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Our long-standing evolutionary association with gut-associated microbial communities has given rise to an
intimate relationship, which affects many aspects of human health. Recent studies on the mechanisms that
link these microbial communities to immune education, nutrition, and protection against pathogens point
to microbiota-derived metabolites as key players during these microbe-host interactions. A disruption of
gut-associated microbial communities by antibiotic treatment can result in a depletion of microbiota-derived
metabolites, thereby enhancing pathogen susceptibility, impairing immune homeostasis, and contributing
to the rise of certain chronic inflammatory diseases. Here, we highlight some of the recently elucidatedmech-
anisms that showcase the impacts of microbiota-derived metabolites on human health.
Introduction
The large intestine is host to a diverse microbial community, the

gut microbiota, which is composed predominantly of obligate

anaerobic bacteria. Bifidobacterium species, which belong to

the phylum Actinobacteria, dominate gut-associated microbial

communities within the first year of life in breast-fed infants.

This preponderance of Bifidobacterium species is explained by

their capability to break down milk oligosaccharides, constitu-

ents of milk that cannot be utilized by newborns for nutrition

but instead serve to guide the composition of the developing

infant gut microbiota (reviewed in Garrido et al., 2013). After

weaning, bacteria belonging to the phyla Bacteroidetes and

Firmicutes rise to dominance, while members of the phyla

Actinobacteria, and Proteobacteria are minor constituents

commonly found within a balanced community (Eckburg et al.,

2005; Koenig et al., 2011; Palmer et al., 2007). Occasionally rep-

resentatives of Fusobacteria, Verrucomicrobia, Cyanobacteria,

or other phyla can be present within the community. The com-

bined metabolic activities and host interactions of a balanced

gut-associated microbial community confer benefit to the host

by providing nutrition, protection against enteric pathogens,

and immune education. However, the mechanisms responsible

for the beneficial properties of a balanced microbial community

and some consequences of its interaction with the host immune

system are just beginning to be worked out. Here we will review

recent mechanistic insights into the benefits conferred by gut-

associated microbial communities on the immune system and

the adverse effects associated with their disruption by antibiotic

treatment.

Delivering the Goods: Microbiota-Derived Metabolites
Gut-associated microbial communities are highly diverse, vary

between individuals on the species level, and can change in

composition over time (reviewed in Lozupone et al., 2012), which

makes it unlikely that their health benefits can be reduced to the

presence of individual bacterial species within the community

alone. More likely, the beneficial properties of the gut microbiota

in the large bowel are attributable to its combined metabolic
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activities and products, which are not immediately obvious

from an analysis of its composition by sequencing 16S RNA

genes. Thus, to understand how the gut microbiota affects

health it is important to know which products and metabolites

this community generates.

The gut microbiota can influence host responses by gener-

ating an abundance of microbe-specific molecules in the distal

gut. Some of these molecules, termed pathogen-associated

molecular patterns (PAMPs), are evolutionarily conserved and

are used by the host’s innate immune system to distinguish

microbes from self (Janeway, 1989). Although the name implies

an association with pathogens, all microbes produce PAMPs,

regardless of their pathogenic potential. We will thus refer to

PAMPs as conserved microorganism-associated molecular

patterns (MAMPs) throughout this review. As outlined below,

flagella, produced by motile bacterial species (Figure 1), and

certain polysaccharides covering the bacterial surface appear

to be MAMPs that are particularly important for interactions

between the host and its gut microbiota.

In addition to producing MAMPs, the fermentative growth of

microbes in the lower gastrointestinal tract generates amultitude

of metabolic end products. Complex carbohydrates and pro-

teins that cannot be degraded by the host enter the large bowel,

where they support growth of the gut microbiota. Obligate

anaerobic bacteria belonging to the classes Bacteroidia (phylum

Bacteroidetes) and Clostridia (phylum Firmicutes) break down

complex carbohydrates from fiber or mucus, which results in

the release of metabolic end products, including hydrogen;

organic acids, such as lactate and succinate; alcohols, such as

1,2 propanediol; and short-chain fatty acids (SCFAs), such as

formate, acetate, propionate, and butyrate (Figure 2) (reviewed

in Fischbach and Sonnenburg, 2011). Hydrogen is consumed

by obligate anaerobic sulfate-reducing bacteria of the family

Desulfovibrionaceae (phylum Proteobacteria), a process yielding

the metabolite hydrogen sulfide (H2S) (Deplancke et al., 2000;

Fite et al., 2004; Zinkevich and Beech, 2000). Members of

the phyla Bacteroidetes, Firmicutes, and Fusobacteria degrade

indigestible proteins, such as gluten, into amino acids to support
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Figure 1. Microbial Products Induce
Mucosal Barrier Functions
Concomitant activation of TLR5 during presenta-
tion of flagellin by antigen-presenting cells (APCs)
renders flagellin a dominant B cell antigen.
Flagellin-specific immunoglobulin A (IgA) helps
control motile bacteria in the gut lumen. Indole
derivatives (tryptamine, indole 3-acetate and
indole) are produced by the gut microbiota during
the breakdown of indigestible proteins. These
metabolites induce the release of IL-22 by acti-
vating the aryl hydrocarbon receptor (AHR) on
host cells. IL-22 stimulates epithelial cells to
release antimicrobial proteins (such as RegIIIb,
RegIIIg, lipocalin-2, and calprotectin) that help
control luminal bacteria.
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their growth by fermentation. Fermentation of the amino acid

tryptophan by facultative anaerobic bacteria of the class Bacilli

(phylum Firmicutes) yields a number of metabolites, such as

indole, indole 3-acetate, and tryptamine, which accumulate in

the intestine (Figure 1) (Jin et al., 2014; Zelante et al., 2013).

Furthermore, dietary phospholipids are broken down by the

microbiota anaerobically to yield the metabolites ethanolamine

and trimethyl amine (TMA) (de la Huerga and Popper, 1951;

Oresic et al., 2009; Tang et al., 2013). These examples illustrate

that the combined metabolic activities of gut-associated micro-

bial communities lead to the accumulation of a variety of micro-

biota-derived metabolites in the lumen of the distal gut. We will

discuss below how many of these metabolites influence host

physiology.

Nursing the Host: Microbiota-Derived Butyrate
Energizes Colonocytes
One of the beneficial properties of a balanced gut microbiota

is to provide nutrition for the host. A good example is the

mitochondrial oxidation of microbiota-derived butyrate into

carbon dioxide, which represents the primary energy source

for colonocytes that comprise the colonic epithelium (Figure 2)

(Donohoe et al., 2012). Exposure to SCFAs, such as butyrate,

triggers profound changes in epithelial gene expression in vitro

(Basson et al., 2000; Sanderson, 2004), which are mediated at

least in part through the SCFA sensor PPAR-g (peroxisome

proliferator activated receptor-g) (Alex et al., 2013). The

absence of SCFAs in the large bowel of germ-free mice leads

to major changes in the energy metabolism of colonocytes,

which switch from oxidizing butyrate to fermenting glucose

into lactate (Donohoe et al., 2012). Thus, microbiota-derived

metabolites can have a marked influence on the energy meta-

bolism of host cells. An increased concentration of fecal

SCFAs in obese individuals compared to subjects with normal

weight suggests that concentrations of these metabolites

might be relevant for the development of metabolic syndrome

(Schwiertz et al., 2010).
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Fortifying the Barrier: Microbial
Products Help Control
the Community
Some products of the gut microbiota

elicit immune responses that are aimed

at maintaining mucosal barrier integrity
by controlling luminal microbes. For instance, flagellin, the

structural protein subunit of the flagellar filament, is a MAMP

recognized by Toll-like receptor 5 (TLR5) (Hayashi et al., 2001).

Its TLR5 agonist activity makes flagellin a dominant antigen for

CD4 T cells and B cells (Atif et al., 2014; Cullender et al., 2013).

Although it remains unclear how flagellin crosses the epithelial

barrier, flagellin-specific immunoglobulin reduces bacterial

motility in the gut lumen, thereby strengthening epithelial barrier

function (Figure 1) (Cullender et al., 2013).

Probiotic Lactobacillus species produce tryptophan metabo-

lites, such as indole, indole 3-acetate, and tryptamine (Zelante

et al., 2013), which are ligands of the aryl hydrocarbon receptor

(AHR) expressed on T helper type 17 (TH17) cells, innate

lymphoid cells, and dendritic cells (Heath-Pagliuso et al., 1998;

Miller, 1997). TH17 responses are important for the control of

luminal pathogens (Zheng et al., 2008). AHR activation leads to

the production of interleukin 22 (IL-22), a TH17 cytokine that

acts on epithelial cells to induce the luminal release of anti-

microbial proteins, such as lipocalin-2, calprotectin, RegIII-b

(regenerating islet-derived protein 3 beta), and RegIII-g (Figure 1)

(Fukumoto et al., 2014; Monteleone et al., 2011; Zelante et al.,

2013). Production of IL-22 in the intestine can also be elicited

by bacterial flagellin through a TLR5-dependent mechanism

(Kinnebrew et al., 2010). The epithelial release of antimicrobial

proteins can alter themicrobiota composition by favoring growth

of bacteria that express the corresponding resistance mecha-

nisms (Behnsen et al., 2014; Raffatellu et al., 2009). Furthermore,

growth of bacteria that are susceptible to these antimicrobial

responses is reduced. Through this mechanism, the IL-22-

induced epithelial release of antimicrobial proteins protects

the mucosal surface from the attaching and effacing pathogen

Citrobacter rodentium (phylum Proteobacteria) (Zheng et al.,

2008); reduces colonization of opportunistic pathogens, such

as Candida albicans (a fungus belonging to the phylum Ascomy-

cota) (Zelante et al., 2013) or vancomycin resistant Enterococcus

species (phylum Firmicutes, class Bacilli) (Kinnebrew et al.,

2010); and helps control the growth of pathobionts, such as
, August 13, 2014 ª2014 Elsevier Inc. 157



Figure 2. Maintenance of Immune
Homeostasis by Microbiota-Derived
Metabolites
Digestion of dietary fiber leads to an accumulation
in the gut lumen of microbiota-derivedmetabolites
that have anti-inflammatory properties. Activation
of the SCFA receptor PPAR-g inhibits proin-
flammatory responses by inhibiting NF-kB acti-
vation. SCFAs cause an expansion of regulatory
T cells through mechanisms that depend on
SCFA receptors GPR43 and GPR109A. In turn,
regulatory T cells maintain gut homeostasis
by resolving inflammation through inhibition of
effector T cell function and increasing production
of IL-10. SCFAs can enter the circulation and
enhance the generation of APC precursors in
the bone marrow through a GPR41-dependent
mechanism. After seeding the lung, APCs gener-
ated through this process exhibit a reduced
ability to promote T helper type 2 (TH2) cell effector
function, thereby conferring protection from
allergic airway inflammation.
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segmented filamentous bacteria (SFB) (phylum Firmicutes, class

Clostridia) (Qiu et al., 2013).

SFBs are nonculturable obligate anaerobic bacteria that live

in tight association with epithelial cells in the murine intestine.

Colonization with SFBs induces a robust TH17 response, which

clearly distinguishes these pathobionts from other, more benign

members within the community (Gaboriau-Routhiau et al., 2009;

Ivanov et al., 2009; Salzman et al., 2010). Although SFBs are not

part of the human gut microbiota, we may engage in a similar

relationship with Helicobacter pylori (phylum Proteobacteria), a

pathogen entering the stomach early in life followed by stable

colonization that continues throughout adulthood. H. pylori

colonization influences the development of our immune system,

as illustrated by its protective role in esophageal adenocarci-

noma (Blaser, 2008).

Maintaining Balance: Metabolites Preserve Gut
Immune Homeostasis
While the presence of a balanced gut microbiota can help

to fortify the epithelial barrier, arguably the most important

characteristic of a balanced microbial community is its ability

to maintain immune homeostasis. One mechanism by which

the gut microbiota maintains immune homeostasis was gleaned

from studies on Bacteroides fragilis. B. fragilis produces surface
158 Cell Host & Microbe 16, August 13, 2014 ª2014 Elsevier Inc.
polysaccharide A, a MAMP that stimu-

lates TLR2 expressed on regulatory

T cells (Round et al., 2011), thereby

inducing their activation and subsequent

suppression of inflammatory responses

in the intestine (Mazmanian et al., 2008).

However, polysaccharide A production

is not a trait that is widely distributed

amongmembers of the class Bacteroidia,

which predicts the existence of additional

mechanisms that are more broadly

conserved evolutionarily.

One such mechanism is mediated by

SCFAs, metabolites produced by many

of the phylogenetic groupings repre-
sented within gut-associated microbial communities. The host

can detect and respond to the presence of SCFAs using the

intracellular receptor PPAR-g, the surface located G protein-

coupled receptor 43 (GPR43, also known as free fatty acid re-

ceptor 2 [FFAR2]), GPR41 (FFAR3), and the butyrate receptor

GPR109A (also known as hydroxycarboxylic acid receptor 1

[HAC2] or HM74A) (Alex et al., 2013; Brown et al., 2003;

Le Poul et al., 2003; Taggart et al., 2005). Furthermore, SCFAs

inhibit the activities of histone deacetylases (HDACs) in host

cells (Siavoshian et al., 2000). The anti-inflammatory properties

of SCFAs, most importantly acetate, propionate, and butyrate,

have been long recognized (reviewed in Al-Lahham et al.,

2010; Tan et al., 2014). For example, after surgical interventions

that require a diversion of the fecal stream, concentrations of

SCFAs drop in segments of the colorectum, resulting in diversion

colitis, which can be brought into remission by irrigation with

SCFA solution (Harig et al., 1989).

SCFAs can suppress inflammation through several distinct

mechanisms. SCFAs can suppress inflammation through a

GPR41-dependent pathway, although the underlying mecha-

nism has not been fully resolved (Trompette et al., 2014).

Butyrate downregulates lipopolysaccharide-induced responses

in intestinal macrophages by inhibiting HDACs in vitro; however,

this mechanism does not influence the severity of chemically
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induced colitis in mice (Chang et al., 2014). Activation of PPAR-g

by SCFAs can reduce host inflammatory responses in vitro by

promoting nuclear export of the NF-kB (nuclear factor kappa-

light-chain-enhancer of activated B cells) subunit RelA (Figure 2)

(Kelly et al., 2004). SCFA can promote the resolution of inflam-

mation in a mouse model of chemically induced colitis by acti-

vating GPR43 (Maslowski et al., 2009). Here, the underlying

mechanism is a stimulation of GPR43 on regulatory T cells,

which causes this cell population to expand in the colon, thereby

limiting the proliferation of effector CD4+ T cells and increasing

the expression of the anti-inflammatory cytokine IL-10 (Arpaia

et al., 2013; Atarashi et al., 2011; Furusawa et al., 2013; Smith

et al., 2013). Butyrate can also induce IL-10 production by anti-

gen-presenting cells (APCs) (Millard et al., 2002; Wang et al.,

2008). The mechanism behind this activity of butyrate is an

activation of GPR109A expressed on APCs in the colon, which

induces the release of IL-10, a process that promotes the matu-

ration of naive T cells into regulatory T cells (Singh et al., 2014).

Mice deficient for Niacr1, the gene encoding GPR109A, exhibit

increased susceptibility to chemically induced colitis (Singh

et al., 2014). Tryptophan metabolites might exhibit properties

that are similar to those of SCFAs, because activation of AHR

also reduces the severity of inflammation in a mouse model of

hapten-induced colitis by inducing an expansion of regulatory

T cells (Benson and Shepherd, 2011).

The picture emerging from above studies is that microbiota-

derived metabolites display prominent anti-inflammatory prop-

erties that are important for maintaining intestinal immune

homeostasis. Conditions that lead to a drop in the concentration

of microbiota-derived metabolites would thus be predicted to

disrupt immune homeostasis and predispose to inflammatory

diseases.

Side Effects: Antibiotics Deplete Microbiota-Derived
Metabolites
Antibiotic treatment results in a severe disruption of the gut mi-

crobiota of humans, which is characterized by a decrease in

both the taxonomic richness and diversity of the community

(Dethlefsen et al., 2008). Within 4 weeks after withdrawal of anti-

biotics the microbiota returns to an overall composition that

resembles the pretreatment state, although some changes in

the community can persist for longer periods of time (Dethlefsen

et al., 2008; Dethlefsen and Relman, 2011; Jernberg et al., 2007).

It is perhaps not surprising that the rapid loss in diversity of the

gut microbiota observed after antibiotic treatment has profound

effects on its combined metabolic activities and products.

Treatment of mice with a combination of metronidazole,

neomycin, and vancomycin lowers intestinal expression of the

antimicrobial peptide RegIII-g, suggesting that the ability of the

gut-associated microbial community to fortify barrier functions

can be impaired by antibiotic treatment (Brandl et al., 2008).

There is direct evidence to suggest that changes in the compo-

sition of the gut microbiota that are associated with antibiotic

treatment can lead to a drop in the concentrations of some

microbiota-derived metabolites. For example, dietary phospha-

tidylcholine is metabolized by the gut microbiota to generate

TMA, which is absorbed and then oxidized in host tissue to

form trimethyl amine oxide (TMAO). Measurements of TMAO

concentrations in human plasma and urine reveal a marked
decline after the administration of antibiotics and a succeeding

increase after withdrawal of antibiotics (Tang et al., 2013). Anti-

biotics also lower the concentrations of metabolites derived

from complex carbohydrate fermentation, because treatment

of mice with streptomycin, metronidazole, or vancomycin re-

duces SCFA concentrations in the cecum (Garner et al., 2009;

Meynell, 1963; Smith et al., 2013). Similarly, volunteers treated

orally with metronidazole, vancomycin, or bacitracin excrete

significantly reduced levels of fecal SCFAs (Høverstad et al.,

1986; Lewis et al., 2005). Oral doxycycline, cotrimoxazole,

nalidixic acid, or ofloxacin treatment does not produce this

effect in volunteers, which illustrates that not all antibiotics

reduce the metabolic activities of gut-associated microbial

communities to the same extent, perhaps due to differences in

their pharmacokinetics or to factors that remain to be worked

out. Nonetheless, it is clear from the above data that at least

some antibiotics cause a disruption of the gut microbiota that

is severe enough to significantly reduce the concentrations of

microbiota-derived metabolites. We will discuss below how

this side effect of antibiotic treatment can have several adverse

consequences for the host.

Undesired Consequences: Metabolite Depletion
Disrupts Gut Homeostasis
Disruption of the gutmicrobiota by vancomycin treatment lowers

intestinal SCFA concentrations, thereby reducing stimulation of

GPR43 on regulatory T cells, which leads to a contraction of

this cell population in the colonicmucosa, but not in other organs

(Atarashi et al., 2011; Smith et al., 2013). However, the numbers

of regulatory T cells in the colon remain unchanged when

mice are treated with a combination of vancomycin and SCFAs

(Smith et al., 2013). These data suggest that antibiotic treatment

can lower the numbers of regulatory colonic T cells by reducing

the concentration of SCFAs in the distal gut.

An antibody-mediated depletion of regulatory T cells does not

trigger overt intestinal inflammation in mice, but it increases the

severity of chemically induced colitis (Boehm et al., 2012). An

antibiotic-induced lowering of intestinal SCFA concentrations

and consequent reduction in the numbers or regulatory T cells

is therefore predicted to render the host more susceptible to

colitis. In line with this prediction, antibiotic treatment enhances

the severity of chemically induced colitis in mice (Rakoff-

Nahoum et al., 2004; Singh et al., 2014; Spees et al., 2013b).

Similarly, the severity of colitis caused by enteric pathogens,

such as Citrobacter rodentium or Salmonella enterica serovar

Typhimurium (family Enterobacteriaceae, phylum Proteobacte-

ria), is enhanced in mice treated with streptomycin, vancomycin,

or metronidazole (Barthel et al., 2003; Spees et al., 2013b; Wlo-

darska et al., 2011). Consistent with a mechanism that depends

on a disruption of the community of SFCA producers, the

enhanced severity of S. enterica-induced colitis after antibiotic

treatment is independent of pathogen colonization, but corre-

lates with differences in the composition of the gut microbiota

(Ferreira et al., 2011) and reduced concentrations of SCFAs in

the large bowel (Garner et al., 2009).

Antibiotic treatment also lowers ‘‘colonization resistance’’

against enteric pathogens belonging to the family Entero-

bacteriaceae. The concept that the gut microbiota confers

‘‘colonization resistance’’ against Enterobacteriaceae was first
Cell Host & Microbe 16, August 13, 2014 ª2014 Elsevier Inc. 159
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established in the 1950s and 1960s by demonstrating that

treatment with streptomycin greatly enhances the ability of

S. enterica or Escherichia coli to colonize the large bowel of

mice (Bohnhoff et al., 1954; Saito, 1961a, 1961b). Early work

on the underlying mechanism revealed that streptomycin treat-

ment lowers the concentration of SCFAs and increases the

redox potential in the cecum to conditions that approximate

an aerobic broth culture (Meynell, 1963). More recent results

show that treatment with antibiotics leads to a subtle elevation

of some inflammatory markers in the intestinal mucosa (Spees

et al., 2013b; Wlodarska et al., 2011), which might be a conse-

quence of lowering the concentrations of microbota-derived

metabolites that possess anti-inflammatory properties, such

as SCFAs (Garner et al., 2009; Høverstad et al., 1986; Lewis

et al., 2005; Meynell, 1963; Smith et al., 2013). For instance,

streptomycin treatment of mice markedly increases cecal

expression of inducible nitric oxide synthase (iNOS) encoded

by the NOS2 gene (Spees et al., 2013b), the expression of

which is suppressed in human colonocytes by the SCFA

sensor PPAR-g (Marion-Letellier et al., 2008). Furthermore,

mild inflammatory infiltrates of neutrophils, inflammatory mono-

cytes, and natural killer cells are observed in the intestinal

mucosa of mice treated with streptomycin or metronidazole

(Spees et al., 2013b; Wlodarska et al., 2011). In humans,

repeated courses of antibiotics can lead to the development

of irritable bowel syndrome (IBS), a condition characterized

by low-level intestinal inflammation, diarrhea, lower concentra-

tions of fecal SCFAs (Kopecny and Simunek, 2002; Treem

et al., 1996), and an increased abundance of Enterobacteria-

ceae in the fecal microbial population (Carroll et al., 2012;

Mättö et al., 2005).

The observation that antibiotic treatment can induce iNOS

expression (Spees et al., 2013b)might help explain the increased

redox potential in the cecum of streptomycin-treated mice first

observed in 1963 (Meynell, 1963). Nitric oxide generated by

iNOS can react with superoxide produced by epithelial NADPH

oxidases to give rise to peroxynitrite, which can be further

converted to nitrate (Szabó et al., 2007). Nitrate is an excellent

respiratory electron acceptor, because the redox potential of

the nitrate/nitrite redox couple (E� = 433 mV) is second only to

that of the oxygen/water redox couple (E� = 818 mV) (Thauer

et al., 1977). Nitrate respiration enhances growth of E. coli in

the large bowel of streptomycin-treated mice (Jones et al.,

2011) and in mice with chemically induced colitis (Winter et al.,

2013a), but not in untreated mice (Spees et al., 2013b). Further-

more, the fitness advantage conferred upon E. coli by nitrate

respiration is abrogated in streptomycin-treated NOS2-deficient

mice, suggesting that nitrate in the gut lumen after antibiotic

treatment is host derived (Spees et al., 2013b).

The evidence reviewed above raises the possibility that anti-

biotics can disrupt immune homeostasis by disrupting the com-

munity of SCFA producers, in turn increasing the inflammatory

tone of the intestinal mucosa. This low degree of inflammation

might lead to an enhanced susceptibility to colitis and is at

least in part responsible for reducing ‘‘colonization resistance’’

against Enterobacteriaceae (Spees et al., 2013a). Enterobacter-

iaceae benefit from low-level intestinal inflammation because

byproducts of the inflammatory host response, such as nitrate,

can selectively boost the growth of these facultative anaerobic
160 Cell Host & Microbe 16, August 13, 2014 ª2014 Elsevier Inc.
bacteria in the large bowel (Lopez et al., 2012; Spees et al.,

2013b; Winter et al., 2013b). For example, an analysis of 2,476

genomes representing all phylogenetic groupings found within

the gutmicrobiota suggests that sequences predicted to encode

nitrate reductase activity are present at the highest frequency

within members of the Enterobacteriaceae (Winter and Bäumler,

2014). Thus, the generation of host-derived nitrate after antibiotic

treatment might selectively boost the growth of Enterobacteria-

ceae simply because its members are more likely to encode

the enzymes to utilize this electron acceptor.

Hidden Costs: Beyond the Hygiene Hypothesis
While it may be unsurprising that a severe disruption of gut-asso-

ciated microbial communities by antibiotics influences immune

homeostasis and pathogen susceptibility in the gut, it is less

obvious that it also impacts immune responses in distal organs,

such as the airways. An increase in allergies observed since

the second half of the 20th century has been attributed by the

‘‘hygiene hypothesis’’ to decreased exposure to sporadic infec-

tions in early childhood (Strachan, 1989). The progressive disap-

pearance of H. pylori in high-income countries over the course

of the 20th century is inversely correlated to childhood asthma

(Chen and Blaser, 2008; Reibman et al., 2008), which led to the

advancement of the ‘‘disappearing microbiota hypothesis’’ for

explaining the rise in allergies by a lack of continued exposure

to H. pylori during childhood (Blaser, 2008). These hypotheses

suggest that sporadic exposure (‘‘hygiene hypothesis’’) or

continued exposure (‘‘disappearing microbiota hypothesis’’) to

pathogens in early childhood has a protective role against

allergic diseases by influencing the development of the neo-

nate’s immune system. However, recent evidence suggests

that in addition to pathogen exposure, the continued exposure

to metabolites produced by the commensal gut microbiota

plays a protective role in preventing allergic airways disease

(Bjorksten, 2009; Isolauri et al., 2009; Shreiner et al., 2008).

One reason for such distal effects is that some microbiota-

derived metabolites enter the circulation and influence cells

that are located within peripheral tissues. For example, fermen-

tation of complex carbohydrates by the gut microbiota increases

systemic levels of SCFAs, which in turn influence dendritic cell

hematopoiesis and functionality by a mechanism that depends

on GPR41, a SCFA receptor expressed on the surface of host

cells (Trompette et al., 2014). Stimulation of GPR41 with propio-

nate does not lead to an accumulation of regulatory T cells, but

protects against allergic inflammation in the lung through a

mechanism that involves decreased activation of lung dendritic

cells (Trompette et al., 2014) (Figure 2). The relevance of this

observation is highlighted by clinical studies documenting an

increased risk for developing allergic asthma after exposure to

antibiotics early in life (Marra et al., 2009; Martel et al., 2009;

Murk et al., 2011). Furthermore, low fecal SCFA levels in children

are associated with allergy (Sandin et al., 2009). A vancomycin-

mediated disruption of the community of SCFA producers in

neonatal mice, but not in adult mice, enhances subsequent sus-

ceptibility to allergic asthma (Russell et al., 2012), suggesting

that an antibiotic-mediated disruption of the gut microbiota

might be most consequential during the developmental period.

While the ‘‘hygiene hypothesis’’ and the ‘‘disappearing

microbiota hypothesis’’ propose exposure to pathogens as a
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mechanism protecting from allergies, the data reviewed above

provide evidence for a second mechanism that involves expo-

sure to metabolites produced by commensal, nonpathogenic

gut microbes early in life. The terms ‘‘microbial deprivation

hypothesis’’ (Bjorksten, 2009) and ‘‘microflora hypothesis’’

(Shreiner et al., 2008) have been advanced to describe the

idea that continued exposure to a balanced gut microbiota

during childhood, more than sporadic infections, is an important

factor for the prevention of allergy. Antibiotics can disrupt a

continued exposure to microbiota-derived metabolites, thereby

increasing susceptibility to allergies.

In conclusion, microbes inhabiting our gastrointestinal tract

during the first years of life shape our physiology and may

have lifelong influences on our immune system. A combination

of an increasing childhood exposure to antibiotics starting

in the second half of the 20th century and a progressive disap-

pearance of H. pylori throughout the last century impair immune

education, thereby contributing to the concomitant rise in

allergies observed in high-income countries.
Conclusions
Our lifelong association with a large microbial community inhab-

iting our intestine provides local as well as systemic benefits. The

combined metabolic activities of the gut microbiota promote

host nutrition, mucosal barrier function, gut immune homeosta-

sis, ‘‘colonization resistance,’’ and immune education. Recent

research is beginning to illuminate the consequences of

perturbing this homeostasis, for example by depleting micro-

biota-derived metabolites during antibiotic therapy. A better

understanding of these microbe-host interactions will aid in the

development of strategies to prevent undesired side effects

of antibiotic therapy and improve human health.
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