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Abstract

We give an a priori proof of the known presentations of (that is, completeness of families of relations for) the principal subspaces

of all the standard A(1)
1 -modules. These presentations had been used by Capparelli, Lepowsky and Milas for the purpose of

obtaining the classical Rogers–Selberg recursions for the graded dimensions of the principal subspaces. This paper generalizes
our previous paper.
c© 2008 Elsevier B.V. All rights reserved.

MSC: 17B69; 17B65

1. Introduction

The affine Kac–Moody algebra A(1)
1 = ŝl(2) is the simplest infinite-dimensional Kac–Moody Lie algebra, and in

some sense the most prominent one. Not only does ŝl(2) give insight into the higher-rank affine Lie algebras, but
in fact, considerations of standard ( = integrable highest weight) ŝl(2)-modules have frequently led to new ideas.
For instance, explicit constructions of the standard ŝl(2)-modules have been used to obtain vertex-operator-theoretic
derivations of the classical Rogers–Ramanujan identities and related q-series identities (cf. [21–24,19,20,26,27]).
Another important use of standard ŝl(2)-modules is in the “coset” construction of unitary Virasoro-algebra minimal
models [14]. These developments are deeply related to two-dimensional conformal field theory.

More recently, to each standard ŝl(n)-module L(Λ), Feigin and Stoyanovsky associated a distinguished subspace
W (Λ), which they called the “principal subspace” of L(Λ) ([7,8]), and interestingly, the graded dimensions of the
principal subspaces of the standard ŝl(2)-modules are essentially the Gordon–Andrews q-series ([7,13]; cf. [1]).
These q-series had previously appeared as the graded dimensions of the “vacuum” subspaces, with respect to a
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certain twisted Heisenberg subalgebra, of the odd-level standard ŝl(2)-modules ([22–24,26]). Since each standard
ŝl(n)-module L(Λ) of level k, k ≥ 1, is a module for a certain vertex-operator algebra ([11]; cf. [6,18]), it is natural
to employ ideas from vertex-operator-algebra theory to gain a better insight into the structure of principal subspaces.
In [4,5], for the case ŝl(2), the theory of vertex algebras (cf. [10,18]) and related algebraic structures, including
intertwining operators [9], has been used to do this, via the construction of certain exact sequences, which led to
a vertex-algebra-theoretic interpretation of the classical Rogers–Ramanujan and Rogers–Selberg recursions. This in
turn explained the appearance of the Gordon–Andrews q-series, and these q-series can be implemented by means of
“combinatorial bases” of the principal subspaces, revealing a fundamental “difference-two condition” that had already
arisen in the setting of [22–24].

An important technical result used in [4,5] was a certain presentation of (that is, the completeness of a certain
family of relations for) the principal subspaces of the standard ŝl(2)-modules (cf. Theorem 2.1 in [5]). This result had
been stated as Theorem 2.2.1

′

in [7]. However, the proofs of this result that we are aware of all turn out to require either
a priori knowledge of a combinatorial basis of the principal subspace W (Λ) (see (2.6) below) or information closely
related to such knowledge. But what one ideally wants is rather an a priori of the presentation, which could then be
used to construct the exact sequences mentioned above, and thereby to produce the bases. Thus it is an important
problem to try to find an a priori proof of the presentation of W (Λ), and we were able to achieve this for the level
one standard ŝl(2)-modules in [2]. Our proof in [2] was obtained in two steps. We first argued that the presentation of
W (Λ1) follows from the presentation of W (Λ0), and then we proved the presentation of W (Λ0). (These two steps are
in fact interchangeable, so we could have placed the proof of the presentation of W (Λ0) first.)

In the present paper we give an a priori proof of the presentation of the principal subspaces more generally for
all the standard ŝl(2)-modules. The higher-level case brings additional subtleties, and our approach is different from
that in [2]. Instead of trying to reduce the problem of proving the presentation of principal subspaces to a “preferred”
principal subspace (e.g., W (kΛ0)), we found it more convenient and more elegant to prove the presentation of all the
principal subspaces of a given level at once. This is done in the proofs of Theorems 3.1 and 3.2 through a (necessarily)
rather delicate argument, which uses various properties of principal subspaces and intertwining operators among
standard modules. In our new approach all the principal subspaces are on more-or-less equal footing. Thus we not
only generalize the main result in [2] to all the standard ŝl(2)-modules, but we also give a new proof of the presentation
of the principal subspaces in the level one case, different from the one in [2]. This is why we write the proof of the
k = 1 case separately and in full detail below; we will also be generalizing this k = 1 proof in a different direction
elsewhere.

This paper brings our in-depth analysis of the principal subspaces of the standard ŝl(2)-modules to an end. Even
though the study of the principal subspaces of the ŝl(2)-modules is facilitated by the commutativity of the underlying
nilpotent Lie algebra used to define these subspaces, many methods in this paper can be applied to more general affine
Lie algebras, both untwisted and twisted. In a sequel [3] we will shift our attention to standard modules for affine Lie
algebras of types A, D, E , in which case the relevant nilpotent Lie algebras are nonabelian.

This paper is organized as follows. Section 2 gives the setting. In Sections 3 and 4 we state and prove our main
result, Theorem 3.1, which we also reformulate as Theorem 3.2. As in [2], finding a further reformulation of the
presentation of the principal subspaces in terms of ideals of vertex (operator) algebras is a natural problem. This is
achieved in Section 5 (Theorem 5.1), at least for the principal subspaces stemming from the “vacuum” higher-level
ŝl(2)-modules.

2. The setting

We start by recalling some background from [2], for the reader’s convenience. Set

g = sl(2) = Cx−α ⊕ Ch ⊕ Cxα,

with bracket relations

[h, xα] = 2xα, [h, x−α] = −2x−α, [xα, x−α] = h.

The symmetric invariant bilinear form 〈a, b〉 = tr (ab) (a, b ∈ g) allows us to identify the Cartan subalgebra h = Ch
with its dual h∗. The simple root α ∈ h∗ corresponding to the root vector xα identifies with h ∈ h, that is, h = α, and
〈α, α〉 = 2. Set n = Cxα .
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We shall use the affine Lie algebra

ĝ = g ⊗ C[t, t−1
] ⊕ Ck, (2.1)

with brackets

[a ⊗ tm, b ⊗ tn
] = [a, b] ⊗ tm+n

+ m〈a, b〉δm+nk (2.2)

for a, b ∈ g, m, n ∈ Z, with k central, and its subalgebras

n̄ = Cxα ⊗ C[t, t−1
],

n̄− = Cxα ⊗ t−1C[t−1
],

n̄≤−2 = Cxα ⊗ t−2C[t−1
].

The Lie algebra ĝ has the triangular decompositions

ĝ = (Cx−α ⊕ g ⊗ t−1C[t−1
]) ⊕ (h ⊕ Ck) ⊕ (Cxα ⊕ g ⊗ tC[t]) (2.3)

and

ĝ = ĝ<0 ⊕ ĝ≥0, (2.4)

where

ĝ<0 = g ⊗ t−1C[t−1
]

and

ĝ≥0 = g ⊗ C[t] ⊕ Ck.

Let k ≥ 1. We consider the level k standard ĝ-modules L((k − i)Λ0 + iΛ1), where Λ0,Λ1 ∈ (h ⊕ Ck)∗ are the
fundamental weights of ĝ (Λ j (k) = 1, Λ j (h) = δ j,1 for j = 0, 1) and 0 ≤ i ≤ k (cf. [15]), so that L(Λ0) and L(Λ1)

are the level 1 standard ĝ-modules used in [2]. For such i , we set

Λk,i = (k − i)Λ0 + iΛ1. (2.5)

Denote by vΛk,i a highest weight vector of L(Λk,i ). (These highest weight vectors will be normalized in Section 4
below.)

Throughout this paper we will write x(m) for the action of x ⊗ tm
∈ ĝ on any ĝ-module, where x ∈ g and m ∈ Z.

In particular, we have the operator xα(m), the image of xα ⊗ tm . Sometimes we will simply write x(m) for the Lie
algebra element x ⊗ tm . It will be clear from the context whether x(m) is an operator or a Lie algebra element.

We generalize the definition of the principal subspace of a standard module for an untwisted affine Lie algebra of
type A given in [7,8]:

Definition 2.1. Consider any finite-dimensional semisimple Lie algebra and its associated affine Lie algebra. The
principal subspace of a highest weight module V for the affine Lie algebra is U (n̄) · v ⊂ V , where n is the nilradical
of a fixed Borel subalgebra of the finite-dimensional Lie algebra, n̄ = n ⊗ C[t, t−1

] and v is a highest weight vector
of V .

In particular, the principal subspace W (Λk,i ) of L(Λk,i ) is

W (Λk,i ) = U (n̄) · vΛk,i (2.6)

for i = 0, . . . k, as in [7].
We have

W (Λk,i ) = U (n̄−) · vΛk,i . (2.7)

Set

W (Λk,k)
′
= U (n̄≤−2) · vΛk,k , (2.8)
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generalizing (2.8) in [2]. Since xα(−1) · vΛk,k = 0, we have

W (Λk,k)
′
= W (Λk,k), (2.9)

generalizing (2.9) in [2].
For i = 0, . . . k, consider the surjective maps

FΛk,i : U ( ĝ ) −→ L(Λk,i ) (2.10)

a 7→ a · vΛk,i .

Restrict FΛk,i to U (n̄−) and FΛk,k to U (n̄≤−2) and denote these (surjective) restrictions by fΛk,i and f ′

Λk,k
:

fΛk,i : U (n̄−) −→ W (Λk,i ) (2.11)

a 7→ a · vΛk,i ,

f ′

Λk,k
: U (n̄≤−2) −→ W (Λk,k)

′ (2.12)

a 7→ a · vΛk,k ,

generalizing (2.11) and (2.12) in [2]. Our main goal is to give a precise description of the kernels Ker fΛk,i and
Ker f ′

Λk,k
.

For every t ∈ Z we consider the following formal infinite sums:

Rk,t =

∑
m1+···+mk+1=−t

xα(m1) · · · xα(mk+1). (2.13)

For each t , Rk,t acts naturally on any highest weight ĝ-module and, in particular, on each L(Λk,i ) for 0 ≤ i ≤ k. For
k = 1 these are the formal sums Rt introduced in [2].

Continuing to generalize the corresponding objects in [2], in order to describe Ker fΛk,i and Ker f ′

Λk,k
we shall

truncate each Rk,t as follows:

R0
k,t =

∑
m1,...,mk+1≤−1,

m1+···+mk+1=−t

xα(m1) · · · xα(mk+1), t ≥ k + 1. (2.14)

Just as in [2], we shall often be viewing R0
k,t as an element of U (n̄), and in fact of U (n̄−), rather than as an

endomorphism of a ĝ-module. In order to describe Ker f ′

Λk,k
it will also be convenient to take m1, . . . , mk+1 ≤ −2 in

(2.13), to obtain other elements of U (n̄), which we denote by R1
k,t :

R1
k,t =

∑
m1,...,mk+1≤−2,

m1+···+mk+1=−t

xα(m1) · · · xα(mk+1), t ≥ 2(k + 1). (2.15)

Again as in [2], one can view U (n̄−) and U (n̄≤−2) as the polynomial algebras

U (n̄−) = C[xα(−1), xα(−2), . . .] (2.16)

and

U (n̄≤−2) = C[xα(−2), xα(−3), . . .], (2.17)

so that

U (n̄−) = U (n̄≤−2) ⊕ U (n̄−)xα(−1) (2.18)

and we have the corresponding projection

ρ : U (n̄−) −→ U (n̄≤−2). (2.19)

From (2.14) and (2.15) we have

R1
k,t = ρ(R0

k,t ). (2.20)
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(For t < 2(k + 1), R1
k,t = 0.)

Generalizing the corresponding constructions in [2], we set

IΛk,0 =

∑
t≥k+1

U (n̄−)R0
k,t ⊂ U (n̄−), (2.21)

IΛk,i =

∑
t≥k+1

U (n̄−)R0
k,t + U (n̄−)xα(−1)k−i+1

⊂ U (n̄−) for i ≥ 0 (2.22)

(note that (2.22) indeed agrees with (2.21) for i = 0, since R0
k,k+1 = xα(−1)k+1) and

I ′

Λk,k
=

∑
t≥2(k+1)

U (n̄≤−2)R1
k,t ⊂ U (n̄≤−2). (2.23)

Remark 2.1. We have the inclusions

IΛk,0 ⊂ IΛk,1 ⊂ · · · ⊂ IΛk,k−1 ⊂ IΛk,k (2.24)

among the U (n̄−)-ideals IΛk,i . We also have

IΛk,i = IΛk,0 + U (n̄−)xα(−1)k−i+1 for every i ≥ 1, (2.25)

and this holds for i = 0 as well. In addition,

ρ(IΛk,k ) = I ′

Λk,k
, (2.26)

and in fact,

IΛk,k = I ′

Λk,k
⊕ U (n̄−)xα(−1). (2.27)

These relations generalize the corresponding ones in [2].

3. Formulations of the main result

It is well known that the level k standard ŝl(2)-module L(Λk,0) has a natural vertex-operator algebra structure with
vΛk,0 as vacuum vector; the vertex-operator map

Y (·, x) : L(Λk,0) −→ End L(Λk,0) [[x, x−1
]] (3.1)

v 7→ Y (v, x) =

∑
m∈Z

vm x−m−1

has the property

Y (xα(−1) · vΛk,0 , x) =

∑
m∈Z

xα(m)x−m−1. (3.2)

It is also well known that each L(Λk,i ), 0 ≤ i ≤ k, has a natural L(Λk,0)-module structure, with (3.2) remaining valid
for the module action. (See [11,6,25,18].)

The standard action of the Virasoro algebra operator L(0) (not to be confused with the trivial ĝ-module) provides
the usual grading by conformal weights on the spaces L(Λk,i ). We have

wt xα(m) = −m (3.3)

for m ∈ Z, where xα(m) is viewed as either an operator or as an element of U (n̄). For any i with 0 ≤ i ≤ k,

wt vΛk,i =
〈iα/2, iα/2 + α〉

2(k + 2)
=

i2
+ 2i

4(k + 2)
(3.4)

(cf. [15,6,18]).
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There is also a grading by charge, given by the eigenvalues of the operator 1
2α(0) =

1
2 h(0), on L(Λk,i ). The weight

and charge gradings are compatible. For any m ∈ Z, xα(m), viewed as either an operator or as an element of U (n̄),
has charge 1. Also, vΛk,i has charge 〈iα/2, α/2〉 = i/2. The principal subspaces W (Λk,i ) are graded by weight and
charge. For any m1, . . . , mr ∈ Z,

xα(m1) · · · xα(mr ) · vΛk,i ∈ W (Λk,i ) (3.5)

has weight −m1 − · · · − mr +
i2

+2i
4(k+2)

and charge r +
i
2 . See [4,5,2] for further details, background and notation.

Remark 3.1. As in [2], we have

L(0) Ker fΛk,i ⊂ Ker fΛk,i for all 0 ≤ i ≤ k

and

L(0) Ker f ′

Λk,k
⊂ Ker f ′

Λk,k
.

Also, R0
k,t and R1

k,t have conformal weight t :

L(0)R0
k,t = t R0

k,t for all t ≥ k + 1

and

L(0)R1
k,t = t R1

k,t for all t ≥ 2(k + 1),

so that in particular, the subspaces IΛk,i and I ′

Λk,k
are L(0)-stable. Also, R0

k,t and R1
k,t have charge k + 1, and the

spaces Ker fΛk,i , Ker f ′

Λk,k
, IΛk,i and I ′

Λk,k
are graded by charge. Thus these spaces are graded by both weight and

charge, and the two gradings are compatible.

We will prove the following description of the kernels Ker fΛk,i and Ker f ′

Λk,k
(recall (2.18) and (2.27)):

Theorem 3.1. For any i = 0, . . . , k, we have

Ker fΛk,i = IΛk,i . (3.6)

In particular,

Ker f ′

Λk,k
= I ′

Λk,k
.

As in [2], we will actually prove a restatement of this assertion (see Theorem 3.2 below) that uses generalized
Verma modules, in the sense of [16,12,17], for ĝ, and the principal subspaces of these generalized Verma modules.

The generalized Verma module N (Λk,0) is defined as the induced ĝ-module

N (Λk,0) = U ( ĝ ) ⊗U ( ĝ≥0) CvN
Λk,0

, (3.7)

where g ⊗ C[t] acts trivially and k acts as the scalar k on CvN
Λk,0

; vN
Λk,0

is a highest weight vector. From the
Poincaré–Birkhoff–Witt theorem we have

N (Λk,0) = U ( ĝ<0) ⊗CU ( ĝ≥0) ⊗U ( ĝ≥0) CvN
Λk,0

= U ( ĝ<0) ⊗C CvN
kΛ0

= U ( ĝ<0), (3.8)

with the natural identifications. We similarly define the generalized Verma module

N (Λk,i ) = U ( ĝ ) ⊗U ( ĝ≥0) Ui

for i = 1, . . . k, where Ui is an (i + 1)-dimensional irreducible g-module and where g⊗ tC[t] acts trivially and k acts
by k. By the Poincaré–Birkhoff–Witt theorem we have the identifications
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N (Λk,i ) = U ( ĝ<0) ⊗CUi .

For 0 ≤ i ≤ k we have the natural surjective ĝ-module maps

F N
Λk,i

: U ( ĝ ) −→ N (Λk,i ) (3.9)

a 7→ a · vN
Λk,i

,

where vN
Λk,i

is a highest weight vector of Ui (cf. (2.10)).

Remark 3.2. The restriction of (3.9) to U ( ĝ<0) is a U ( ĝ<0)-module isomorphism for i = 0 and a U ( ĝ<0)-module
injection for i ≥ 1.

From Definition 2.1, the n̄-submodule

W N (Λk,i ) = U (n̄) · vN
Λk,i

(3.10)

of N (Λk,i ) is the principal subspace of the generalized Verma module N (Λk,i ), generalizing the corresponding
structure in [2]. We have

W N (Λk,i ) = U (n̄−) · vN
Λk,i

. (3.11)

We also consider the subspace

W N (Λk,k)
′
= U (n̄≤−2) · vN

Λk,k
(3.12)

of W N (Λk,k).

Remark 3.3. In view of Remark 3.2, the restrictions of F N
Λk,i

to U (n̄−),

U (n̄−) −→ W N (Λk,i ) (3.13)

a 7→ a · vN
Λk,i

,

are n̄−-module isomorphisms and the restriction of F N
Λk,k

to U (n̄≤−2),

U (n̄≤−2) −→ W N (Λk,k)
′ (3.14)

a 7→ a · vN
Λk,k

,

is an n̄≤−2-module isomorphism.

In particular, by using (2.18) we have the natural identifications

W N (Λk,k)
′
' W N (Λk,k)/U (n̄−)xα(−1) · vN

Λk,k
' U (n̄≤−2). (3.15)

Consider the natural surjective ĝ-module maps

ΠΛk,i : N (Λk,i ) −→ L(Λk,i ) (3.16)

a · vN
Λk,i

7→ a · vΛk,i

for a ∈ U ( ĝ ) and set

N 1(Λk,i ) = Ker ΠΛk,i . (3.17)

The restrictions of ΠΛk,i to W N (Λk,i ) (respectively, W N (Λk,k)
′) are n̄-module (respectively, n̄≤−2-module)

surjections:

πΛk,i : W N (Λk,i ) −→ W (Λk,i ) (3.18)
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for 0 ≤ i ≤ k and

π ′

Λk,k
: W N (Λk,k)

′
−→ W (Λk,k) (3.19)

(recall (2.9)).
As in the case of L(Λk,i ), the generalized Verma modules N (Λk,i ) are compatibly graded by conformal weight and

by charge. We shall restrict these gradings to the principal subspaces W N (Λk,i ). The elements of W N (Λk,i ) given by
(3.5) with vΛk,i replaced by vN

Λk,i
have the same weights and charges as in those cases.

Remark 3.4. Since the maps πΛk,i , and π ′

Λk,k
commute with the actions of L(0), the kernels Ker πΛk,i and Ker π ′

Λk,k

are L(0)-stable. These maps also preserve charge, so that Ker πΛk,i and Ker π ′

Λk,k
are also graded by charge.

Using Remark 3.2, we see that Theorem 3.1 can be reformulated as follows:

Theorem 3.2. For i = 0, . . . , k, we have

Ker πΛk,i = IΛk,i · vN
Λk,i

(⊂ N 1(Λk,i )). (3.20)

In particular,

Ker π ′

Λk,k
= I ′

Λk,k
· vN

Λk,k
(⊂ N 1(Λk,k)).

4. Proof of the main result

Using the setting of [4,5], with P =
1
2Zα the weight lattice of sl(2), we have the space

VP = L(Λ0) ⊕ L(Λ1) (4.1)

and its vertex-operator structure. We shall use the identifications

vΛ1,0 = 1 ∈ L(Λ0) and vΛ1,1 = eα/2
· vΛ1,0 ∈ L(Λ1) (4.2)

as in formula (2.5) in [2] and Section 2 of [4] (with vΛ0 = vΛ1,0 and vΛ1 = vΛ1,1 , using our current notation for
highest weight vectors). We consider

V ⊗ k
P = VP ⊗ · · · ⊗ VP (4.3)

(k times). For any k-tuple ( j1, . . . , jk) with j1, . . . , jk ∈ {0, 1} we consider the element

v j1,..., jk = vΛ1, j1
⊗ · · · ⊗ vΛ1, jk

∈ V ⊗k
P , (4.4)

where exactly k − i indices jl (l = 1, . . . , k) are equal to 0 (and exactly i indices are equal to 1); recall (4.2). This
vector is of course a highest weight vector for ŝl(2), and

L(Λk,i ) ' U ( ĝ ) · v j1,..., jk ⊂ V ⊗ k
P (4.5)

(cf. [15,5]), using the natural extension to U ( ĝ ) of the usual comultiplication

a · v = (a ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ a)v (4.6)

for a ∈ ĝ and v ∈ V ⊗ k
P . As in [5] we will use the embeddings

ι j1,..., jk : L(Λk,i ) ↪→ V ⊗ k
P for 0 ≤ i ≤ k, (4.7)

uniquely determined by the identifications

vΛk,i = v j1,..., jk . (4.8)

Of course, this element vΛk,i and the embedding (4.7) depend on j1, . . . , jk .
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Recall the linear isomorphism (3.20) in [4],

eα/2
: VP −→ VP ,

and consider the linear isomorphism

eα/2
(k) = eα/2

⊗ · · · ⊗ eα/2︸ ︷︷ ︸
k times

: V ⊗ k
P −→ V ⊗ k

P . (4.9)

We denote by eα/2
(k,i) the restriction of eα/2

(k) to the principal subspace W (Λk,i ) of L(Λk,i ), using an embedding of the

form (4.7). The action of eα/2
(k) on L(Λk,i ) and its action eα/2

(k,i) on W (Λk,i ) as well as other features of this map are
given as follows (see Lemma 3.2 of [5] and its proof):

Lemma 4.1 ([5]). Fix j1, . . . , jk as in (4.4)–(4.8) and consider the standard module L(Λk,i ) embedded in V ⊗ k
P via

ι j1,..., jk . The image of the restriction of eα/2
(k) to L(Λk,i ) lies in L(Λk,k−i ), embedded in V ⊗ k

P via ι1− j1,...,1− jk . For any
i with 0 ≤ i ≤ k, we have

eα/2
(k,i) : W (Λk,i ) −→ W (Λk,k−i ). (4.10)

When i = 0 the map (4.10) is a linear isomorphism. We also have

eα/2
(k,i) (xα(m1) · · · xα(mr ) · vΛk,i ) =

1
i !

xα(m1 − 1) · · · xα(mr − 1)xα(−1)i
· vΛk,k−i (4.11)

for any m1, . . . , mr ∈ Z. �

We emphasize that according to our notation, the embeddings of the two spaces W (Λk,i ) and W (Λk,k−i ) in (4.10)
are “opposite” even when i and k − i happen to coincide.

We now generalize the lifting procedures in [2]. For each i = 0, . . . , k we construct a lifting

êα/2
(k,i) : W N (Λk,i ) −→ W N (Λk,k−i ) (4.12)

of

eα/2
(k,i) : W (Λk,i ) −→ W (Λk,k−i ), (4.13)

making the diagram

W N (Λk,i )
êα/2
(k,i)

−−−−→ W N (Λk,k−i )

πΛk,i

y πΛk,k−i

y
W (Λk,i )

eα/2
(k,i)

−−−−→ W (Λk,k−i )

commute; here, in (4.13) we continue to use the particular embeddings depending on j1, . . . , jk used in (4.10). In fact,
for any i with 0 ≤ i ≤ k and any integers m1, . . . , mr < 0 we set

êα/2
(k,i) (xα(m1) · · · xα(mr ) · vN

Λk,i
) =

1
i !

xα(m1 − 1) · · · xα(mr − 1)xα(−1)i
· vN

Λk,k−i
, (4.14)

which is well defined, since U (n̄−), viewed as the polynomial algebra

C[xα(−1), xα(−2), . . .],

maps isomorphically onto W N (Λk,i ) under the map (3.13). This gives our desired lifting (4.12).
For the case i = 0, the map (4.12) is a linear isomorphism onto the subspace W N (Λk,k)

′:

êα/2
(k,0) : W N (Λk,0) −→ W N (Λk,k)

′, (4.15)
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a lifting of the linear isomorphism

eα/2
(k,0) : W (Λk,0) −→ W (Λk,k); (4.16)

the diagram

W N (Λk,0)
êα/2
(k,0)

−−−−→
∼

W N (Λk,k)
′

πΛk,0

y π ′

Λk,k

y
W (Λk,0)

eα/2
(k,0)

−−−−→
∼

W (Λk,k)

commutes. Indeed, since

W N (Λk,k)
′
= U (n̄≤−2) · vN

Λk,k
= êα/2

(k,0) (U (n̄−) · vN
Λk,0

),

the linear map (4.15) is surjective, and by Remark 3.3 it is also injective and thus a linear isomorphism. Denote by

(êα/2
(k,0))

−1
= ê−α/2

(k,0) : W N (Λk,k)
′
−→ W N (Λk,0) (4.17)

its inverse; the map ê−α/2
(k,0) is correspondingly a lifting of the inverse

e−α/2
(k,0) : W (Λk,k) −→ W (Λk,0). (4.18)

Remark 4.1. We have just noticed that, as in the k = 1 special case of [2], the image of W N (Λk,0) under the map

êα/2
(k,0) is the subspace W N (Λk,k)

′
⊂ W N (Λk,k) and not the full space W N (Λk,k). Both the maps (4.15) and (4.16) are

isomorphisms, while the map (4.12) for i = 0, from W N (Λk,0) to W N (Λk,k), is only an injection.

Remark 4.2. The restriction

êα/2
(k,k) : W N (Λk,k)

′
−→ W N (Λk,0) (4.19)

of (4.12) for i = k to W N (Λk,k)
′ is a lifting of

eα/2
(k,k) : W (Λk,k) −→ W (Λk,0), (4.20)

making the diagram

W N (Λk,k)
′

êα/2
(k,k)

−−−−→ W N (Λk,0)

π ′

Λk,k

y πΛk,0

y
W (Λk,k)

eα/2
(k,k)

−−−−→ W (Λk,0)

commute; it is an injection and not a surjection. The maps (4.15) and (4.19) were used in [2] for k = 1.

Now we describe the actions of our liftings (4.12) on the spaces IΛk,i · vN
Λk,i

:

Lemma 4.2. For any i with 0 ≤ i ≤ k, we have

êα/2
(k,i) (IΛk,i · vN

Λk,i
) ⊂ IΛk,k−i · vN

Λk,k−i
. (4.21)
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Proof. By (2.22) we have

IΛk,i · vN
Λk,i

=

∑
t≥k+1

U (n̄−)R0
k,t · vN

Λk,i
+ U (n̄−)xα(−1)k−i+1

· vN
Λk,i

(4.22)

and

IΛk,k−i · vN
Λk,k−i

=

∑
t≥k+1

U (n̄−)R0
k,t · vN

Λk,k−i
+ U (n̄−)xα(−1)i+1

· vN
Λk,k−i

. (4.23)

We use (4.14). For any t ≥ k + 1,

êα/2
(k,i) (R0

k,t · vN
Λk,i

) =
1
i !

∑
m1,...,mk+1≤−1

m1+···+mk+1=−t

xα(m1 − 1) · · · xα(mk+1 − 1)xα(−1)i
· vN

Λk,k−i

=
1
i !

R1
k,t+k+1xα(−1)i

· vN
Λk,k−i

=
1
i !

R0
k,t+k+1xα(−1)i

· vN
Λk,k−i

+ axα(−1)i+1
· vN

Λk,k−i
∈ IΛk,k−i · vN

Λk,k−i
,

where a ∈ U (n̄−). We also have

êα/2
(k,i)(xα(−1)k−i+1

· vN
Λk,i

) =
1
i !

xα(−2)k−i+1xα(−1)i
· vN

Λk,k−i

= γ R0
k,2k−i+2 · vN

Λk,k−i
+ bxα(−1)i+1

· vN
Λk,k−i

∈ IΛk,k−i · vN
Λk,k−i

, (4.24)

where γ is a nonzero scalar and b ∈ U (n̄−). Indeed, the expression R0
k,2k−i+2 does not have any terms involving

xα(−1)t with 0 ≤ t < i , since if there is such a term cxα(−1)t , with c ∈ U (n̄−) a product of k + 1 − t elements
xα(m), where each m ≤ −2, then

wt (cxα(−1)t ) ≥ 2(k + 1 − t) + t = 2k + 2 − t > 2k + 2 − i = wt (R0
k,2k−i+2),

and this contradicts the fact that cxα(−1)t is a summand of R0
k,2k−i+2. We also observe that xα(−2)k−i+1xα(−1)i is

the only type of term in the sum R0
2k−i+2 involving xα(−1)i . This proves (4.24), and hence (4.21). �

Remark 4.3. We have

êα/2
(k,0) (IΛk,0 · vN

Λk,0
) = I ′

Λk,k
· vN

Λk,k
. (4.25)

Indeed, for any t ≥ k + 1,

êα/2
(k,0) (R0

k,t · vN
Λk,0

) = R1
k,t+k+1 · vN

Λk,k
,

and from the descriptions (2.21) and (2.23) of the ideals IΛk,0 and I ′

Λk,k
we see that (4.25) holds. The k = 1 case of

(4.25) was used in [2].

For the reader’s convenience we recall from [2] the shift, or translation, automorphism

τ : U (n̄) −→ U (n̄) (4.26)

given by

τ(xα(m1) · · · xα(mr )) = xα(m1 − 1) · · · xα(mr − 1)

for any integers m1, . . . , mk . For any integer s, the sth power

τ s
: U (n̄) −→ U (n̄) (4.27)

is given by

τ s(xα(m1) · · · xα(mr )) = xα(m1 − s) · · · xα(mr − s).
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Recall from Remark 3.1 in [2] that for any nonzero element a ∈ U (n̄) homogeneous with respect to both the weight
and charge gradings such that a has positive charge, the element τ s(a) has the same properties, and

wt τ s(a) > wt a for s > 0 (4.28)

and

wt τ s(a) < wt a for s < 0. (4.29)

If a is a constant, that is, a has charge zero, then

τ s(a) = a (4.30)

and τ s(a) and a have the same weight and charge.
Generalizing Remark 3.2 in [2], we now have:

Remark 4.4. Using the map τ we can re-express (4.10) and (4.12) as follows:

eα/2
(k,i)(a · vΛk,i ) =

1
i !

τ(a)xα(−1)i
· vΛk,k−i , a ∈ U (n̄), 0 ≤ i ≤ k (4.31)

and

êα/2
(k,i)(a · vN

Λk,i
) =

1
i !

τ(a)xα(−1)i
· vN

Λk,k−i
, a ∈ U (n̄−), 0 ≤ i ≤ k. (4.32)

(recall (4.11) and (4.14)).

Lemma 3.3 in [2] generalizes to:

Lemma 4.3. We have

τ(IΛk,0) ⊂ IΛk,0 + U (n̄−)xα(−1) = IΛk,k .

Proof. Let t ≥ k + 1. Then

τ(R0
k,t ) = R1

k,t+k+1 = R0
k,t+k+1 + a · xα(−1)

for some a ∈ U (n̄−). �

Intertwining vertex operators (in the sense of [9,6]) among triples of L(Λk,0)-modules play an important role in
this paper, as they did in [4,5] and [2]. The following theorem is well known:

Theorem 4.1 ([11]). For integers i, j and m with 0 ≤ i, j, m ≤ k, write

I

(
L(Λk,m)

L(Λk,i ) L(Λk, j )

)
for the vector space of intertwining operators of type

(
L(Λk,m )

L(Λk,i ) L(Λk, j )

)
. The dimensions of these spaces (the fusion

rules) are given by:

dim I

(
L(Λk,m)

L(Λk,i ) L(Λk, j )

)
= 1

if and only if

i + j − 2 max{0, i + j − k} ≥ m ≥ i + j − 2 min{i, j}, m ≡ i + j mod 2,

and otherwise, the fusion rule is zero. �
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As a consequence, we see that L(Λk,0) and L(Λk,k) are “group-like” elements in the fusion ring at level k. Such
modules are sometimes called “simple currents”.

An intertwining operator Y(·, x) of type
(

L(Λk,m )

L(Λk,i ) L(Λk, j )

)
satisfies the condition

Y(vΛk,i , x) ∈ xwt vΛk,m −wt vΛk,i −wt vΛk, j Hom (L(Λk, j ), L(Λk,m))[[x, x−1
]]

(cf. [9,11]). Denote by

Yc(vΛk,i , x) ∈ Hom (L(Λk, j ), L(Λk,m))

the constant term of x−wt vΛk,m +wt vΛk,i +wt vΛk, j Y(vΛk,i , x). Then as in [5], we have

[xα(n),Y(vΛk,i , x)] = 0 for all n ∈ Z. (4.33)

If Yc(vΛk,i , x)vΛk, j is nonzero then it is a highest weight vector of L(Λk,m), so that

Yc(vΛk,i , x)vΛk, j = γ vΛk,m , (4.34)

where γ 6= 0; this will hold for our cases below. Using these remarks about intertwining operators and constant terms
we prove the following:

Lemma 4.4. For any i with 0 ≤ i < k we have

Ker fΛk,i ⊂ Ker fΛk,i+1 , (4.35)

so that

Ker fΛk,0 ⊂ Ker fΛk,1 ⊂ · · · ⊂ Ker fΛk,k . (4.36)

Proof. We consider a nonzero intertwining operator Y of type(
L(Λk,i+1)

L(Λk,1) L(Λk,i )

)
;

the corresponding fusion rule is one by Theorem 4.1. Consider Yc(vΛk,1 , x), the constant term of the nonzero operator

x−wt vΛk,i+1+wt vΛk,1+wt vΛk,i Y(vΛk,1 , x).
Let a ∈ U (n̄−) be such that a ∈ Ker fΛk,i , so that a · vΛk,i = 0. By applying the map Yc(vΛk,1 , x) to a · vΛk,i and

using (4.33) and (4.34) we obtain

γ a · vΛk,i+1 = 0 with γ 6= 0,

so that

a ∈ Ker fΛk,i+1 ,

as desired. �

Remark 4.5. The maps Yc(vΛk,1 , x) (0 ≤ i < k) used here are exactly the same as the constant-term maps crucially
used in Theorem 4.2 (formula (4.44)) of [5].

Remark 4.6. In order to construct Yc and prove Lemma 4.4 we do not in fact need results from [11]. The
construction of Yc follows easily from results in Chapter 13 of [6], while Lemma 4.4 follows from the relation
Ker fΛ1,0 ⊂ Ker fΛ1,1 and (4.7) (cf. also Chapter 13 of [6]).

Our next goal is to prove the main result, Theorem 3.1, or equivalently, Theorem 3.2 (formula (3.20)), which is
what we will in fact prove.

We notice first the inclusion

IΛk,i · vN
Λk,i

⊂ Ker πΛk,i , 0 ≤ i ≤ k. (4.37)
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Indeed, as is well known, the (k+1)th power of the vertex operator Y (xα(−1)·vΛk,0 , x) is well defined (the components
xα(m), m ∈ Z, of this vertex operator commute) and equals zero on each L(Λk,i ), and in particular on W (Λk,i ). The
expansion coefficients of Y (xα(−1) · vΛk,0 , x)k+1 are the operators Rk,−t , t ∈ Z:

Y (xα(−1) · vΛk,0 , x)k+1
=

∑
t∈Z

( ∑
m1+m2+···+mk+1=t

xα(m1)xα(m2) · · · xα(mk+1)

)
x−t−k−1 (4.38)

(recall (2.13) and (3.2)). Thus the operators (2.14) annihilate the highest weight vector vΛk,i , and (4.37) follows.
Before we prove our main result for the general level k ≥ 1 (Theorem 3.2) we first prove this result for k = 1, for

the reasons mentioned in Remark 4.7 below. We have i = 0, 1, and we shall use the notation Λ0 and Λ1 instead of
Λ1,0 and Λ1,1 (recall (2.5)).

Proof of the k = 1 case of Theorem 3.2. By (4.37) it is sufficient to show that

Ker πΛi ⊂ IΛi · vN
Λi

for i = 0, 1. (4.39)

We will prove this by contradiction. Assume then that there exists a ∈ U (n̄−) such that

a · vN
Λi

∈ Ker πΛi but a · vN
Λi

6∈ IΛi · vN
Λi

for i = 0 or 1. (4.40)

By Remarks 3.1 and 3.4 we may and do assume that a is doubly homogeneous, that is, homogeneous with respect to
the weight and charge gradings. By the second statement in (4.40), a is nonzero, and by the first statement in (4.40),
a is in fact nonconstant, so that a has positive weight and positive charge. Let

L = min{wt d | d ∈ U (n̄−) doubly homogeneous such that (4.40) holds for d}. (4.41)

Any such element d is nonzero and in fact nonconstant (just as for the chosen element a), so that any such d has
positive weight and charge; thus L > 0. We further assume that wt a = L . Note that i might be 0 or 1 or both.
We shall show that in fact i cannot be 1, and then we shall use this to show that i cannot be 0, giving our desired
contradiction.

By (2.18) we have a unique decomposition

a = r0xα(−1) + s0 (4.42)

with r0 ∈ U (n̄−) and s0 ∈ U (n̄≤−2). The elements r0 and s0 are doubly homogeneous, and in fact,

wt r0 = wt a − 1, wt s0 = wt a; (4.43)

similarly, the charge of r0 is one less than that of a and the charges of s0 and a are equal. Applying τ−1 to (4.42) gives

τ−1(a) = τ−1(r0)xα(0) + τ−1(s0), (4.44)

and τ−1(s0) is doubly homogeneous,

τ−1(s0) ∈ U (n̄−), (4.45)

and

wt τ−1(s0) < wt a, (4.46)

from (4.29) and the fact that the charge of a and hence of s0 is positive.
Suppose now that i = 1. Then we have

a · vN
Λ1

∈ Ker πΛ1 but a · vN
Λ1

6∈ IΛ1 · vN
Λ1

(that is, a 6∈ IΛ1), (4.47)

where a is doubly homogeneous and wt a = L (recall (4.41)). We are going to show that there exists a doubly
homogeneous element of U (n̄−), namely, τ−1(s0), whose weight is less than L and which satisfies (4.40). We note
that s0 6= 0, because a 6∈ U (n̄−)xα(−1), by (2.25) and (4.47). We have seen that τ−1(s0) is doubly homogeneous and
that its weight is less than wt a. Since s0 · vN

Λ1
∈ Ker πΛ1 (by (4.42) and (4.47)), we have s0 · vΛ1 = 0. We also have

eα/2
(1,0)(τ

−1(s0) · vΛ0) = s0 · vΛ1 = 0
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(recall (4.31)), which together with the injectivity of eα/2
(1,0) implies

τ−1(s0) · vN
Λ0

∈ Ker πΛ0 . (4.48)

We also have

τ−1(s0) · vN
Λ0

6∈ IΛ0 · vN
Λ0

. (4.49)

Indeed, if (4.49) does not hold, then τ−1(s0) ∈ IΛ0 , and by Lemma 4.3 we get s0 ∈ IΛ1 . Now (4.42) yields a ∈ IΛ1 ,
and thus a ·vN

Λ1
∈ IΛ1 ·vN

Λ1
, contradicting (4.47). Hence (4.49) holds. Now (4.48) and (4.49) give a contradiction since

τ−1(s0) is a doubly homogeneous element satisfying (4.40) but whose weight is less than wt a = L . We have shown
that i cannot be 1.

Now we may and do assume that i = 0, that is,

a · vN
Λ0

∈ Ker πΛ0 but a · vN
Λ0

6∈ IΛ0 · vN
Λ0

, (4.50)

where a is doubly homogeneous of weight L (recall (4.41)). Since a · vN
Λ0

∈ Ker πΛ0 ,

a · vΛ0 = 0 in W (Λ0)

and by Lemma 4.4 we obtain

a · vΛ1 = 0 in W (Λ1). (4.51)

Hence a · vN
Λ1

∈ Ker πΛ1 , and so by what we have just proved (that i cannot be 1), we obtain

a · vN
Λ1

∈ IΛ1 · vN
Λ1

,

and so

a ∈ IΛ1 .

Our goal is to show that in fact a ∈ IΛ0 , which will contradict (4.50).
From (2.25) we have

a = b1xα(−1) + c1 (4.52)

with

b1 ∈ U (n̄−) and c1 ∈ IΛ0 . (4.53)

By Remark 3.1 we may and do assume that b1 and c1 are doubly homogeneous; then wt b1 = wt a −1, wt c1 = wt a,
the charge of b1 is one less than that of a, and c1 and a have the same charge.

We now claim that

b1xα(−1) ∈ IΛ0 . (4.54)

Assume then that

b1xα(−1) 6∈ IΛ0 . (4.55)

Then

b1 6∈ U (n̄−)xα(−1); (4.56)

otherwise, b1xα(−1) ∈ U (n̄−)xα(−1)2
⊂ IΛ0 . By (2.18) we have a unique decomposition

b1 = r1xα(−1) + s1, r1 ∈ U (n̄−), s1 ∈ U (n̄≤−2), (4.57)

and r1 and s1 are doubly homogeneous, with wt r1 = wt b1 − 1, wt s1 = wt b1, and similarly for charge. We have
s1 6= 0 by (4.56). We will use the vector s1 to produce a contradiction. We have

τ−1(b1) = τ−1(r1)xα(0) + τ−1(s1) and τ−1(s1) ∈ U (n̄−). (4.58)
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Since b1xα(−1) · vN
Λ0

= a · vN
Λ0

− c1 · vN
Λ0

∈ Ker πΛ0 ,

b1xα(−1) · vΛ0 = 0,

and so by (4.31),

τ−1(b1) · vΛ1 = 0.

Thus (4.58) gives

τ−1(s1) · vΛ1 = 0,

so that

τ−1(s1) · vN
Λ1

∈ Ker πΛ1 . (4.59)

By combining (4.32), (4.55) and (4.57) we also have

êα/2
(1,1)(τ

−1(s1) · vN
Λ1

) = s1xα(−1) · vN
Λ0

= b1xα(−1) · vN
Λ0

− r1xα(−1)2
· vN

Λ0
6∈ IΛ0 · vN

Λ0
, (4.60)

which by Lemma 4.2 implies

τ−1(s1) · vN
Λ1

6∈ IΛ1 · vN
Λ1

. (4.61)

Since s1 is doubly homogeneous, so is τ−1(s1), and

wt τ−1(s1) ≤ wt s1 = wt b1 < wt a = L (4.62)

(note that if s1 has charge 0, that is, is a constant, then wt τ−1(s1) = wt s1). Now (4.59) and (4.61) together with the
fact that τ−1(s1) is doubly homogeneous of weight less than L give us a contradiction. This proves our claim (4.54),
and hence that

a = b1xα(−1) + c1 ∈ IΛ0 , (4.63)

which contradicts (4.50). We have proved that i cannot be 0 and we have thus established (4.39), completing the proof
of Theorem 3.2 for k = 1. �

Remark 4.7. We have just proved Theorem 3.2 (formula (3.20)) for k = 1, by contradiction, in such a way that the
assertion to be contradicted, namely, (4.40), involves both W N (Λ0) and W N (Λ1). A different proof of this theorem was
given in [2] (see the proof of Theorem 2.2), where our argument proved the result for W N (Λ0) and used this result to
prove the result for W N (Λ1). Also, the proof given here does not use the space W N (Λ1)

′ and related “primed” spaces,
which played a crucial role in the proof of the corresponding result in [2]. We have, however, included information
about such “primed” spaces in the present paper, including conclusions about them in Theorems 3.1 and 3.2, partly
for reasons of comparison with the arguments in [2]. Our new argument for proving the k = 1 case of Theorem 3.2
naturally generalizes to k ≥ 1 (see the proof below, which, while it certainly reduces to the proof above when
k = 1, appears more complicated in the greater generality), and it will also be generalized in a different direction in
subsequent work [3].

We now generalize the k = 1 proof to all k ≥ 1.

Proof of Theorem 3.2. In view of (4.37) it is sufficient to prove that

Ker πΛk,i ⊂ IΛk,i · vN
Λk,i

for all i = 0, . . . , k. (4.64)

Again we will prove this by contradiction. Suppose then that there exists a ∈ U (n̄−) such that

a · vN
Λk,i

∈ Ker πΛk,i but a · vN
Λk,i

6∈ IΛk,i · vN
Λk,i

for some i = 0, . . . , k. (4.65)

By Remarks 3.1 and 3.4 we may and do assume that a is doubly homogeneous. Since a is nonzero and in fact
nonconstant (as above), it has positive weight and charge. Let

L = min{wt d | d ∈ U (n̄−) doubly homogeneous such that (4.65) holds for d} (>0). (4.66)
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We further assume that wt a = L . Note that i might be any one or more of the indices from 0 to k. We shall show first
that in fact i cannot be k.

Formulas (4.42)–(4.46) hold, exactly as in the k = 1 case.
Suppose that i = k, that is,

a · vN
Λk,k

∈ Ker πΛk,k but a · vN
Λk,k

6∈ IΛk,k · vN
Λk,k

(that is, a 6∈ IΛk,k ), (4.67)

where a is doubly homogeneous and wt a = L (recall (4.66)). We will show that τ−1(s0) (recall (4.42)) is a doubly
homogeneous element of U (n̄−) whose weight is less than L and which satisfies (4.65). We see that s0 6= 0, since
a 6∈ U (n̄−)xα(−1), by (2.25) and (4.67), and we know that wt τ−1(s0) < wt a. From (4.42) and (4.67) we obtain
s0 · vN

Λk,k
∈ Ker πΛk,k , which is equivalent to s0 · vΛk,k = 0. Since

eα/2
(k,0)(τ

−1(s0) · vΛk,0) = s0 · vΛk,k = 0

(from (4.31)) and since eα/2
(k,0) is injective we obtain

τ−1(s0) · vN
Λk,0

∈ Ker πΛk,0 . (4.68)

Just as in the proof of the case k = 1 we show that

τ−1(s0) · vN
Λk,0

6∈ IΛk,0 · vN
Λk,0

, (4.69)

and we have constructed a doubly homogeneous element τ−1(s0) of U (n̄−) satisfying (4.65) whose weight is less
than wt a = L . This is a contradiction, and so i cannot be k.

Now we may and do assume that

a · vN
Λk,i

∈ Ker πΛk,i but a · vN
Λk,i

6∈ IΛk,i · vN
Λk,i

for some i = 0, . . . , k − 1, (4.70)

where a is doubly homogeneous of weight L (recall (4.66)). We now fix any one of the indices i for which (4.70)
holds. Our next goal is to show that i cannot be k − 1.

Since a · vΛk,i ∈ Ker πΛk,i we have

a · vΛk,i = 0 in W (Λk,i ),

and thus by Lemma 4.4 we obtain

a · vΛk,k = 0 in W (Λk,k), (4.71)

that is, a · vN
Λk,k

∈ Ker πΛk,k . The case we just proved (that i cannot be k) thus gives us

a · vN
Λk,k

∈ IΛk,k · vN
Λk,k

,

and so

a ∈ IΛk,k .

Just as in (4.52) and (4.53), we use (2.25) to write

a = b1xα(−1) + c1 (4.72)

with

b1 ∈ U (n̄−) and c1 ∈ IΛk,0 , (4.73)

and by Remark 3.1 we may and do assume that b1 and c1 are doubly homogeneous. Then in fact wt b1 = wt a − 1,
wt c1 = wt a, the charge of b1 is one less than that of a, and c1 and a have the same charge.

We next claim that

b1xα(−1) ∈ IΛk,k−1 . (4.74)
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Suppose instead that

b1xα(−1) 6∈ IΛk,k−1 . (4.75)

Then

b1 6∈ U (n̄−)xα(−1) (4.76)

(otherwise, b1xα(−1) ∈ U (n̄−)xα(−1)2
⊂ IΛk,k−1 ). We have a unique decomposition

b1 = r1xα(−1) + s1, r1 ∈ U (n̄−), s1 ∈ U (n̄≤−2) (4.77)

by (2.18), and r1 and s1 are doubly homogeneous, with wt r1 = wt b1 − 1, wt s1 = wt b1, and similarly for charge.
Note that by (4.76) we have s1 6= 0. We also have

τ−1(b1) = τ−1(r1)xα(0) + τ−1(s1) and τ−1(s1) ∈ U (n̄−). (4.78)

Remark 2.1 and (4.37) yield the inclusions

IΛk,0 · vN
Λk,i

⊂ IΛk,i · vN
Λk,i

⊂ Ker πΛk,i , (4.79)

so that

b1xα(−1) · vN
Λk,i

= (a − c1) · vN
Λk,i

∈ Ker πΛk,i

(recall (4.70), (4.72) and (4.73)), and this is equivalent to

b1xα(−1) · vΛk,i = 0.

Now by Lemma 4.4 we obtain

b1xα(−1) · vΛk,k−1 = 0, (4.80)

and so (4.31) yields

τ−1(b1) · vΛk,1 = 0.

Hence from (4.78) we get

τ−1(s1) · vN
Λk,1

= τ−1(b1) · vN
Λk,1

∈ Ker πΛk,1 . (4.81)

On the other hand, by (4.32) (using the fact that τ−1(s1) ∈ U (n̄−)), (4.75) and (4.77)) we also have

êα/2
(k,1)(τ

−1(s1) · vN
Λk,1

) = s1xα(−1) · vN
Λk,k−1

= b1xα(−1) · vN
Λk,k−1

− r1xα(−1)2
· vN

Λk,k−1
6∈ IΛk,k−1 · vN

Λk,k−1
.

Thus by using Lemma 4.2 we obtain

τ−1(s1) · vN
Λk,1

6∈ IΛk,1 · vN
Λk,1

. (4.82)

Just as in the proof of the case k = 1 (recall (4.62)) we see that τ−1(s1) is doubly homogeneous of weight less than
wt a = L . We have obtained a contradiction by constructing the doubly homogeneous element τ−1(s1) satisfying
(4.81) and (4.82), and hence (4.65), whose weight is less than L . (Note that if k = 1, we are not claiming that τ−1(s1)

also satisfies (4.70).) This proves our claim (4.74).
Thus

a = b1xα(−1) + c1 ∈ IΛk,k−1 (4.83)

with b1 ∈ U (n̄−) and c1 ∈ IΛk,0 , by (4.72) and (2.24), and we have shown that the index i in (4.65) and in (4.70)
cannot be k − 1. In particular, if k = 1 we are done.

Suppose then that k ≥ 2. Then we may and do choose the index i in (4.70) so that 0 ≤ i ≤ k − 2. We shall next
show that this index i cannot be k − 2. This argument will be similar to the previous one, and it will make the general
pattern clear.
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Since

a · vΛk,i = 0 for some i = 0, . . . , k − 2, (4.84)

by Lemma 4.4 we get

a · vΛk,k−1 = 0, (4.85)

that is, a · vN
Λk,k−1

∈ Ker πΛk,k−1 . By the previous case (that i cannot be k − 1),

a · vN
Λk,k−1

∈ IΛk,k−1 · vN
Λk,k−1

, (4.86)

so that

a ∈ IΛk,k−1 . (4.87)

Thus from (2.25) we obtain

a = b2xα(−1)2
+ c2 with b2 ∈ U (n̄−) and c2 ∈ IΛk,0 , (4.88)

and as usual, we may and do assume that b2 and c2 are doubly homogeneous (by Remark 3.1), so that wt b2 = wt a−2,
wt c2 = wt a, the charge of b2 is two less than that of a, and c2 and a have the same charge.

We now prove by contradiction that

b2xα(−1)2
∈ IΛk,k−2 (4.89)

(cf. (4.74)): If instead

b2xα(−1)2
6∈ IΛk,k−2 , (4.90)

then b2 6∈ U (n̄−)xα(−1) (cf. (4.76)), and thus we have a unique decomposition

b2 = r2xα(−1) + s2, r2 ∈ U (n̄−), 0 6= s2 ∈ U (n̄≤−2), (4.91)

and r2 and s2 are doubly homogeneous, with wt r2 = wt b2 −1, wt s2 = wt b2, and similarly for charge (as in (4.77)).
We follow the argument of (4.78)–(4.82): We apply τ−1 to (4.91). Since (4.79) still holds, we obtain that

b2xα(−1)2
· vΛk,i = (a − c2) · vΛk,i = 0,

which gives

b2xα(−1)2
· vΛk,k−2 = 0

by Lemma 4.4. Thus by (4.31) we get

τ−1(b2) · vΛk,2 = 0,

and so

τ−1(s2) · vN
Λk,2

= τ−1(b2) · vN
Λk,2

∈ Ker πΛk,2 . (4.92)

Using (4.32), the fact that τ−1(s2) ∈ U (n̄−), (4.90) and (4.91), we also obtain

(2!) êα/2
(k,2)(τ

−1(s2) · vN
Λk,2

) = b2xα(−1)2
· vN

Λk,k−2
− r2xα(−1)3

· vN
Λk,k−2

6∈ IΛk,k−2 · vN
Λk,k−2

,

and so by Lemma 4.2,

τ−1(s2) · vN
Λk,2

6∈ IΛk,2 · vN
Λk,2

. (4.93)

Just as in the proof above, τ−1(s2) is a doubly homogeneous element satisfying (4.92) and (4.93) and hence (4.65)
(but not necessarily (4.70)) and of weight less than L . This proves (4.89).

By (4.88), (4.89) and (2.24) we now have

a = b2xα(−1)2
+ c2 ∈ IΛk,k−2 (4.94)

with b2 ∈ U (n̄−) and c2 ∈ IΛk,0 , and this proves that i cannot be k − 2. In particular, we are done if k = 2.
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Now we give the general inductive step. Fix m ≥ 1 and assume that the assertion of Theorem 3.2 has been proved
for k = 1, 2, . . . , m and that i in (4.65) (or in (4.70)) cannot be k, k − 1, . . . , k − m. We shall show that if k ≥ m + 1,
then the index i cannot be k − (m + 1) either, and that in particular, the assertion of Theorem 3.2 thus holds for
k = m + 1. This will complete the proof of the theorem.

Suppose then that k ≥ m + 1 and that the index i in (4.70) is such that 0 ≤ i ≤ k − (m + 1). To show that this
index i in fact cannot be k − (m + 1), we first observe that exactly as in (4.84)–(4.87) we have

a ∈ IΛk,k−m ,

and so from (2.25) we see that

a = bm+1xα(−1)m+1
+ cm+1 with bm+1 ∈ U (n̄−) and cm+1 ∈ IΛk,0 . (4.95)

Again, as above, we may and do assume that bm+1 and cm+1 are doubly homogeneous (by Remark 3.1); then
wt bm+1 = wt a − (m + 1), wt cm+1 = wt a, the charge of bm+1 is m + 1 less than that of a, and cm+1 and a
have the same charge.

Exactly as in (4.89)–(4.93), we obtain by contradiction that

bm+1xα(−1)m+1
∈ IΛk,k−(m+1)

: (4.96)

Assume that

bm+1xα(−1)m+1
6∈ IΛk,k−(m+1)

.

In place of formula (4.91), we now have the unique decomposition

bm+1 = rm+1xα(−1) + sm+1, rm+1 ∈ U (n̄−), 0 6= sm+1 ∈ U (n̄≤−2),

with rm+1 and sm+1 doubly homogeneous, wt rm+1 = wt bm+1 − 1, wt sm+1 = wt bm+1, and similarly for charge.
As in formula (4.78) we now have

τ−1(bm+1) = τ−1(rm+1)xα(0) + τ−1(sm+1) and τ−1(sm+1) ∈ U (n̄−).

By (4.79) we obtain

bm+1xα(−1)m+1
· vΛk,i = (a − cm+1) · vΛk,i = 0,

so that

bm+1xα(−1)m+1
· vΛk,k−(m+1)

= 0,

by Lemma 4.4, and so (4.31) gives

τ−1(bm+1) · vΛk,m+1 = 0.

Thus

τ−1(sm+1) · vN
Λk,m+1

= τ−1(bm+1) · vN
Λk,m+1

∈ Ker πΛk,m+1 . (4.97)

Since τ−1(sm+1) ∈ U (n̄−), we can use (4.32), and exactly as above we find that

(m + 1)!
̂

eα/2
(k,m+1)(τ

−1(sm+1) · vN
Λk,m+1

) = bm+1xα(−1)m+1
· vN

Λk,k−(m+1)
− rm+1xα(−1)m+2

· vN
Λk,k−(m+1)

,

so that

̂
eα/2
(k,m+1)(τ

−1(sm+1) · vN
Λk,m+1

) 6∈ IΛk,k−(m+1)
· vN

Λk,k−(m+1)
.

Thus by Lemma 4.2,

τ−1(sm+1) · vN
Λk,m+1

6∈ IΛk,m+1 · vN
Λk,m+1

. (4.98)

Since τ−1(sm+1) is a doubly homogeneous element satisfying (4.97) and (4.98) and thus (4.65) (but not necessarily
(4.70)) and of weight less than L , we have proved (4.96).
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Hence from (4.95), (4.96) and (2.24) we finally obtain

a = bm+1xα(−1)m+1
+ cm+1 ∈ IΛk,k−(m+1)

, (4.99)

proving that i cannot be k − (m + 1) and thus proving Theorem 3.2. �

Remark 4.8. The first part of the proof, in which we showed that i cannot be k, is actually essentially the same
argument as the successive arguments showing that i cannot be k − 1, k − 2, and so on.

Remark 4.9. As an immediate consequence of Theorem 3.1, we see that any nonzero doubly homogeneous element
a ∈ U (n̄−) such that a ∈ Ker fΛk,0 = IΛk,0 has charge at least k + 1; that is, no nonzero linear combination of
monomials xα(m1) · · · xα(mr ) with r ≤ k and each mi < 0 belongs to Ker fΛk,0 . We observe similarly that any
homogeneous element of charge k + 1 that lies in Ker fΛ0 is a multiple of R0

t for some t ≥ k + 1.

5. Another reformulation

Generalizing the last section of [2], we shall finally give a further reformulation of the i = 0 case of Theorem 3.2,
formula (3.20), in terms of principal ideals of vertex (operator) algebras. As in [2], we shall invoke [18] for material
on ideals of vertex (operator) algebras and on vertex-operator algebra and module structure on generalized Verma
modules.

The generalized Verma module N (Λk,0) has a natural structure of vertex-operator algebra, with vertex-operator
map

Y (·, x) : N (Λk,0) −→ End N (Λk,0)[[x, x−1
]]

v 7→ Y (v, x) =

∑
m∈Z

vm x−m−1

satisfying the conditions given in Theorem 6.2.18 of [18], with vN
Λk,0

as vacuum vector. The conformal vector gives rise
to the Virasoro algebra operators L(m), m ∈ Z, including the operator L(0) used above. Also, N (Λk,i ) for 0 ≤ i ≤ k
is naturally a module for the vertex-operator algebra N (Λk,0), as described in Theorem 6.2.21 of [18].

Just as in [2], W N (Λk,0) is a vertex subalgebra of N (Λk,0) and W N (Λk,i ) is a W N (Λk,0)-submodule of N (Λk,i )

for 0 ≤ i ≤ k. Also, L(0) preserves W N (Λk,i ) for 0 ≤ i ≤ k and L(−1) preserves only W N (Λk,0).
We recall from Section 3 the natural surjective ĝ-module maps

ΠΛk,i : N (Λk,i ) −→ L(Λk,i ) (5.1)

a · vN
Λk,i

7→ a · vΛk,i , a ∈ U ( ĝ )

and their kernels

N 1(Λk,i ) = Ker ΠΛk,i , (5.2)

for 0 ≤ i ≤ k. Then N 1(Λk,i ) is the unique maximal proper (L(0)-graded) ĝ-submodule of N (Λk,i ) and

N 1(Λk,i ) = U ( ĝ )xα(−1)k−i+1
· vN

Λk,i
= U (Cx−α ⊕ g ⊗ t−1C[t−1

])xα(−1)k−i+1
· vN

Λk,i

for 0 ≤ i ≤ k (cf. [15,18]).
As in [2], a principal ideal of a vertex (operator) algebra is an ideal generated by a single element. The following

result, which generalizes Proposition 4.1 in [2] and which is proved the same way, says that N 1(Λk,0) is the principal
ideal of N (Λk,0) generated by the “null vector” xα(−1)k+1

· vN
Λk,0

:

Proposition 5.1. The space N 1(Λk,0) is the ideal of the vertex-operator algebra N (Λk,0) generated by xα(−1)k+1
·

vN
Λk,0

. �

The kernels of the restrictions πΛk,i of the maps (5.1) to the principal subspaces W N (Λk,i ) (recall (3.18)) are

Ker πΛk,i = N 1(Λk,i ) ∩ W N (Λk,i ) (5.3)
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for 0 ≤ i ≤ k. As in Remark 4.2 in [2] we have that Ker πΛk,0 = N 1(Λk,0) ∩ W N (Λk,0), which equals IΛk,0 · vN
Λk,0

by Theorem 3.2, is an ideal of the vertex algebra W N (Λk,0). Moreover, generalizing Proposition 4.2 of [2] and using
essentially the same proof, we have that this ideal is also a principal ideal, generated by the same null vector:

Proposition 5.2. The space IΛk,0 · vN
Λk,0

is the ideal of the vertex algebra W N (Λk,0) generated by xα(−1)k+1
· vN

Λk,0
.

�

Again as in [2] we write (v)V for the ideal generated by an element v of a vertex (operator) algebra V . Combining
Propositions 5.1 and 5.2 with Theorem 3.2, we have obtained a reformulation of the i = 0 case of Theorem 3.2,
formula (3.20), generalizing Theorem 4.1 of [2]:

Theorem 5.1. For every k > 0,

Ker πΛk,0 = (xα(−1)k+1
· vN

Λk,0
)N (Λk,0) ∩ W N (Λk,0) = (xα(−1)k+1

· vN
Λk,0

)W N (Λk,0)
. (5.4)

In particular, the intersection with the vertex subalgebra W N (Λk,0) of the principal ideal of N (Λk,0) generated by
the null vector xα(−1)k+1

· vN
Λk,0

coincides with the principal ideal of the vertex subalgebra W N (Λk,0) generated by
the same null vector. �
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