
Physics Letters B 736 (2014) 455–458

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Exact black hole formation in asymptotically (A)dS and flat spacetimes

Xuefeng Zhang a,b, H. Lü a,∗
a Department of Physics, Beijing Normal University, Beijing 100875, China
b Department of Astronomy, Beijing Normal University, Beijing 100875, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 July 2014
Accepted 28 July 2014
Available online 1 August 2014
Editor: M. Cvetič

We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a 
supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution 
describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically 
AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the 
advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0

with u0 ∼ 1/(α4 M0)
1/3, where M0 is the mass of the final black hole and α is the second parameter in 

the potential. Similarly to the Vaidya solution, at u = 0, the spacetime can be matched to an (A)dS or flat 
vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution 
with α = 0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model 
for investigating formation of real life black holes with Λ ≥ 0. For Λ < 0, it can be instead used to study 
non-equilibrium thermalization of certain strongly-coupled field theory.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Many subtle properties and mysteries of black holes have been 
revealed, largely owing to the discovery of exact solutions such as 
the Schwarzschild and Kerr metrics. Formation of black holes due 
to gravitational collapse is of great interest [1–3] for addressing 
important issues such as spacetime singularities, cosmic censor-
ship and gravitational waves. Nevertheless, exact solutions that 
describe collapsing to static black holes with specific classes of 
matter energy–momentum tensors are quite rare [4–6]. A most 
prominent one is perhaps the Vaidya metric [4], which captures 
some essential features of time evolution. However, generalizing 
this line of work to a Lagrangian of fundamental fields seems to 
be quite a formidable task, and no such well-behaved uncharged 
exact solutions have been previously known, to our best knowl-
edge, in literature.

Motivated by the no-hair conjecture and the recent application 
of the AdS/CFT correspondence [7] to superconductivity, there has 
been a resurgence of interest lately in constructing black holes 
in asymptotically anti-de Sitter (AdS) spacetimes. In light of this 
new trend, a time-dependent black hole formation can provide a 
useful background for certain non-equilibrium thermal systems of 
strongly-coupled dual gauge theories. Although analytic results can 
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be obtained in some limiting parameter regions [8], the study of 
more general properties has to be conducted with numerical ap-
proach so far. (See, e.g., [9,10].)

In this paper, we report an exact solution describing the for-
mation of a scalar-hairy black hole in asymptotically (A)dS or flat 
(Minkowski) spacetimes in four-dimensional Einstein gravity mini-
mally coupled to a dilatonic scalar with a specific scalar potential. 
We first present the local solution and show that it eventually set-
tles down to a static black hole. Then we study the global property 
for general time, and establish the initial energy–momentum ten-
sor that kick-starts the evolution. Furthermore, we derive a limiting 
solution of the theory which contains the Robert solution as a spe-
cial case. The paper is concluded with further discussions.

2. The theory

The Lagrangian is given by

L = √−g

(
R − 1

2
(∂φ)2 − V (φ)

)
,

V = −2g2(cosh φ + 2) − 2α2(2φ + φ cosh φ − 3 sinh φ), (1)

with two parameters g2 and α2 (negative values allowed). The 
scalar potential V has a stationary point at φ = 0 with Taylor ex-
pansion V = −6g2 − g2φ2 − 1

12 g2φ4 − 1
30 α2φ5 +· · · . This potential 

was first introduced by Zloshchastiev [11]. In fact, when α2 = 0, 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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the potential with g2 > 0 arises from N = 4, D = 4 gauged su-
pergravity [12]. In this paper, we allow the parameter g2, hence 
the cosmological constant Λ = −3g2 as well, to be negative, zero 
or positive as needed. Note that solutions to (1) come in pairs 
through the inversion φ → −φ, α2 → −α2 which leaves the po-
tential V invariant.

3. The local solution

Using Eddington–Finekelstein-like coordinates, our new solu-
tion reads

ds2 = 2dudr − H(r, u)du2 + r

(
r + q tanh

(
1

2
α2qu

))
dΩ2

2,k,

eφ = 1 + q

r
tanh

(
1

2
α2qu

)
,

H = g2r2 + k − 1

2
α2q2 + (

g2 − α2)qr tanh

(
1

2
α2qu

)

+ α2r2
(

1 + q

r
tanh

(
1

2
α2qu

))

× log

(
1 + q

r
tanh

(
1

2
α2qu

))
, (2)

where dΩ2
2,k = dx2/(1 − kx2) + (1 − kx2)dy2 is the metric on a 

2-space of constant Gaussian curvature normalized to k = 0, ±1. 
It also contains one free parameter (a constant of integration), 
namely the “scalar charge” q. In addition, the solution belongs to a 
generalized class of Robinson–Trautman solutions [13], and it is of 
Petrov type D with Ψ2 being the only non-vanishing Weyl scalar.

4. Static hairy black holes

From now on, we will always assume α2 > 0 and q > 0. Then 
in the static limit u → ∞, we have tanh( 1

2 α2qu) → 1 and the so-
lution becomes

ds2 = − f dt2 + dr2

f
+ r(r + q)dΩ2

2,k, eφ = 1 + q

r
,

f (r) = g2r2 + k − 1

2
α2q2 + (

g2 − α2)qr

+ α2r2
(

1 + q

r

)
log

(
1 + q

r

)
. (3)

Here we have made the coordinate transformation dt = du − dr/ f
to put the metric in Schwarzschild-like coordinates. The exact form 
of (3) was first obtained in [11] and proposed as a cosmologi-
cal model. Discussion on the AdS case can be found in [14]. The 
asymptotic behavior indicates that the mass is given by M0 =
α2q3/12. The horizon is located at the largest root r = r0 > 0 of the 
function f . Using the standard technique for computing the tem-
perature T and the entropy S , one can verify that dM = T dS [14]. 
For g2 ≥ 0, the function f is strictly increasing to infinity or k. An 
event horizon therefore uniquely exists iff f (0) < 0 and f (∞) > 0, 
or more specifically, k − 1

2 α2q2 < 0 with k = 1 if g2 = 0. For g2 < 0, 
extremal limit may occur when the cosmological and black hole 
horizons coincide, which imposes certain bounds on physical pa-
rameters in cosmological spacetimes [11]. It is worth remarking 
that for a given mass, the theory (1) also admits a Schwarzschild 
black hole satisfying the same first law of thermodynamics but 
with different temperature and entropy, therefore making black 
holes hairy.
5. Time evolution and singularity

To study properties of the time evolution, it is instructive to use 
the luminosity coordinate R which is the radius of dΩ2

2,k . Picking 
the positive root for r, i.e.

r = 1

2

(√
4R2 + q2 tanh2

(
1

2
α2qu

)
− q tanh

(
1

2
α2qu

))
, (4)

we can rewrite the solution as

ds2 = 2h du dR − H̃du2 + R2dΩ2
2,k,

h = 2R√
4R2 + q2 tanh2( 1

2α2qu)

,

H̃ = g2 R2 + k − α2q(4R2 + q2) tanh( 1
2α2qu)

2
√

4R2 + q2 tanh2( 1
2α2qu)

+ α2 R2 log

(√
4R2 + q2 tanh2( 1

2α2qu) + q tanh( 1
2α2qu)√

4R2 + q2 tanh2( 1
2α2qu) − q tanh( 1

2α2qu)

)
,

eφ =
√

4R2 + q2 tanh2( 1
2α2qu) + q tanh( 1

2α2qu)√
4R2 + q2 tanh2( 1

2α2qu) − q tanh( 1
2α2qu)

. (5)

For large R , the metric functions behave as

h = 1 − q2 tanh2( 1
2α2qu)

8R2
+O

(
R−4),

H̃ = g2 R2 + k − α2q3 tanh( 1
2α2qu)(3 − tanh2( 1

2α2qu))

12R

+O
(

R−3). (6)

Hence the spacetime is asymptotically AdS, flat or dS at large R
for g2 > 0, g = 0 and g2 < 0, respectively. The effective time-
dependent “Vaidya mass” measured at infinity is given by

M(u) = 1

24
α2q3 tanh

(
1

2
α2qu

)(
3 − tanh2

(
1

2
α2qu

))
≥ 0, (7)

which is a monotonically increasing function for u ≥ 0 and ap-
proaches the final mass M0 as u → ∞. For general u, the metric 
has a power-law curvature singularity at R = 0 which should be 
dressed by an apparent horizon at R = R0(u) > 0 defined by

0 = gμν∂μR∂ν R = H̃

h2
. (8)

To identify the root structure of H̃ and related parameter ranges, 
one can follow a similar argument as in the static case. For in-
stance, with g2 > 0, an apparent horizon is guaranteed if H̃(R =
0) = k − 1

2 α2q2 < 0. (For g2 < 0, there can be a cosmological hori-
zon in addition to a black-hole apparent horizon, of which the 
latter, for q less than a critical value, is situated inside the for-
mer.) As u goes to infinity, the apparent horizon will approach the 
event horizon.

The global structure at u = 0 is more subtle. For small u, the 
scalar field and metric functions behave as

φ = α2q2

2R
u +O

(
u3), H̃ = g2 R2 + k − α4q4

8R
u +O

(
u3),

h = 1 − α4q4

2
u2 +O

(
u4). (9)
32R
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The polynomial curvature invariants are

Rμ
μ = −12g2 − α4q4

4R3
u +O

(
u2),

Rμν Rμν = 36g4 + 3g2α4q4

2R3
u +O

(
u2),

Rκλμν Rκλμν = 24g4 + g2α4q4

R3
u +O

(
u2). (10)

At u = 0 the spacetime becomes AdS, flat or dS except for a sin-
gular point at R = 0 where the scalar polynomials are not well 
defined (their values depending on the path to (0, 0) in the (u, R)

plane). Nonetheless we can still connect the spacetime to an AdS, 
flat or dS vacuum for u < 0 with M(u) = 0. Up to the linear order 
in u, the energy–momentum tensor Tμν ≡ Rμν − 1

2 (R + 6g2)gμν

(vacuum background subtracted) is given by

Tuu = α4q4

8R3
− α4q4(g2 R2 + k)

8R3
u +O

(
u2),

Tij = g̃i j
α4q4

8R
u +O

(
u2), (11)

where g̃i j denotes the metric for dΩ2
2,k . (Note that T μ

μ =
α4q4u/(4R3) +O(u2), Tμν T μν = α8q8u2/(16R3) +O(u3), both of 
which vanish for u = 0 and R 	= 0.) Thus the birth of our evolv-
ing black hole can be understood as a vacuum being kick-started 
by a singular energy–momentum tensor at u = 0. In this pro-
cess, the singularity at u = 0 = R may become globally naked if 
the initial mass accumulation is not fast enough (measured by 
limu→0 M(u)/u) [15]. We will discuss this further at the end of 
the paper.

We also point out that although it takes infinite u-time to reach 
the static limit, the function tanh(x) approaches 1 exponentially 
fast, i.e., 1 − tanh(x) ∼ e−2x as x → ∞. Thus we can define a char-
acteristic relaxation time u0 = 1/(α2q) ∼ 1/(α4M0)

1/3 such that 
the metric reaches static state at the rate of e−u/u0 . In addition, the 
mass (7) behaves as M(u) ∼ (1 − 6e−2u/u0)M0. It is clear that the 
bigger the mass M0, the shorter the relaxation time u0 becomes. 
This is a feature generally not seen in the Vaidya spacetime.

Furthermore, we present the solution in another two coordinate 
systems that may be instructive for future study. The first one is 
a diagonalized form. We introduce a new coordinate time t and 
assume that the advanced time u(t, R) satisfies ∂u/∂ R = h/H̃ . This 
allows us to rewrite the metric as

ds2 = −(∂t u)2 H̃dt2 + h2 dR2

H̃
+ R2dΩ2

2,k. (12)

For u → 0, we can make the following coordinate transformation

u = ũ + α4q4

16R(g2 R2 + k)
ũ2 +O

(
ũ3),

ũ ≡ t + arctan(g R/
√

k)

g
√

k
−→ 0, (13)

so that the metric takes a Schwarzschild-like form

ds2 = − f̃ dt2 + dr2

f
+ R2dΩ2

2,k,

f̃ = g2 R2 + k + α4q4

8R
ũ +O

(
ũ2),

f = g2 R2 + k − α4q4

ũ +O
(
ũ2). (14)
8R
Thus we see that the evolution at early u already indicates that 
the spacetime evolves to the scalar-hairy black hole rather than 
the Schwarzschild one.

Another coordinate system worth mentioning is when we use 
the dilaton φ itself as a coordinate to replace r. The solution can 
be expressed as

ds2 = 1

4
csch2

(
1

2
φ

)[
2 tanh

(
1

2
α2qu

)
dφ du

− Ĥdu2 + q2 tanh2
(

1

2
α2qu

)
dΩ2

2,k

]
,

Ĥ = −4k sinh2
(

1

2
φ

)
− g2q2 tanh

(
1

2
αqu

)

+ α2q2
(

sinh φ − φ tanh2
(

1

2
α2qu

))
. (15)

By this means, the infinity is now located at φ = 0, and the dilaton 
does not appear to evolve with the “time” u.

6. Generalized Roberts solution

We now consider the special case of gauged supergravity with 
α = 0. To extract a non-trivial solution in this limit, we let q →√

2q/α and send α → 0; then we find

ds2 = 2dudr − (
k − q + g2r(r + qu)

)
du2 + r(r + qu)dΩ2

2,k,

eφ = 1 + qu

r
. (16)

The solution has two singularities, one located at r = 0 and the 
other at u = ∞. With the luminosity coordinate R , the metric is

ds2 = 4R dudR√
4R2 + q2u2

−
(

g2 R2 + k − q2u√
4R2 + q2u2

)
du2 + R2dΩ2

2,k. (17)

If we further set g2 = 0, the theory (1) simply reduces to Ein-
stein gravity coupled to a free scalar field, and for (16) the two-
dimensional metric on the (u, r) plane becomes flat. This special 
case was first obtained and analyzed by Roberts [16]. Our ver-
sion therefore provides a supergravity or (A)dS generalization and 
may be further examined in the context of critical phenomena [2], 
cosmic censorship and cosmology. Particularly, like the Roberts so-
lution, the existence of a black hole apparent horizon in the metric 
(17) with k = 1 also requires q > 1, regardless of the parameter g2.

7. Concluding remarks

In this paper, we considered Einstein gravity coupled to a dila-
tonic scalar with the scalar potential (1). The potential contains 
two non-trivial parameters, the asymptotic cosmological constant 
Λ = −3g2 and α2 that is responsible for the existence of a static 
scalar-hairy black hole instead of a Schwarzschild one. The g2-term 
arises in D = 4, N = 4 gauged supergravity. We obtain an exact so-
lution that describes the formation of the scalar hairy black hole 
in an (A)dS or flat background. At the initial time, the solution 
can be smoothly connected to a suitable vacuum except one point, 
which is singular owing to a singular energy–momentum tensor 
that kick-starts the time evolution. A naked singularity may occur 
as the solution approaches the static limit, in the exponential fash-
ion e−u/u0 with u0 = 1/(α4M0)

1/3. Hence a larger initial source 
will result in a shorter u0 and a bigger black hole mass M0.
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To be more specific, let us consider the case g2 ∼ 0 and k = 1. 
The existence of an event horizon requires that q >

√
2/α, and all 

black holes must have M0 � 1/α. Meanwhile, the event horizon 
of the static black hole is located at r+ ∼ M0; for the black hole 
formation, we therefore have the relaxation time u0 � r+ and the 
information of singularity will be trapped. For M0 � 1/α, a black 
hole cannot be formed and the naked singularity persists. However, 
if α ∼ 1/�p , where �p is the Planck length, then the corresponding 
Compton wavelength �comp = �2

p/M0 will be larger than r+ and 
hence the singularity will be smeared out by quantum effect.

To summarize, we provide a first example of exact black hole 
formation from a Lagrangian of fundamental fields. The asymptotic 
spacetime is either (A)dS or flat. This flexibility can facilitate var-
ious future applications, such as modeling real life black hole and 
investigating thermalization of certain strongly coupled field the-
ory.

Acknowledgements

We are grateful to Michal Artymowski, Daniel Finley, Sijie Gao, 
Hai-shan Liu, Chris Pope, Zhao-Long Wang and Tong-Jie Zhang for 
useful discussions. The research is supported in part by the NSFC 
grants 11175269 and 11235003.

References

[1] P.S. Joshi, D. Malafarina, Recent developments in gravitational collapse and 
spacetime singularities, Int. J. Mod. Phys. D 20 (2011) 2641, arXiv:1201.3660 
[gr-qc].

[2] C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravitational collapse, 
Living Rev. Relativ. 10 (2007) 5, arXiv:0711.4620 [gr-qc].
[3] C.L. Fryer, K.C.B. New, Gravitational waves from gravitational collapse, Living 
Rev. Relativ. 14 (2011) 1.

[4] P.C. Vaidya, The gravitational field of a radiating star, Proc. Indian Acad. Sci. A 
33 (1951) 264.

[5] V. Husain, Exact solutions for null fluid collapse, Phys. Rev. D 53 (1996) 1759, 
arXiv:gr-qc/9511011.

[6] A. Wang, Y. Wu, Generalized Vaidya solutions, Gen. Relativ. Gravit. 31 (1999) 
107, arXiv:gr-qc/9803038.

[7] J.M. Maldacena, The large N limit of superconformal field theories and su-
pergravity, Adv. Theor. Math. Phys. 2 (1998) 231, Int. J. Theor. Phys. 38 (1999) 
1113, arXiv:hep-th/9711200.

[8] S. Bhattacharyya, S. Minwalla, Weak field black hole formation in asymptoti-
cally AdS spacetimes, J. High Energy Phys. 0909 (2009) 034, arXiv:0904.0464 
[hep-th].

[9] P.M. Chesler, L.G. Yaffe, Numerical solution of gravitational dynamics in asymp-
totically anti-de Sitter spacetimes, arXiv:1309.1439 [hep-th].

[10] B. Craps, E. Kiritsis, C. Rosen, A. Taliotis, J. Vanhoof, H. Zhang, Gravitational 
collapse and thermalization in the hard wall model, J. High Energy Phys. 1402 
(2014) 120, arXiv:1311.7560 [hep-th].

[11] K.G. Zloshchastiev, Coexistence of black holes and a long-range scalar field in 
cosmology, Phys. Rev. Lett. 94 (2005) 121101, arXiv:hep-th/0408163.

[12] S.J. Gates Jr., B. Zwiebach, Gauged N = 4 supergravity theory with a new scalar 
potential, Phys. Lett. B 123 (1983) 200.

[13] R. Güven, E. Yörük, Stringy Robinson–Trautman solutions, Phys. Rev. D 54 
(1996) 6413, arXiv:hep-th/9609078.

[14] A. Anabalon, Exact hairy black holes, arXiv:1211.2765 [gr-qc];
P.A. González, E. Papantonopoulos, J. Saavedra, Y. Vásquez, Four-dimensional 
asymptotically AdS black holes with scalar hair, J. High Energy Phys. 1312 
(2013) 021, arXiv:1309.2161 [gr-qc];
A. Anabalon, D. Astefanesei, On attractor mechanism of AdS4 black holes, Phys. 
Lett. B 727 (2013) 568, arXiv:1309.5863 [hep-th];
X.-H. Feng, H. Lü, Q. Wen, Scalar hairy black holes in general dimensions, Phys. 
Rev. D 89 (2014) 044014, arXiv:1312.5374 [hep-th].

[15] Y. Kuroda, Naked singularities in the Vaidya spacetimes, Prog. Theor. Phys. 72 
(1984) 63.

[16] M.D. Roberts, Scalar field counterexamples to the cosmic censorship hypothe-
sis, Gen. Relativ. Gravit. 21 (1989) 907.

http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4A6F7368693132s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4A6F7368693132s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4A6F7368693132s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib47756E646C6163683037s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib47756E646C6163683037s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib46727965723131s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib46727965723131s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib5661696479613531s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib5661696479613531s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib48757361696E3935s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib48757361696E3935s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib57616E673939s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib57616E673939s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4D616C643938s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4D616C643938s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4D616C643938s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib426861747461636861727979613039s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib426861747461636861727979613039s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib426861747461636861727979613039s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib436865736C65723133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib436865736C65723133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib43726170733133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib43726170733133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib43726170733133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib5A6C6F73683035s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib5A6C6F73683035s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib47617465733833s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib47617465733833s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib477576656E3936s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib477576656E3936s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s2
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s2
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s2
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s3
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s3
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s4
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib476F6E7A616C657A3133s4
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4B75726F64613834s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib4B75726F64613834s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib526F62657274733839s1
http://refhub.elsevier.com/S0370-2693(14)00554-1/bib526F62657274733839s1

	Exact black hole formation in asymptotically (A)dS and ﬂat spacetimes
	1 Introduction
	2 The theory
	3 The local solution
	4 Static hairy black holes
	5 Time evolution and singularity
	6 Generalized Roberts solution
	7 Concluding remarks
	Acknowledgements
	References


