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1. Introduction and summary

The purpose of the present paper is to give a unified framework for deriving upper bounds for some quantities induced
by translation-invariant maps. To this end we employ vectorial intervals induced by two preorders on a linear space, and
radii of families of maps at a point (to be defined in Section 2).

In Section 2 we begin with some relevant notation and terminology. In Theorem 2.2 we present a general framework that
will be used throughout the paper. This result contains a set of assumptions leading to the required estimate. A particular
case of Theorem 2.2 related to a compact group of linear operators is demonstrated in Theorem 2.5. In the second part of
Section 2 we deal with so-called GIC preorders. In Theorem 2.9 we extend a result of Li and Mathias [20, Theorem 2] from
the matrix case to a general setting of an inner product space equipped with a GIC preorder.

In Section 3 we focus on the differences of two operators, e.g., on commutators. Here we generalize recent results of
Wang and Du [35, Corollary 4] and of Bhatia and Kittaneh [4, Theorem 4].

Section 4 is devoted to Grüss type inequalities. In Theorem 4.2 we apply vectorial intervals induced by cone preorders
to get a generalization of some results of Dragomir (see [5, Theorem 1] and [7, Theorem 2.5]). Applications for L2-functions
are given in Corollary 4.5. The discrete case is presented in Corollary 4.7. Finally, Corollary 4.8 extends a result of Renaud
[29, Theorem 2.1].
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2. Upper bounds for translation-invariant maps

Unless stated otherwise, throughout the paper X , Y and Z are linear spaces, and

Φ : Y → R and Ψ : Z → R are real maps.

It is also assumed that Z is equipped with two preorders ≺1 and ≺2.
Given two vectors α,β ∈ Z , the vectorial interval [α,β]≺1,2 induced by ≺1 and ≺2 (in short, ≺1,2-interval) is defined by

(cf. [12, pp. 120–124])

[α,β]≺1,2 = [α,β] = {z ∈ Z : α ≺1 z ≺2 β}.
The subscript is sometimes omitted, if not relevant.

The preorder ≺k (k = 1,2) is said to be translation-invariant with respect to (w.r.t.) the vector z0 ∈ Z , if z ≺k v implies
z − z0 ≺k v − z0 for all z, v ∈ Z .

Given a point x ∈ X and a (nonempty) subset M in X , a map L : X → Y is said to be translation-invariant at x w.r.t. M if
L(x − x0) = Lx for all x0 ∈ M .

Let L = {Li: i ∈ I} be a family of maps Li : X → Z . The Ψ L-radius is the map rΨ L : X → R defined by

rΨ L(x) = sup
i∈I

Ψ Li(x) < ∞ for x ∈ X .

The set

L(x) = {
Li(x): i ∈ I

}
is called the L-range of x ∈ X .

Example 2.1 (Numerical radius and numerical range). Let X = Y = Mn be the linear space of n × n complex matrices. Consider
Ψ = | · | = the modulus on C, and

I = {
a ∈ C

n: a∗a = 1
}

and L = {
La(·) = a∗(·)a: a ∈ I

}
,

where (·)∗ stands for the conjugate transpose. It is easily seen that

rΨ L(x) = max
{|a∗xa|: a ∈ C

n, a∗a = 1
}

is the numerical radius w(x) of a matrix x ∈ Mn (see [14, p. 7], [19, Section 14]). It is known that w(·) is a (weakly unitarily
invariant) norm on Mn , and

w(x) � ‖x‖∞ � 2w(x) for x ∈ Mn , (1)

where ‖ · ‖∞ denotes the operator norm on Mn [2, p. 4]. If x is a normal matrix then ‖x‖∞ = w(x) [29, p. 96].
Furthermore,

L(x) = {
a∗xa: a ∈ C

n, a∗a = 1
}

is the numerical range W (x) of x [19, Section 1] (also known as the field of values of x [14, Chapter 1]).
Take Φ = ‖ · ‖∞ . For a linear map L : Mn → Mn and η0 = 2, it follows from (1) that

‖Lx‖∞ � ‖L‖‖x‖∞ � ‖L‖η0 w(x) for x ∈ X = Mn.

(If x is a normal matrix then η0 = 1.) Putting η = η0‖L‖ yields

ΦLx � ηrΨ L(x) for x ∈ X . (2)

In this section, we are interested in an upper bound for the expression ΦLx, where x is a point in X , and Φ : Y → R is
a given map and L : X → Y is a translation-invariant map at x.

In our considerations, the crucial assumption is an inequality of type (2) (see (4), (10), (22), (40)). It strongly depends
on Φ . In some cases, it is a consequence of a certain nontrivial estimate (see e.g., (1)). On the other hand, (2) holds
automatically when Φ = rΨ L , η = 1 and L is a contractive map w.r.t. rΨ L .

For the statement of our results we need some notation.
Given a family L = {Li: i ∈ I} consisting of maps Li : X → Z and given a (nonempty) set M ⊂ X , a vector z0 ∈ Z is said

to be L, M-admissible at x ∈ X , if there exists x0 ∈ M such that

Li(x) − z0 = Li(x − x0) for i ∈ I.

We denote

Adm(L, M, x) = {z0 ∈ Z : z0 is L, M-admissible at x ∈ X}.
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If r0 ∈ R, x0 ∈ X and Θ : X → R is a map, then the set

BΘ(x0, r0) = {
x ∈ X: Θ(x − x0) � r0

}
is called Θ-ball of radius r0 centered at x0.

We are now in a position to give Theorem 2.2. This result provides general assumptions of type (i), (ii) and/or (iii) leading
to estimate (iv). Interpretations and applications of the implications (i) ⇒ (iv) and (ii) ⇒ (iv) are presented in Sections 3
and 4.

Theorem 2.2. With the above notation, let X , Y and Z be linear spaces and let Φ : Y → R and Ψ : Z → R be maps. Assume that ≺1
and ≺2 are preorders on Z such that

−v ≺1 z ≺2 v implies Ψ (z) � Ψ (v) for z, v ∈ Z . (3)

Let x ∈ X and M be a subset of X . Suppose that L : X → Y is a translation-invariant map at x w.r.t. M, and L = {Li: i ∈ I} is a
family of maps Li : X → Z , and η > 0 is a constant such that

Φ(Lv) � ηrΨ L(v) for v ∈ x − M. (4)

Consider the following four statements (i)–(iv):

(i) For some vectors α,β ∈ Z , with notation z0 = 1
2 (α + β) and r0 = Ψ ( 1

2 (β − α)), the following conditions (a)–(c) hold true:
(a) the L-range of x is included in the ≺1,2-interval [α,β] ⊂ Z ,
(b) the vector z0 is L, M-admissible at x,
(c) the preorders ≺1 and ≺2 are translation-invariant w.r.t. the vector z0 .

(ii) The L-range of x is included in certain Ψ -ball of radius r0 centered at a point in Adm(L, M, x).
(iii) The vector x lies in certain rΨ L -ball of radius r0 centered at a point in M.
(iv) ΦLx � ηr0 .

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Remark 2.3. In Theorem 2.2, statement (i) simplifies if the ≺1,2-interval [α,β] is symmetric, i.e., α = −δ and β = δ for some
δ ∈ Z . In this event, z0 = 0 and r0 = Ψ (δ). Then conditions (b) and (c) holds automatically, and can be dropped.

Proof of Theorem 2.2. (i) ⇒ (ii). On account of (a) we have L(x) ⊂ [α,β]≺1,2 , so α ≺1 Li(x) ≺2 β for i ∈ I . Hence, by (c),

−1

2
(β − α) = α − 1

2
(α + β) ≺1 Li(x) − 1

2
(α + β) ≺2 β − 1

2
(α + β) = 1

2
(β − α) for i ∈ I.

Therefore, by (3) applied to v = 1
2 (β − α) and z = Li(x) − 1

2 (α + β), we deduce that

Ψ

(
Li(x) − 1

2
(α + β)

)
� Ψ

(
1

2
(β − α)

)
for i ∈ I,

that is Ψ (Li(x) − z0) � r0 for i ∈ I . This means L(x) ⊂ BΨ (z0, r0), and z0 is L, M-admissible at x (see (b)). Thus (ii) is
proved.

(ii) ⇒ (iii). We have L(x) ⊂ BΨ (z0, r0) for some z0 ∈ Adm(L, M, x). Therefore Ψ (Li(x) − z0) � r0 for i ∈ I . Since z0 is
L, M-admissible at x, there exists x0 ∈ M such that Li(x) − z0 = Li(x − x0) for all i ∈ I . Consequently, Ψ Li(x − x0) � r0
for i ∈ I . Hence

rΨ L(x − x0) = sup
i∈I

Ψ Li(x − x0) � r0.

This means x ∈ BrΨ L (x0, r0), as desired.
(iii) ⇒ (iv). Because x ∈ BrΨ L (x0, r0) for some x0 ∈ M , we have rΨ L(x − x0) � r0, and further

ηrΨ L(x − x0) � ηr0. (5)

Clearly, by Lx = L(x − x0), we get

ΦLx = ΦL(x − x0). (6)

In addition, by (4),

ΦL(x − x0) � ηrΨ L(x − x0). (7)

Now, combining (6), (7) and (5) yields (iv), completing the proof. �
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Let (X, 〈·,·〉) be an inner product space over F = R or C. Let G be a compact subgroup of the orthogonal/unitary group
on X according as F = R or C. So, 〈ga,b〉 = 〈a, g−1b〉 for a,b ∈ X and g ∈ G . Given vectors c, x ∈ X , we define

rG,c(x) = max
g∈G

∣∣〈x, gc〉∣∣ = max
g∈G

∣∣〈gc, x〉∣∣,
W G,c(x) = {〈x, gc〉: g ∈ G

}
,

MG(X) = {e ∈ X: ge = e for g ∈ G}.
The quantity rG,c(x) is called G(c)-radius of x [21,27]. The set W G,c(x) is said to be G(c)-range of x. The subspace MG(X)

consists of fixed points for all operators in G .

Example 2.4 (C-numerical radius and C-numerical range). Let X = Y = Mn be equipped with the trace inner product 〈x, y〉 =
tr xy∗ for x, y ∈ Mn , where (·)∗ stands for the conjugate transpose. Take G = {g = u∗(·)u: u ∈ Un} with Un denoting the
group of n × n unitary matrices. Then MG(X) = span In , where In denotes the n × n identity matrix.

Fix arbitrarily c ∈ Mn . It is not hard to check that

rG,c∗(x) = max
{∣∣tr u∗cux

∣∣: u ∈ Un
}

is the C-numerical radius rc(x) of a matrix x ∈ Mn , and

W G,c∗(x) = {
tr u∗cux: u ∈ Un

}
is the C-numerical range Wc(x) of x (see [14, p. 81], [19, Sections 2 and 15]).

We now interpret Theorem 2.2 in terms of the G(c)-radius and G(c)-range of x ∈ X . To do this, we consider the following
specification:

Z = F = R or C, M ⊂ MG(X), Ψ = | · | is the modulus on F, I = G and L = {
Lg = 〈·, gc〉: g ∈ G

}
,

for α,β ∈ F and k = 1,2, we define α ≺k β iff β − α ∈ R+. (8)

Then the ≺1,2-interval is given by

[α,β] = {z ∈ F: Reα � Re z � Reβ, Imα = Im z = Imβ}. (9)

We denote span e = {te: t ∈ F} and spanR e = {te: t ∈ R}.

Theorem 2.5. Let (X, 〈·,·〉) be an inner product space over F = R or C, and let G be a compact subgroup of the orthogonal/unitary
group on X. Let c ∈ X and e ∈ MG(X) be such that 〈e, c〉 �= 0. Assume that ≺1 and ≺2 are preorders on F given by (8).

Let x ∈ X and M = span e. Suppose that Φ : Y → R is a real map on a linear space Y , and L : X → Y is a translation-invariant
map at x w.r.t. M, and η > 0 is a constant such that

Φ(Lv) � ηrG,c(v) for v ∈ x − M. (10)

Consider the following four statements (i)–(iv):

(i) For some α,β ∈ F, the G(c)-range of x is included in the ≺1,2-interval [α,β] ⊂ F, with notation z0 = 1
2 (α + β) and r0 =

1
2 (β − α).

(ii) The G(c)-range of x is included in certain | · |-ball of radius r0 � 0.
(iii) The vector x lies in certain rG,c-ball of radius r0 � 0 centered at a point in M = span e.
(iv) ΦLx � ηr0 .

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. It follows that each z0 ∈ Z = F is L, M-admissible at x ∈ X , i.e., Adm(L, M, x) = F. To see this, we set t = z0/〈e, c〉
and x0 = te, where e ∈ MG(X) and 〈e, c〉 �= 0. Then for any g ∈ G we can write

Lg(x) − z0 = 〈x, gc〉 − t〈e, c〉 = 〈x, gc〉 − t
〈
g−1e, c

〉
= 〈x, gc〉 − t〈e, gc〉 = 〈x, gc〉 − 〈x0, gc〉 = 〈x − x0, gc〉 = Lg(x − x0).

Thus z0 ∈ Adm(L, M, x), as claimed.
Moreover, the preorders ≺1 and ≺2 are translation-invariant w.r.t. any vector in F (see (8)). In addition, for z, v ∈ F the

condition −v ≺1 z ≺2 v implies z, v ∈ R, and therefore (3) is fulfilled for the modulus Ψ = | · |.
Now, the validity of the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) follows from Theorem 2.2 applied to the specifica-

tion (8). �
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Remark 2.6. In Theorem 2.5, if in addition α+β
2 /〈c, e〉 ∈ R then span e can be replaced by spanR e.

In the remainder of this section, we deal with so-called GIC preorders.
Suppose that (X, 〈·,·〉) is a finite-dimensional real inner product space and G is a closed subgroup of the orthogonal

group O (X) on X . For a vector x ∈ X , by conv Gx we denote the convex hull of the G-orbit Gx = {gx: g ∈ G}. Given two
vectors x, y ∈ X , we write

y ≺G x iff y ∈ conv Gx. (11)

The relation ≺G is a G-invariant preorder on X called G-majorization.
It is known [12, Theorem 1] that for x, y ∈ X

y ≺G x iff mG,c(y) � mG,c(x) for c ∈ X, (12)

where

mG,c(v) = max
g∈G

〈gc, v〉, v ∈ X .

Since G ⊂ O (X) we have mG,c(v) = mG,v(c) for all c, v ∈ X [12, p. 114]. The function mG,v(·) is the support function of the
set conv G v [30].

Following [9,10], we say that the G-majorization ≺G is a group induced cone (GIC) preorder if there exists a closed convex
cone D ⊂ X such that

(A1) D ∩ G v is not the empty set for each v ∈ X ,
(A2) maxg∈G 〈gc, v〉 = 〈c, v〉 for c, v ∈ D .

See [9,10,17,18] for some important examples and [31,32, Examples 1 and 2] for an interpretation of (A1)–(A2) in Lie theory.
Under (A1)–(A2), for each v ∈ X there exist elements v↓, v↑ ∈ X such that

{v↓} = D ∩ G v and {v↑} = −D ∩ G v

(see [23, p. 14]). Then mG,c(v) = 〈c↓, v↓〉 for c, v ∈ X , and (12) simplifies to

y ≺G x iff 〈c, y↓〉 � 〈c, x↓〉 for c ∈ D ,

iff 〈gc, y〉 � 〈c, x↓〉 for c ∈ D and g ∈ G . (13)

Furthermore,

〈c, v↑〉 � 〈gc, v〉 � 〈c, v↓〉 for v ∈ X , c ∈ D and g ∈ G (14)

(see [31]). In other words, for each c ∈ D the G(c)-range of v ∈ X is contained in [α,β], where α = 〈c, v↑〉 and β = 〈c, v↓〉.

Example 2.7. (See [9].) Given x, y ∈ R
n , x is said to weakly majorize y, written y ≺w x, if the sum of k largest entries of y

does not exceed the sum of k largest entries of x for each k = 1, . . . ,n [22, p. 10]. If, in addition, equality holds for k = n, x
is said to majorize y, written y ≺m x [22, p. 7].

If X = R
n and G = Pn is the group of n × n permutation matrices, then the G-majorization ≺G becomes the usual

majorization ≺m , i.e., for x, y ∈ R
n ,

y ≺G x iff y ≺m x.

It is well known that ≺m is a GIC preorder with the cone D = {v = (v1, . . . , vn)T ∈ R
n: v1 � · · · � vn}. Here v↓ =

(v[1], . . . , v[n])T and v↑ = (v(1), . . . , v(n))
T , where v[1] � · · · � v[n] and v(1) � · · · � v(n) are the entries of v = (v1, . . . , vn)T

stated in decreasing order and in increasing order, respectively.

Example 2.8. (See [17, Example 7.4], also cf. [9, Example 2.4].) Take X to be the (real) space Hn of n × n Hermitian matrices
with the inner product 〈x, y〉 = tr xy for x, y ∈ Hn . Let G be the group of all unitary similarities u(·)u∗ , where u runs over
the group Un of n × n unitary matrices. Then the preorder ≺G is characterized by: for x, y ∈ Hn ,

y ≺G x iff λ(y) ≺m λ(x),

where λ(v) = (λ1(v), . . . , λn(v))T stands for the vector of the eigenvalues of v ∈ Hn arranged in decreasing order, i.e.,
λ1(v) � · · · � λn(v).

The G-majorization ≺G is a GIC preorder with D = {diag(λ1, . . . , λn): λ1 � · · · � λn} and

v↓ = diag
(
λ1(v), . . . , λn(v)

)
and v↑ = diag

(
λn(v), . . . , λ1(v)

)
.

In fact, (A1) is the Spectral Theorem for Hermitian matrices, and (A2) is Fan–Theobald’s trace inequality [11,33].
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Let Y be a subspace of X . A linear operator L : X → Y is said to be G-contractive, if

Lx ≺G x for x ∈ X . (15)

In light (12), (15) is equivalent to

mG,c(Lx) � mG,c(x) for c, x ∈ X . (16)

Therefore (4) holds for

Φ = mG,c(·), η = 1, Ψ = the identity on R , L = {〈gc, ·〉: g ∈ G
}

and rΨ L(·) = mG,c(·). (17)

The next result is motivated by [20, Theorem 2].

Theorem 2.9. Let (X, 〈·,·〉) be a finite-dimensional real inner product space. Let G be a compact subgroup of the orthogonal group on
X and D ⊂ X be a closed convex cone such that the G-majorization ≺G is a GIC preorder satisfying axioms (A1)–(A2).

Assume that g0 D ⊂ −D for some g0 ∈ G. Denote Q = 1
2 (id−g0) and D0 = Q D. Let Y be a subspace in X such that Y =⋃

g∈G0
g D0 for some subset G0 ⊂ G.

If L : X → Y is a G-contractive operator, then

Lx ≺G
1

2
(x↓ − x↑) for x ∈ X.

The proof of Theorem 2.9 will be simplified if we first prove a lemma.

Lemma 2.10. Under the assumptions of Theorem 2.9 for (X, 〈·,·〉), G and D, assume that g0 D ⊂ −D for some g0 ∈ G. Denote Q =
1
2 (id−g0).

Then

(i) g0 is an involution on span D,
(ii) for c ∈ D and x ∈ X we have 1

2 (α + β) = 0, where α = 〈Q c, x↑〉 and β = 〈Q c, x↓〉.

Proof. (i). Since −g0 D ⊂ D , for any x0 ∈ ri D (the relative interior of D), we find that g2
0x0 = −g0(−g0x0) ∈ D . By

[23, Lemma 2.1], we deduce that g2
0|span D = id |span D , as desired.

(ii). Let c ∈ D and x ∈ X . Define P = 1
2 (id+g0). Notice that x↑ = g0x↓ . For this reason 1

2 (x↓ − x↑) = Q x↓ and 1
2 (x↓ + x↑) =

P x↓ . Since g0 ∈ G is an orthogonal operator, we have gT
0 = g−1

0 , where gT
0 denotes the dual operator of g0 w.r.t. the inner

product 〈·,·〉. Therefore we can write

1

2
(α + β) = 1

2
〈Q c, x↓ + x↑〉 = 〈Q c, P x↓〉 = 〈

P T Q c, x↓
〉 = 1

4

〈
(id+g0)

T (id−g0)c, x↓
〉

= 1

4

〈(
id+g−1

0

)
(id−g0)c, x↓

〉 = 1

4

〈(
g−1

0 − g0
)
c, x↓

〉 = 1

4

〈
g−1

0

(
id−g2

0

)
c, x↓

〉 = 0,

the last equality being a consequence of the proved part (i) of Lemma 2.10. �
Proof of Theorem 2.9. Fix arbitrarily x ∈ X . Since x↓ ∈ D and x↑ ∈ −D , we get 1

2 (x↓ − x↑) ∈ D . So, by (13), we have to prove
that

〈
c, (Lx)↓

〉
�

〈
c,

1

2
(x↓ − x↑)

〉
for c ∈ D . (18)

Observe that D0 = Q D ⊂ D . Making use of Lemma 2.10(i), it is not hard to verify that Q 2|D = Q |D . It can be shown in
a similar way as in the proof of Lemma 2.10 that 〈Pc, Q y〉 = 0 for c, y ∈ D . Moreover, a simple computation shows that
〈Q c, y〉 = 〈c, Q y〉 for c ∈ D and y ∈ span D , because gT

0 y = g−1
0 y = g0 y by g2

0 y = y.
Since Lx ∈ Y = ⋃

g∈G0
g D0, we obtain Lx = gy0 for some g ∈ G0 and y0 ∈ D0. Hence (Lx)↓ = y0 = g−1Lx by D0 ⊂ D .

For this reason Q (Lx)↓ = (Lx)↓ , because Q y0 = y0 by Q 2|D = Q |D and y0 ∈ D0 = Q D . Therefore 0 = 〈Pc, (Lx)↓〉 =
〈(id−Q )c, (Lx)↓〉 and further〈

c, (Lx)↓
〉 = 〈

Q c, (Lx)↓
〉 = 〈

Q c, g−1Lx
〉 = 〈g Q c, Lx〉.

So, in order to show (18), it is sufficient prove that

〈g Q c, Lx〉 �
〈
c,

1
(x↓ − x↑)

〉
for c ∈ D . (19)
2



M. Niezgoda / J. Math. Anal. Appl. 354 (2009) 111–124 117
Since Q D ⊂ D , it follows from (14) that

〈Q c, x↑〉 � 〈g Q c, g̃x〉 � 〈Q c, x↓〉 for c ∈ D and g̃ ∈ G . (20)

But L is G-contractive, so we have Lx ≺G x. That is, the vector Lx is a convex combination of some vectors of the form g̃x
with g̃ ∈ G . Hence (20) gives

〈Q c, x↑〉 � 〈g Q c, Lx〉 � 〈Q c, x↓〉 for c ∈ D .

Denoting α = 〈Q c, x↑〉 and β = 〈Q c, x↓〉, we find that

−1

2
(β − α) � 〈g Q c, Lx〉 − 1

2
(α + β) � 1

2
(β − α) for c ∈ D . (21)

According to Lemma 2.10 (ii), we get 1
2 (α + β) = 0. On the other hand, x↑ = g0x↓ and g0x↓ = g−1

0 x↓ . As a result we obtain

1

2
(β − α) =

〈
Q c,

1

2
(x↓ − x↑)

〉
= 〈Q c, Q x↓〉 = 〈

c, Q T Q x↓
〉 = 〈c, Q x↓〉 =

〈
c,

1

2
(x↓ − x↑)

〉
.

Therefore (21) implies (19). This completes the proof. �
Remark 2.11. The last part of the proof of Theorem 2.9 can be obtained from Theorem 2.2 applied to the case when
z0 = 1

2 (α + β) = 0 and M = {0}, with (17) updated by L = {〈g Q c, ·〉: g ∈ G0}.

3. Applications for differences of operators

Bounds for norms of the difference of two operators have attracted a great research interest [3, Section VI]. A particular
attention is paid to commutators [4,15,16,35]. In this section we generalize some recent results of Wang and Du [35] and of
Bhatia and Kittaneh [4].

The following result holds.

Corollary 3.1. Let (X,‖ · ‖X ) and (Y ,‖ · ‖Y ) be two norm spaces over F = R or C. Assume 〈·,·〉 is an inner product on X. Let G be a
compact subgroup of the orthogonal/unitary group on X. Let c ∈ X and e ∈ MG(X) be such that 〈c, e〉 �= 0. Assume that ≺1 and ≺2
are preorders on F given by (8).

Let x ∈ X and M = span e. Suppose that η0 > 0 is a constant such that

‖v‖X � η0rG,c(v) for v ∈ x − M. (22)

Assume that L1 : X → Y and L2 : X → Y are linear operators such that the map L = L1 − L2 is translation-invariant at x w.r.t. M.
If the G(c)-range of x is included in ≺1,2-interval [α,β] ⊂ F, then

‖L1x − L2x‖Y � κη0
β − α

2
, (23)

where κ = ‖L1‖ + ‖L2‖ with ‖Lk‖ = sup{‖Lk v‖Y : v ∈ X, ‖v‖X = 1} for k = 1,2.
If in addition α+β

2 /〈c, e〉 ∈ R, then span e can be replaced by spanR e.

Proof. By (22), for v ∈ x − M we obtain

‖L1 v − L2 v‖Y � ‖L1 v‖Y + ‖L2 v‖Y � κ‖v‖X � κη0rG,c(v).

Utilizing the implication (i) ⇒ (iv) of Theorem 2.5 for Φ = ‖ · ‖Y and η = κη0, we conclude that (23) holds.
The last part of the theorem follows from Remark 2.6. �
We now illustrate Corollary 3.1 in matrix setting. Set X = Y = Mn with the operator norm ‖ · ‖∞ on Mn and with the

trace inner product. Let G be the group of all unitary similarities acting on Mn . Take e to be the n × n identity matrix In

and M = spanR e. Choose c = diag(1,0, . . . ,0). Let x be an n × n Hermitian matrix with the smallest and largest eigenvalues
α and β , respectively. Then W G,c(x) = W (x) = [α,β] and rG,c(v) = w(v) = ‖v‖∞ for v ∈ x − M ⊂ Hn [14, p. 12]. So, (22) is
fulfilled for η0 = 1.

For given matrix a ∈ Mn , we define

L1x = xa and L2x = ax for x ∈ Mn .

Evidently, L1x − L2x is the commutator xa − ax. Since ‖ · ‖∞ is submultiplicative, we can put κ = 2‖a‖∞ into (23).



118 M. Niezgoda / J. Math. Anal. Appl. 354 (2009) 111–124
As a consequence of Corollary 3.1, we obtain

Corollary 3.2. (See Wang and Du [35, Corollary 4].) Let a be an n × n matrix and let x be an n × n Hermitian matrix. Denote α =
min{λ: λ ∈ σ(x)} and β = max{λ: λ ∈ σ(x)}, where σ(x) stands for the spectrum of x.

Then we have the inequality

‖xa − ax‖∞ � ‖a‖∞(β − α).

A related result to Corollary 3.2 is Corollary 3.4. A more general framework is demonstrated in Theorem 3.3.
To state this theorem, we need some notation. Let (X, 〈·,·〉) be a finite-dimensional real inner product space and G be

a compact subgroup of the orthogonal group on X . Assume that Y is a subspace in X and H is a subgroup in G . It is not
hard to check that the set of all G-contractive operators on X is G-invariant and convex.

In Theorem 3.3 we deal with some special pairs of G-contractive operators. Namely, we introduce

C0 =
{(

m∑
i=1

αi gih1i,

m∑
i=1

αi gih2i

)
:

m∑
i=1

αi = 1, αi > 0, gi ∈ G and h1i,h2i ∈ H

}
. (24)

This definition is motivated by the construction described in [4, pp. 147–148].
For instance, let H1 = {h11, . . . ,h1q} and H2 = {h21, . . . ,h2m} be finite subgroups of H of order q and m, respectively.

Assume H1 is a subgroup of H2. By Lagrange’s theorem, m = kq for some positive integer k. It is known that the operators

L1 = 1

q

q∑
i=1

h1i = 1

m

q∑
i=1

kh1i and L2 = 1

m

m∑
i=1

h2i

are the orthogonal projections onto the subspaces MH1(X) = {x ∈ X: hx = x, h ∈ H1} and MH2 (X) = {x ∈ X: hx = x, h ∈ H2},
respectively (see [1,24]).

Theorem 3.3. Let (X, 〈·,·〉) be a finite-dimensional real inner product space. Let G be a compact subgroup of the orthogonal group on
X, and D ⊂ X be a closed convex cone such that the G-majorization ≺G is a GIC preorder satisfying axioms (A1)–(A2).

Assume that Y is a subspace in X with the inherited inner product, H is a closed subgroup of G and F ⊂ Y is a closed convex cone
satisfying axioms (A1)–(A2).

If L1, L2 : X → X are G-contractive operators on X such that (L1, L2) is in the class C0 defined by (24), then

L1x − L2 y ≺G x↓ − y↑ for x, y ∈ Y , (25)

where for z ∈ Y the symbols z↓ and z↑ stand for the unique elements of the sets F ∩ H z and −F ∩ H z, respectively.

Proof. By [25, Corollary 2.5] applied to the triple (Y , H, F ) we have

x − y ≺H x↓ − y↑ for x, y ∈ Y .

Hence

h1x − h2 y ≺H x↓ − y↑ for x, y ∈ Y , h1,h2 ∈ H ,

because (hz)↓ = z↓ and (hz)↑ = z↑ for h ∈ H and z ∈ Y . In consequence, by H ⊂ G , we obtain

h1x − h2 y ≺G x↓ − y↑ for x, y ∈ Y , h1,h2 ∈ H .

Because the preorder ≺G is G-invariant, we get

gh1x − gh2 y ≺G x↓ − y↑ for x, y ∈ Y , g ∈ G , h1,h2 ∈ H . (26)

Fix arbitrarily x, y ∈ Y . Since (L1, L2) ∈ C0, there exist gi ∈ G , h1i,h2i ∈ H and αi > 0, i = 1, . . . ,m > 0, with
∑m

i=1 αi = 1
satisfying

L1x =
m∑

i=1

αi gih1i x and L2 y =
m∑

i=1

αi gih2i y.

It follows from (26) and from the definition of G-majorization that

m∑
i=1

αi gih1i x −
m∑

i=1

αi gih2i y ≺G x↓ − y↑

In other words, (25) holds, as required. �
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In the remainder of this section we interpret Theorem 3.3 when

X = Mn = the vector space of n × n complex matrices endowed with the (real) inner product 〈x, y〉
= Re tr xy∗ for x, y ∈ Mn ,

G = the group of unitary equivalences u1(·)u2 with u1 and u2 running over the unitary group Un ,

D = {
diag(s1, . . . , sn): s1 � · · · � sn � 0

}
,

x↓ = diag s(x), where s(x) = (
s1(x), . . . , sn(x)

)
denote the n-vector of the singular values of x ∈ Mn

ordered so that s1(x) � · · · � sn(x),

Y = Hn = the vector space of n × n Hermitian matrices,

H = the group of unitary similarities u(·)u∗ with u running over Un ,

F = {
diag(λ1, . . . , λn): λ1 � · · · � λn

}
,

y↓ = diag λ↓(y) and y↑ = diag λ↑(y), where λ1(y) � · · · � λn(y) denote the eigenvalues of y ∈ Hn , and

λ↓(y) = (
λ1(y), . . . , λn(y)

)
and λ↑(y) = (

λn(y), . . . , λ1(y)
)
.

It is known that (X, G, D) and (Y , H, F ) satisfy conditions (A1)–(A2) (see [22, pp. 498, 514], [17, pp. 943–945], Exam-
ple 2.8, also cf. [9, pp. 17–18]), and

y ≺G x iff s(y) ≺w s(x) for x, y ∈ Mn , (27)

y ≺H x iff λ(y) ≺m λ(x) for x, y ∈ Hn . (28)

A direct application of Theorem 3.3 gives

Corollary 3.4. Let L1, L2 : Mn → Mn be two G-contractive operators on Mn (i.e., s(Lk v) ≺w s(v) for v ∈ Mn, k = 1,2) belonging to
the class C0 with the groups G and H as above. Let x and y be n × n Hermitian matrices.

Then we have the inequality

s(L1x − L2 y) ≺w s
(
λ↓(x) − λ↑(y)

) = (∣∣λ1(x) − λn(y)
∣∣, . . . , ∣∣λn(x) − λ1(y)

∣∣), (29)

or, equivalently, for any unitarily invariant norm ||| · ||| on Mn,

|||L1x − L2 y||| � ∣∣∣∣∣∣diag
(
λ↓(x) − λ↑(y)

)∣∣∣∣∣∣. (30)

Corollary 3.5. (See Bhatia and Kittaneh [4, Theorem 4].) Let a be an n × n matrix and let x and y be n × n Hermitian matrices.
Then we have the inequality

s(xa − ay) ≺w ‖a‖∞
(∣∣λ1(x) − λn(y)

∣∣, . . . , ∣∣λn(x) − λ1(y)
∣∣), (31)

or, equivalently, for any unitarily invariant norm ||| · ||| on Mn,

|||xa − ay||| � ‖a‖∞
∣∣∣∣∣∣diag

(
λ↓(x) − λ↑(y)

)∣∣∣∣∣∣. (32)

Proof. The operators

L1x = 1

‖a‖∞
xa and L2x = 1

‖a‖∞
ax for x ∈ Mn

are G-contractive on Mn . In fact, we have

s(ab) ≺w s(a) ◦ s(b) for a,b ∈ Mn ,

where ◦ denotes the Hadamard (entrywise) product on R
n (see [14, Theorem 3.3.14]). Furthermore, ‖a‖∞ = s1(a) and

s(a) ◦ s(b) � s1(b)s(a) and s(a) ◦ s(b) � s1(a)s(b) for a,b ∈ Mn .

Therefore

s(xa) ≺w ‖a‖∞s(x) and s(ax) ≺w ‖a‖∞s(x) for a, x ∈ Mn .

Employing (27) one sees that L1 and L2 are G-contractive.
In addition, (L1, L2) belongs to the class C0. To see this, use the argument given in [4, pp. 147–148]. By Corollary 3.4 we

deduce that (31) and (32) hold. �
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4. Applications for Grüss type inequalities

The classical Grüss’ inequality [13] states that∣∣∣∣∣ 1

b − a

b∫
a

f (t)g(t)dt − 1

b − a

b∫
a

f (t)dt · 1

b − a

b∫
a

g(t)dt

∣∣∣∣∣ � 1

4
(β0 − α0)(δ0 − γ0) (33)

for two bounded integrable functions f , g : [a,b] → R such that

α0 � f (t) � β0 and γ0 � g(t) � δ0 for all t ∈ [a,b].
The constant 1

4 is best possible and is achieved for

f (t) = g(t) = sgn

(
t − a + b

2

)
, t ∈ [a,b].

Let X be a linear space over F = R or C equipped with an inner product 〈·,·〉 and norm ‖ · ‖ = 〈·,·〉1/2. A Grüss type
inequality (cf. [5–8,28,29,34]) estimates from above the quantity∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣, (34)

where x, y ∈ X and e ∈ X is a given vector such that 〈e, e〉 = 1.
A standard initial step in the problem of estimating (34) is as follows [5, p. 75]. By Schwarz inequality, for any x, y ∈ X ,

we have∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣ = ∣∣〈x − 〈x, e〉e, y − 〈y, e〉e〉∣∣ �
∥∥x − 〈x, e〉e∥∥∥∥y − 〈y, e〉e∥∥ = ‖Q x‖‖Q y‖, (35)

where Q = idX −〈·, e〉e is the orthoprojector from X onto M⊥ , the subspace in X orthogonal to M = span e.
Taking x ∈ X and x0 ∈ M , we find that Q (x − x0) = Q x, i.e. Q is translation-invariant w.r.t. M . This allows to apply a

special case of Theorem 2.2 when

X = Y is a linear space with an inner product 〈·,·〉, and Φ = ‖ · ‖ = 〈·,·〉1/2,

L = Q is the orthoprojector from X onto M⊥, where M = span e. (36)

These assumptions are valid throughout this section.
In the sequel, we study Grüss type inequalities in two cases. The first employs Theorem 2.2 for vectorial intervals induced

by two cone preorders (see Section 4.1). The second uses Theorem 2.5 for G(c)-ranges (see Section 4.2).

4.1. Making use of cone preorders

Before giving results, we recall some definitions.
If K ⊂ Z = X is a convex cone, then the dual cone of K is defined by

dual K = {
z ∈ Z : Re〈z, v〉 � 0 for all v ∈ K

}
.

We define the cone preorders ≺K and ≺dual K on Z by

y ≺K x iff x − y ∈ K ,

y ≺dual K x iff x − y ∈ dual K .

The symbol [α,β]K stands for [α,β]≺K ,≺dual K = {z ∈ Z : α ≺K z ≺dual K β}.
Lemma 4.1 provides an interpretation of vectorial interval induced by convex cones K and dual K . The equivalence

(b) ⇔ (c) is due to Dragomir [7, Lemma 2.1].

Lemma 4.1. (See [7, Lemma 2.1], [26, Lemma 2.1].) Assume Z is a linear space with inner product 〈·,·〉 and norm ‖ · ‖ = 〈·,·〉1/2 . For
any vectors α,β, z ∈ Z , the following statements are mutually equivalent:

(a) There exists a convex cone K ⊂ Z such that z ∈ [α,β]K .
(b) Re〈β − z, z − α〉 � 0.
(c) ‖z − 1

2 (α + β)‖ � ‖ 1
2 (β − α)‖.

In addition to the specification (36), in this section we also assume that

Z = X, Ψ = ‖ · ‖ = 〈·,·〉1/2, and L = {idX }, (37)
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where idX denotes the identity on X . In this case,

L(x) = {x} and rΨ L(x) = ‖x‖ for x ∈ X .

Notice that any z0 ∈ M = span e is L, M-admissible at any x ∈ X . Evidently, by (36)–(37), inequality (4) holds for η = 1.
We let ≺1 and ≺2 to be the cone preorders ≺K and ≺dual K , respectively, for some convex cone K ⊂ Z . Observe that

Lemma 4.1 ensures that property (3) is valid for Ψ = ‖ · ‖.
We return to Grüss type inequalities.

Theorem 4.2. Let (X, 〈·,·〉) be an inner product space over F = R or C, and let e ∈ X with ‖e‖ = 1, where ‖ · ‖ = 〈·,·〉1/2 . Assume that
x, y,α,β,γ , δ ∈ X are vectors such that

(a) α ≺K1 x ≺dual K1 β and γ ≺K2 y ≺dual K2 δ for some convex cones K1, K2 ⊂ X,
(b) α + β ∈ span e and γ + δ ∈ span e.

Then we have the inequality

∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣ � 1

4
‖β − α‖‖δ − γ ‖. (38)

Proof. With the specifications (36) and (37), conditions (3)–(4) are fulfilled (see Lemma 4.1). By virtue of (a)–(b), one sees
that condition (i) of Theorem 2.2 is satisfied.

Applying implication (i) ⇒ (iv) of Theorem 2.2, we get

‖Q x‖ �
∥∥∥∥1

2
(β − α)

∥∥∥∥ and ‖Q y‖ �
∥∥∥∥1

2
(δ − γ )

∥∥∥∥.

Using the initial bound given at (35), we conclude that (38) follows. �
With the additional restriction that the end-points of the vectorial intervals [α,β] and [γ , δ] are proportional to the

vector e, the last theorem becomes

Corollary 4.3. (See Dragomir [5, Theorem 1], [7, Theorem 2.5].) Let (X, 〈·,·〉) be an inner product space over F = R or C, and let e ∈ X
with ‖e‖ = 1, where ‖ · ‖ = 〈·,·〉1/2 . Assume that x, y ∈ X and α0, β0, γ0, δ0 ∈ F.

If

α0e ≺K1 x ≺dual K1 β0e and γ0e ≺K2 y ≺dual K2 δ0e

for some convex cones K1, K2 ⊂ X, or, equivalently,∥∥∥∥x − 1

2
(α0 + β0)e

∥∥∥∥ � 1

2
|β0 − α0| and

∥∥∥∥y − 1

2
(γ0 + δ0)e

∥∥∥∥ � 1

2
|δ0 − γ0|,

then we have the inequality

∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣ � 1

4
|β0 − α0||δ0 − γ0|.

A direct application of Theorem 4.2 for the space R
n with the inner product 〈x, y〉 = 1

n

∑n
i=1 xi yi gives

Corollary 4.4. Assume that x, y,α,β,γ , δ ∈ R
n are vectors such that

(a) αi � xi � βi and γi � yi � δi for all i = 1, . . . ,n, or more generally

n∑
i=1

(βi − xi)(xi − αi) � 0 and
n∑

i=1

(δi − yi)(yi − γi) � 0,

(b) α + β ∈ span e and γ + δ ∈ span e, where e = (1, . . . ,1)T .

Then we have the inequality∣∣∣∣∣1

n

n∑
xi yi − 1

n

n∑
xi · 1

n

n∑
yi

∣∣∣∣∣ � 1

4n

(
n∑

(βi − αi)
2

)1/2( n∑
(δi − γi)

2

)1/2

.

i=1 i=1 i=1 i=1 i=1
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The constant 1
4 is best possible and is achieved (if n even) for

xi = yi = sgn

(
i − n + 1

2

)
, αi = γi = −1 and βi = δi = 1, i = 1, . . . ,n.

Using Theorem 4.2 for the space of real L2-functions on a real interval [a,b] with the inner product 〈 f , g〉 =
1

b−a

∫ b
a f (t)g(t)dt , we obtain the following result.

Corollary 4.5. Let f , g,α,β,γ , δ ∈ L2
[a,b] be functions such that

(a) α(t) � f (t) � β(t) and γ (t) � g(t) � δ(t) for all t ∈ [a,b], or more generally

b∫
a

(
β(t) − f (t)

)(
f (t) − α(t)

)
dt � 0 and

b∫
a

(
δ(t) − g(t)

)(
g(t) − γ (t)

)
dt � 0,

(b) α + β ∈ span e and γ + δ ∈ span e, where e(t) = 1 for t ∈ [a,b].

Then we have the inequality

∣∣∣∣∣ 1

b − a

b∫
a

f (t)g(t)dt − 1

b − a

b∫
a

f (t)dt · 1

b − a

b∫
a

g(t)dt

∣∣∣∣∣
� 1

4(b − a)

( b∫
a

(
β(t) − α(t)

)2
dt

)1/2( b∫
a

(
δ(t) − γ (t)

)2
dt

)1/2

. (39)

The constant 1
4 is best possible and is achieved for

f (t) = g(t) = sgn

(
t − a + b

2

)
, α(t) = γ (t) = −1 and β(t) = δ(t) = 1, t ∈ [a,b].

Example 4.6. Put

f (t) = g(t) = sin t, α(t) = γ (t) = −|t|, β(t) = δ(t) = |t| for t ∈
[
−π

2
,
π

2

]
.

Then the left-hand side of (33) and of (39) equals 1
π

∫ π/2
−π/2 sin2 t dt = 1

2 , while the right-hand side of (39) equals
1

4π

∫ π/2
−π/2(2|t|)2 dt = π2

12 < 5
6 . Taking α0 = γ0 = −1 and β0 = δ0 = 1, we find that the right-hand side of (33) equals 1.

This shows that (39) provides a more precise estimate than (33) does.

A function ψ : R
n → R is said to be Schur-convex, if ψ(α) � ψ(β) whenever α ≺m β for α,β ∈ R

n . It is well known
[22] that any convex permutation-invariant function ψ : R

n → R is Schur-convex. For instance, α ≺m β implies ‖α‖ � ‖β‖,
where ψ(z) = ‖z‖ = 1√

n
(
∑n

i=1 z2
i )

1/2 for z = (z1, . . . , zn)T ∈ R
n .

Referring to Example 2.7, it is known that α ≺w β iff α �1 x ≺m β for some x ∈ R
n , where �1 is the usual componentwise

order after ordering the entries of α and x, that is α↓ � x↓ [12, p. 120], and z↓ = (z[1], . . . , z[n])T and z[1] � · · · � z[n] are the
entries of z ∈ R

n in decreasing order.
In the corollary below we combine the map (·)↓ and the cone preorder ≺D induced by D = {z = (z1, . . . , zn)T ∈ R

n:
z1 � · · · � zn}. Namely, we write α ≺1 x iff α↓ ≺D x↓ .

Two vectors α, x ∈ R
n are said to be similarly ordered (synchronous) if α = pα↓ and x = px↓ for some permutation p ∈ Pn

(see Example 2.7).
A majorization counterpart of Corollary 4.4 is as follows.

Corollary 4.7. Assume that x, y,α,β,γ , δ ∈ R
n are vectors such that α and x are similarly ordered and γ and y are similarly ordered

and

(a) α ≺1 x ≺m β and γ ≺1 y ≺m δ.
(b) α↓ + β↓ ∈ span e and γ↓ + δ↓ ∈ span e, where e ∈ R

n with 1 ∑n
i=1 e2 = 1.
n i
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Then we have the inequality∣∣∣∣∣1

n

n∑
i=1

x[i] y[i] − 1

n

n∑
i=1

x[i]ei · 1

n

n∑
i=1

y[i]ei

∣∣∣∣∣ � 1

4n

(
n∑

i=1

(β[i] − α[i])2

)1/2( n∑
i=1

(δ[i] − γ[i])2

)1/2

.

Proof. To see this result, remind that x ≺m β iff x↓ ≺dual D β↓ (see (13) and Example 2.7). Similarly, y ≺m δ iff y↓ ≺dual D δ↓ .
Next, use Corollary 4.4 for the vectors x↓ , y↓ , α↓ , β↓ , γ↓ and δ↓ . �
4.2. Applying G(c)-ranges

In this section we utilize Theorem 2.5 (with (8) and (9)) for the spaces X , Y and M and for the maps L and Φ defined
in the specification (36).

The following result holds.

Corollary 4.8. Let (X, 〈·,·〉) be an inner product space over F = R or C, and let G be a compact subgroup of the orthogonal/unitary
group on X. Let c ∈ X and e ∈ MG(X) be such that 〈c, e〉 �= 0 and ‖e‖ = 1, where ‖ · ‖ = 〈·,·〉1/2 . Assume that ≺1 and ≺2 are preorders
on F given by (8).

Denote M = span e. For vectors x, y ∈ X, let η1, η2 > 0 be numbers such that

‖v‖ � η1rG,c(v) for v ∈ x − M and ‖v‖ � η2rG,c(v) for v ∈ y − M. (40)

(i) If G(c)-ranges of x ∈ X and of y ∈ X are included in ≺1,2-intervals [α,β] and [γ , δ], respectively, then

∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣ � η1η2
1

4
|β − α||δ − γ |. (41)

(ii) If G(c)-ranges of x ∈ X and of y ∈ X are included in | · |-balls of radii r0 and s0 , respectively, then∣∣〈x, y〉 − 〈x, e〉〈e, y〉∣∣ � η1η2r0s0. (42)

Proof. Since ‖Q v‖ � ‖v‖ for v ∈ X , it follows from (40) that (10) is satisfied for the vectors x and y and maps Φ = ‖ · ‖
and L = Q .

(i). By virtue of the implication (i) ⇒ (iv) of Theorem 2.5 applied to the specification (36), we have

‖Q x‖ � η1
1

2
(β − α) and ‖Q y‖ � η2

1

2
(δ − γ ).

Using the initial bounds given at (35), we conclude that (41) holds.
(ii). Likewise, the implication (ii) ⇒ (iv) of Theorem 2.5 gives

‖Q x‖ � η1r0 and ‖Q y‖ � η2s0.

The assertion (42) now follows by (35). This completes the proof. �
To derive a result of Renaud [29] from Corollary 4.8, take X = Mn endowed with the inner product 〈x, y〉 = tr T xy∗ for

x, y ∈ Mn , where T ∈ Mn is positive definite with tr T = 1. Let G be the group of unitary similarities acting on Mn . Putting
c = diag(1,0, . . . ,0) gives rG,c(x) = w(x), the numerical radius of x ∈ Mn (see Examples 2.1 and 2.4).

Let ‖ · ‖ = 〈·,·〉1/2 and ‖ · ‖∞ be the operator norm on Mn . Since

‖x‖ � ‖x‖∞ � 2w(x) for x ∈ Mn

(see [29, p. 97] and [2, p. 4]), condition (40) holds for η1 = η2 = 2, e = In and M = span e. The constant 2 can be replaced
by 1 if x and y are normal matrices.

Remind that W (y∗) = W (y) and w(y∗) = w(y) for y ∈ Mn [19, pp. 52 and 71]. Finally, by Corollary 4.8(ii) applied for x
and y∗ , we obtain

Corollary 4.9. (See Renaud [29, Theorem 2.1].) For matrices x, y ∈ Mn, assume that the numerical ranges W (x) and W (y) are con-
tained in disks of radii r0 and s0 , respectively. Let T ∈ Mn be positive definite with tr T = 1.

Then the following inequality holds∣∣tr(T xy) − tr(T x) tr(T y)
∣∣ � 4r0s0.

If x and y are normal, the constant 4 can be replaced by 1.
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