&H(t1))6�5),

where {0 is given in (K4).

Proof. By (2.13), we can use exactly the same arguments as those
employed in proving Lemma 4.4 in Yu (1993) in order to justify the
lemma. K

Next, we wish to obtain an upper bound for E[N� n (t)&N� n (s)]4, both
for the PA and the NA case. This is stated and proved below as a lemma.
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Lemma 4.2. There exists a constant C>0, not depending on n, such that,
for any 0�t1�t2�{:

E[N� n (t2)&N� n (t1)]4�C(n{0&1+(F(t2)&F(t1))6�5), (4.14)

where {0 is given in (K4).

Proof. Let T0 be an independent copy of T1 , and let Y0 be an inde-
pendent copy of Y1 . Let [T 0

j ; j�0], [Y 0
j ; j�0] be an independent copy

of [Tj ; j�0] and [Yj ; j�0], respectively, and be mutually independent.
Then, by Jensen's inequality for conditional expectations, we have:

E[N� n (t2)&N� (t1)]4

=
1
n2 E { :

n

j=1

[I(t1 7 Yj<Tj�t2 7 Yj)&EI(t1 7 Yj<Tj�t2 7 Yj)]=
4

=
1
n2 E {E _ :

n

j=1

(I(t1 7 Yj<Tj�t2 7 Yj)

&I(t1 7 Y 0
j <T 0

j �t2 7 Y 0
j ))& } Ti , Yi ; 1�i�n=

4

�
1
n2 E \ :

n

j=1

[I(t1 7 Yj<Tj�t2 7 Yj)&I(t1 7 Y 0
j <T 0

j �t2 7 Y 0
j )]+

4

.

By means of relation (22.2) in Billingsley (1968, p. 196), we have that:

E[N� n (t2)&N� n (t1)]4

�
4!
n2 � |E1(I(t1 7 Y0<T0�t2 7 Y0), I(t1 7 Yi<Ti�t2 7 Yi),

I(t1 7 Yi+ j<Ti+ j�t2 7 Yi+ j),

I(t1 7 Yi+ j+k<Ti+ j+k�t2 7 Yi+ j+k))|,

where the summation is over Q=[(i, j, k): 0�i+ j+k�n], and the func-
tion 1 is defined by

1(!j , j=1, ..., 4)= 1
2E `

4

j=1

(!j&'j),

for any random variables !1 , ..., !4 and an independent copy ('1 , ..., '4) of
(!1 , ..., !4); this expression is a special case of relation (2.12) in Yu (1993).
Now using the independence of [Ti] and [Yj], we have that:
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E1[I(t1 7 Y0<T0�t2 7 Y0), I(t1 7 Yi<Ti�t2 7 Yi),

I(t1 7 Yi+ j<Ti+ j�t2 7 Yi+ j),

I(t1 7 Yi+ j+k<Ti+ j+k�t2 7 Yi+ j+k)]

=|
R

4
+

E1[I(t1 7 y0<T0�t2 7 y0), I(t1 7 y i<Ti�t2 7 y i),

I(t1 7 yi+ j<Ti+ j�t2 7 yi+ j),

I(t1 7 yi+ j+k<Ti+ j+k�t2 7 yi+ j+k)]

_dG( y0) dG(yi) dG( y i+ j) dG( yi+ j+k).

Next, observe that, for any y�0,

EI(t1 7 y<Ti�t2 7 y)=F(t2 7 y)&F(t1 7 y)�F(t2)&F(t1).

Then, employ the approach used in the proof of Lemma 4.4 in Yu (1993)
in order to obtain:

E[N� n (t)&N� n (s)]4�C[n{0&1+(F(t2)&F(t1))6�5] (4.15)

for the PA case. For the NA case, use Lemma 3.2 in Cai and Roussas
(1995), which is the appropriate version of Lemma 4.2 in Yu (1993), and
the approach mentioned above in order to arrive at (4.15). Therefore,
(4.15) is true, both for the PA and the NA case. This completes the proof
of the lemma. K

Proof of Proposition 4.2. Once inequality (4.14) has been established, a
repetition of the arguments in Yu (1993) (see pp. 363�364) leads to the
following inequality. For every = and '>0, there is a $>0 such that, for
all sufficiently large n:

P[sup[ |N� n (t)&N� n (s)|�4=; s�t�s+$]]�'$. (4.16)

However, inequality (4.16) ensures tightness of the process [N� n (t);
0 � t � {] by relation (15.22) and Theorem 15.6 in Billingsley (1968,
pp. 128�129). Since the process [Y� n (t); t # [0, {]] is likewise tight by
Lemma 4.1, the proof of the proposition is concluded. K

5. VARIANCE ESTIMATION: PROOF OF THEOREM 1.6

If the r.v.s [Tj ; j�1] are independent, then for each time point t,
Greenwood's formula (see, for example, Cox and Oakes, 1984, p. 50)
provides a valid estimate for the asymptotic variance of the K-M estimator
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at t. However, as Ying and Wei (1994) pointed out, Greenwood's formula
may not be valid for dependent situations (see Ying and Wei, 1994, p. 18).
These authors have analyzed a real data set from a tumorigenesis in a
litter-matched experiment. All experimental rates are sacrificed at the end
of 104 weeks. Let X1 be the observation from a drug-treated rat, and let X2

and X3 be the responses from the litter-matched controls. The main interest
here lies in estimating the common marginal d.f. F of the tumor appearance
time (in weeks) for the controls. It is argued that, if the failure times are
highly positively correlated in each stratum of highly stratified survival
times, one would expect that the variance estimate provided by the authors
would tend to be much larger than the standard estimate with independent
observations. This did not materialize in the specified data set due,
perhaps, to weak litter effect (see Ying and Wei, 1994, p. 22). The valid
estimate given by Ying and Wei (1994) is the expression at the bottom
of page 21 of their paper. The estimate proposed here in (5.4) is similar
to that of Ying and Wei (1994). They are both constructed in the same
way and by utilizing the same entities, including suitable estimates of the
quantities H(u, v) and M(u, v) mentioned in Remark 4.1. The persuasive
argument, advanced by Ying and Wei (1994) that one would expect larger
variance estimates under highly positive correlation than under inde-
pendence, is quite appropriate for the case of PA discussed here. The
estimate given in (5.4) is also related to the variance estimate derived in
Ku� nsch (1989) by using jackknife procedure, as well as to Carlestein's
(1986) variance estimate based on nonoverlapping blocks.

The present section is devoted to studying a valid estimate of the
asymptotic variance of F� n (t). It follows from Theorem 1.5, that the limiting
variance of - (n) F� n (t) is _2 (t, t), defined in (4.7); namely,

_2 (t, t)=|
t

0
|

t

0

dM(u, v)
H� (u) H� (v)

.

One way to construct an estimate of _2 (t, t) is to estimate M(u, v) first. For
this purpose, consider the following consistent estimate of M(u, v),

M� n (u, v)=
1

n&l+1
:

n&l

j=0

S� j (l, u) S� j (l, v), (5.1)

where, for 0� j�n&l,

S� j (l, u)=
1

- l
:
j+l

k= j+1
_$k I(Zk�u)&|

u

0
I(Zk�z) d2� n (z)& , (5.2)
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and 1�l�n is such that:

l=ln � �, and ln=o(n%), (5.3)

where % is given in Theorem 1.3. Therefore, the proposed consistent
estimator of the asymptotic variance of - n F� n (t) is nV� (t), where

V� (t)=n[1&F� n (t)]2 |
t

0
|

t

0

dM� n (u, v)
Yn (u) Yn (v)

. (5.4)

Remark 5.1. Theorem 1.3 implies that ln is related to the decay rate of
the covariance between T1 and Tn . The size of ln or the selection of
parameter % is in particular a tractable problem under additional informa-
tion on the size of covariance and should be studied for each individual
problem separately, see Ku� nsch (1989) and Peligrad and Shao (1995) for
details. As a rule of thumb, one may take %=1�3.

Substituting (5.1) and (5.2) into (5.4), and simplifying, we have:

V� (t)=
n(1&F� n (t))2

n&l+1
:

n&l

j=0
\Dj (l, t)

- l +
2

,

where, for 0� j�n&l,

Dj (l, t)= :
j+l

i= j+1
_$iI(Zi�t)

Yn (Zi)
& :

n

k=1

$kI(Zk�Zi 7 t)
Y 2

n(Zk) & .

In order to show that nV� (t) is a consistent estimate of _2 (t, t), it suffices
to show, by Theorem 1.2 and Proposition 2.1, that M� n (u, v) is a consistent
estimate of M(u, v), for any u, v # [0, {]. For this purpose and for
0� j�n&l, let

Sj (l, u)=
1

- l
:
j+l

k=j+1
_$k I(Zk�u)&|

u

0
I(Zk�z) d2(z)& ,

and

Mn (u, v)=
1

n&l+1
:

n&l

j=0

S j (l, u) S j (l, v). (5.5)
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Then, it follows from (5.2), Theorem 1.3 and (5.3) that, for all 0� j�n&l
and u # [0, {],

|Sj (l, u)&S� j (l, u)|�
1

- l
:
j+l

k= j+1

|2� n (u 7 Zk)&2(u 7 Zk)|

=o(n&%
- ln ) a.s.; (5.6)

also,

Sj (l, u)=O(- ln ) a.s. and S� j (l, u)=O(- ln ) a.s..

Therefore, in view of (5.3), it suffices to show that Mn (u, v) converges to
M(u, v) in L2 in order to establish that so does M� n (u, v). Set:

!k (u)=I(Tk>u7 Yk)+2(Tk 7 u 7 Yk), and

Aj (l, u)=
1

- l
:
j+l

k= j+1

!k (u).

Then !k (u) is a nondecreasing, nonnegative and bounded function of Tk ,
j+1�k� j+l, j=0, ..., n&l, for any fixed u. Therefore, it follows from
Lemma 2.2, that [!k (u); k�1] is either PA or NA, according to the
positive or negative association of [Tk ; k�1]. A simple calculation yields:

Sj (l, u)=- l&
1

- l
:
j+l

k= j+1

!k (u)=- l&Aj (l, u),

and

Mn (u, v)=l&
- l

n&l+1
:

n&l

j=0

[A j (l, u)+Aj (l, v)]

+
1

n&l+1
:

n&l

j=0

Aj (l, u) Aj (l, v).

It is also easily seen that:

Var(Mn (u, v))�
4ln

(n&l+1)2 _Var \ :
n&l

j=0

Aj (l, u)++Var \ :
n&l

j=0

Aj (l, v)+&
+

2
(n&l+1)2 Var \ :

n&l

j=0

Aj (l, u) Aj (l, v)+ . (5.7)
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For the NA case, it follows that, for |i& j |>l, Cov(Ai (l, u), Aj (l, u))�0
and Cov(Ai (l, u) Ai (l, v), A j (l, u) Aj (l, v))�0. Therefore, it follows, by the
Cauchy�Schwarz inequality, that:

Var \ :
n&l

j=0

A j(l, u)+
=(n&l+1) Var(A0 (l, u))+2 :

l

i=1

(n&l&i+1) Cov(A0 (l, u), Ai (l, u))

+2 :
n&l

i=l+1

(n&l&i+1) Cov(A0 (l, u), Ai (l, u))

�(n&l+1) Var(!1 (u))+2 :
l

i=1

(n&l&i+1) Var(A0 (l, u))=O(ln n).

That is,

Var \ :
n&l

j=0

Aj (l, u)+=O(lnn). (5.8)

Similarly,

Var \ :
n&l

j=0

Aj (l, v)+=O(lnn). (5.9)

An argument similar to the one used in the proof of (5.8) yields

Var \ :
n&l

j=0

Aj (l, u) Aj (l, v)+
�(n&l+1) Var(A0 (l, u) A0 (l, v))

+2(n&l+1) :
l

m=1

Cov(A0 (l, u) A0(l, v), Am (l, u) Am (l, v))

�(n&l+1)(2l+1) Var(A0 (l, u) A0 (l, v)), (5.10)

whereas it is easily seen that

Var(A0 (l, u) A0 (l, v))

�2 Var[(A0 (l, u)&EAn (l, u)) A0 (l, v)]+2(EA0 (l, u))2 Var(A0 (l, v))

�2E[(A0 (l, u)&EAn (l, u)) A0 (l, v)]2+O(ln)

=O(ln) Var(A0 (l, u))+O(ln)=O(ln). (5.11))
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Substituting (5.11) into (5.10), we obtain

Var \ :
n&l

j=0

Aj (l, u) A j (l, v)+=O(l 2
nn). (5.12)

Substitution of (5.8), (5.9) and (5.12) into (5.7) leads to

Var(Mn (u, v))=O \ l 2
n

n&ln+1+ . (5.13)

Next, we consider the PA case. Since [!k (u); k�1] are PA, so are
[Aj (l, u); 0� j�n&l], for any fixed u. By the cr -inequality and Assump-
tion (K5), we have

ln Var \ :
n&l

j=0

Aj (l, u)+
=Var \ :

l&1

j=1

j!j (u)+l :
n&l+1

j=l

!j (u)+ :
n

j=n&l+2

(n& j+1) ! j (u)+
�8 Var \ :

l&1

j=1

j! j (u)++4l 2 Var \ :
n&2l+1

j=1

!j (u)+=O(l 2
n n),

so that

Var \ :
n&l

j=0

Aj (l, u)+=O(lnn). (5.14)

Similarly,

Var \ :
n&l

j=0

Aj (l, v)+=O(lnn). (5.15)

Employing the same arguments as those used in the proof of (5.11) and
Assumption (K5) again, we obtain

Var(A0 (l, u) A0 (l, v))=O(ln).
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Thus,

Var \ :
n&l

j=0

Aj (l, u) Aj (l, v)+
=(n&l+1) Var(A0 (l, u) A0 (l, v))

+2 :
2l

m=1

(n&l+1&m) Cov(A0 (l, u) A0 (l, v), Am (l, u) Am (l, v))

+2 :
n&l

m=2l+1

(n&l+1&m) Cov(A0 (l, u) A0 (l, v), Am (l, u) Am (l, v))

�(4l+1)(n&l+1) Var(A0 (l, u) A0 (l, v))

+2 :
n&l

m=2l+1

(n&l+1&m) Cov(A0 (l, u) A0 (l, v), Am (l, u) Am (l, v))

=O(l 2
nn)+2 :

n&l

m=2l+1

(n&l+1&m)

_Cov(A0 (l, u) A0 (l, v), Am (l, u) Am (l, v)).

That is,

Var \ :
n&l

j=0

Aj (l, u) Aj (l, v)+
=O(l 2

nn)+2 :
n&l

m=2l+1

(n&l+1&m)

_Cov(A0 (l, u) A0 (l, v), Am(l, u) Am (l, v)). (5.16)

By a simple manipulation and Assumption (K5), the second term on the
right-hand side of (5.16) becomes

:
n&l

m=2l+1

(n&l+1&m) Cov(A0 (l, u) A0 (l, v), Am (l, u) Am (l, v))=O(l 2
n n).

Hence

Var \ :
n&l

j=0

Aj (l, u) A j (l, v)+=O(l 2
nn). (5.17)

Substituting (5.14), (5.15) and (5.17) into (5.7), we have:

Var(Mn (u, v))=O \ l 2
n

n&l+1+ . (5.18)
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It is easily seen that EMn (u, v) � M(u, v). This, in conjunction with (5.3),
(5.13) and (5.18), implies that Mn (u, v) converges to M(u, v) in L2 . Then
M� n (u, v) converges to M(u, v) in L2 . This completes the proof of the
theorem. K
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