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Recently Maleknejad and Sheikh-Jabbari have proposed a new model for inflation with non-Abelian gauge
fields (Gauge-flation), and they have studied the model by numerical methods (Maleknejad and Sheikh-
Jabbari, 2011 [3]). In this model, the isotropy of space–time is recovered by suitable combination of
gauge configurations, and a scalar field is constructed by gauge field and the scale factor, which produces
inflation period. In this work, exact solutions for the scalar field and the Hubble parameter are presented
and we provide analytic solutions for the numerical results. We explicitly present Hubble parameter and
fields as functions of time and it is also demonstrated that in some conditions they are damped oscillator.
Moreover, reheating period in the model is discussed.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Observations of the cosmic microwave background and large
scale structure are consistent with the isotropic symmetry of
space–time and inflation [1], a period of accelerated expansion
occurring in early universe. To save isotropic symmetry of back-
ground space–time, many models use a single or multi-scalar
field(s) (inflaton) with ansatz that the inflaton field rolls slowly
down its potential (inflationary period) [1]. Eventually the field(s)
oscillates around the minimum of its potential and decays into
light particles (reheating period). It has been assumed that reheat-
ing period took place just after inflationary period and the field
behaved like dust matter in the reheating period [1].

We have had few models that can be solved exactly in the cos-
mological context. The well-known example, that can be solved
exactly, is the exponential potential [1,2] which, with suitable pa-
rameters, gives us inflationary solution (power law inflation). Usu-
ally, solving field equations are limited to either the inflationary
period, with slow roll approximations, or reheating period.

The success of gauge symmetry in the standard particle physics
shows that the gauge symmetry is the correct tool to construct
an effective field theory. But, at first glance, it seems impossible to
reconcile the isotropic symmetry with the vectorial nature of gauge
fields. However, recently a new model for inflation, Gauge-flation,
based on gauge field, Aa

μ , where a,b, . . . and μ,ν, . . . are used
for the indices of gauge algebra and the space–time respectively,
has been proposed by Maleknejad and Sheikh-Jabbari (MS) [3]. The
rotational symmetry in 3d space is retained by introducing three
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gauge fields, such that these gauge fields rotate among each other
by SU(2) non-Abelian gauge transformations [3]. In this model,
a scalar field that causes inflation period, ψ , is constructed from
the gauge field and the scale factor (see below). MS have studied
the model by numerical analysis and obtained numerical solutions
for the model [3].

In this work we investigate the model by analytic method. As
we will see, the model has some features that allow us to obtain
leading order of fields in all epochs of the universe and not just
only in a specific period. We provide an analytic expression for MS
solutions and we study reheating period in this model.

This Letter is organized as follows: in Section 2 we briefly re-
view the model and obtain equations in terms of variables which
we will use in this Letter. In Section 3 we consider a special solu-
tion in spectrum of solutions of the model, that the equations can
be solved exactly. The solution yields analytic expression for the
Hubble parameter and fields for all epochs of the universe. Also
we give the general form of solutions for the fields. In Section 4
we obtain the analytic form for the MS solutions. Constraints on
the solutions from slow roll conditions and observations are dis-
cussed in Section 5. In Section 6 we discuss about reheating period
in the model. We summarize our finding in Section 7. In Appendix
A, we obtain the equation of motion of fields in terms of variables
that we use in this Letter.

2. The model

We work with a general flat–space FRW background metric
with signature (−+ ++), and reduced Plank unites 8πG = 1. Fol-
lowing [3], we consider the effective Lagrangian,
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L = √−g

(
− R
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F a
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μν + κ2

384

(
εμνλσ F a

μν F a
λσ

)2
)

,

(1)

where εμνλσ is the totally antisymmetric tensor and the strength
field F is

F a
μν = ∂μ Aa

ν − ∂ν Aa
μ − gεa

bc Ab
μ Ac

ν, (2)

where εa
bc is the totally antisymmetric tensor. Sheikh-Jabbari [4]

has shown how F 4 term in (1) is obtained by integrating out
a massive axion field in Chromo-Natural inflation [5]. Also, it
has been argued how other dimension 8 level terms are sup-
pressed [4].

To retain isotropy symmetry of space–time we have to set [3]

Aa
μ =

{
φ(t)δa

i , μ = i,

0, μ = 0.
(3)

Applying Einstein’s equations with this setup results in [3]

Ḣ + 2H2 = κ2 g2φ4φ̇2

a6
,

Ḣ = −
(

φ̇2

a2
+ g2φ4

a4

)
, (4)

where a is the scale factor. The equation of motion for φ is ob-
tained by combination of the equations in (4) [3], so it is not an
independent equation and we take (4) to study the model. Neither
φ(t) nor a(t) are scalar under general coordinate transformation,
while ψ(t) = φ(t)/a(t) is a scalar, so we seek solutions for it. We
define a new variable α(t) by writing

φ̇

aH
= √

ε(t) cosα(t),

gφ2

a2 H
= √

ε(t) sinα(t), (5)

where ε(t) ≡ −Ḣ/H2 and α(t) is an arbitrary function of time.
Using (5), the system of equations in (4) is reduced to

2 − ε(t) = κ2

4
ε2(t)H2 sin2 2α(t), (6)

noting that 0 < ε(t) � 2. Without assumption either on the H or
on the α(t) Eq. (6) cannot be solved to obtain an expression for
the Hubble parameter as a function of time (except for κ = 0 that
results in H = 1/2t , “radiation epoch”). To explore the model, we
define

H sin 2α(t) ≡ β f (t), (7)

where β is an arbitrary number (dimensionless in Plank units), but
β � H .

As we will see, the MS solutions can be obtained by a spe-
cial form for the f (t). Before we study the MS solution we take a
“simple” ansatz for f (t), that not only helps us to understand the
MS solutions, but also, it gives information about dynamics of the
model.

3. The simple ansatz

In this section we use the following simple form for f (t)

f (t) = sinωt, (8)

where ω is an arbitrary number. Using Eqs. (6) and (8), we have

ε(t) =
√

1 + 2k sin2 ωt − 1
k sin2 ωt

, (9)

2

Fig. 1. The ε(t) versus t for k = 106, ω = 2. After inflation, the universe exits
abruptly from inflationary period.

where k ≡ (κβ)2. Note that limωt→nπ ε(t) = 2, where n is an in-
teger number. ε(t) is a periodic function of time and for k > 4
it crosses ε(t) = 1 line (acceleration expansion phase), and for
k > 8 × 104 it crosses ε(t) = 10−2 line. The ε(t) is designed as
in Fig. 1.

To understand behaviour of ε(t), we can derive a useful formula
for ε(t) in inflationary period (i.e., when ε(t) � 1). From Eqs. (6)
and (7), ε(t) in this limit becomes

ε(t) ≈
√

8√
k sinωtinf

, (10)

where the subscript “inf ” denotes that the above expression is
valid when ε(t) � 1, i.e., 0 < ωtinf < π . For large value for k, the
validity of Eq. (10) is broken when t is very close to nπ/ω, so the
universe almost evolves through acceleration expansion phases for
k � 1, but eventually exits abruptly from inflationary period, as in-
dicated in Fig. 1.

Integration of (9) gives

H(t) = kω/2
((

1 − √
1 + k(1 − cos 2ωt)

)
cotωt

+ (1 + 2k)F [ωt | −2k] − E[ωt | −2k]), (11)

where F [ωt | −2k] and E[ωt | −2k] are elliptic integrals of the first
and second kind respectively and the specific combination of them
in (11) is increased monotonically with time [6]. Also

lim
t→ nπ

ω

(−1 + √
1 + k(1 − cos 2ωt)

)
cotωt = 0, (12)

so the Hubble parameter is damped (but it is singular at t = 0).
The Hubble parameter is planned as in Fig. 2 and Fig. 3, where
it has gentle slopes when ε < 1 (inflationary phase). Since H is
decreased with time and ε(t) is a periodic function of time, we
conclude that not only Ḣ < 0 but also −Ḣ is decreased with time,
as indicated in Fig. 2.

If we demand just one inflationary phase for the universe and
define �tinf as the duration of time that inflation takes place,
from (10) we have

ω�tinf < π. (13)

Note that (13) is the upper bound on ω�tinf that the model pre-
dicts itself and it must be consistent with observational constraints
(see below).
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Fig. 2. The Hubble parameter versus t for k = 106, ω = 2. Since −Ḣ increases with
time, the second steep slope is shorter than the first steep slope.

Fig. 3. The Hubble parameter versus t for k = 106, ω = 2.

From Eqs. (5) and (7), we find

ψ2±(t) = H
√

ε(t)

g

(1 ±
√

1 − β2 sin2 ωt
H2

2

) 1
2

, (14)

where ε(t) and H are given by (9) and (11) respectively.
It is worth to mention that our results in (9), (11) and (14) are

valid for all values of ε(t) and this is one of the interesting proper-
ties of the model compared with other models for inflation, which
use ε(t) as a perturbation parameter and their solutions for the
Hubble rate or field(s) are limited to a specific epoch (inflationary
period or reheating period). In this sense, the above expressions
are exact (non-perturbative) and nonsingular solutions of nonlin-
ear equations (4).

The inverse proportionality of ψ± to
√

g shows that they do
not exist in perturbation regime.

To understand the behaviour of (14), we use the fact that
β � H , and expand (14) that gives

ψ2+(t) = H
√

ε(t)

g
, ψ2−(t) = β

√
ε(t)

2g
sinωt. (15)

Here the higher terms ∼ β2/H2 have been neglected. So, ψ+ is
damped oscillator and ψ− is oscillator (till β � H). The leading
order behaviour of ψ4± are sketched in Fig. 4.

Recall that in the reduced Plank units, H < 1 (after Plank time),
and β < H , so ψ− is smaller than ψ+ in the inflation period. How-
ever, from the Friedman equation, ρψ± = 3H2, we realise that both
Fig. 4. The leading order behaviour of ψ4− (solid line) and ψ4+ (dashed line) for
k = 106, ω = 2, β = g = 10−6.

of them have the same density, and the behaviour of H (in Eq. (11)
and Fig. 3) shows that the cosmic expansion dilutes the density of
fields, although the expectation value of ψ+ is greater than ψ−
after inflation.

For general type of f (t) in (7), H cannot be obtained in terms
of well-known functions, but by algebraic manipulations of equa-
tions (5), (6) and (7), one can show that for leading order of fields
we have

ψ2
+ f (t) = H f

√
ε(t)

g
, ψ2

− f (t) = β
√

ε(t)

2g
f (t), (16)

where H f is the Hubble rate for f (t). Since H f is usually un-
known, the above expression is formal for ψ+ f , but the leading
order of ψ− f is given by (16) for any f (t).

Note that Eqs. (16) are valid for all values of ε(t). The physi-
cal meaning of f (t) is clear from (16), i.e., f (t) shows boundary
conditions on the fields.

4. The MS solutions

We pointed out that MS have analysed the model by numerical
methods. Here we will show that to rederive the results we must
take the following form for f (t)

f (t) =
(

sin(α1t + α2t2 + · · ·)
α1t

)2

≡ fMS(t). (17)

ε(t) and the leading order of ψ− are obtained by (6), (7), (16)
and (17) as

εMS(t) =
2(

√
1 + 2kf 2

MS(t) − 1)

kf 2
MS(t)

,

ψ2−MS(t) = β
√

ε(t)

2g
fMS(t). (18)

Figs. 5 and 6 are obtained by our analytic method and they have
the same pattern as MS have obtained [3].

Note that if fMS → 0 then ε(t) = 2. Although in this case we
cannot obtain an exact expression for the Hubble parameter (for
all time), but with (17), we can obtain some information about the
MS solution in various regimes.
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Fig. 5. The ε(t) versus t for k = 106, ω = 2, α1 = 10, α2 = 0, α3 = 2. Compare with
the figures in [3].

Fig. 6. The ψ− versus t with the same parameters as in Fig. 1 and β = g = 10−6.
Compare with the figures in [3].

The most important coefficient of (17) in inflationary phase
is α1. When α1t < 1 we have f (t) ≈ 1, so in this regime from (17)
and (18), we have

εMS(t) ≈ 2(
√

1 + 2k − 1)

k
, (19)

i.e., εMS(t) is constant in this regime as indicated in Fig. 5. To have
ε(t) � 10−2, we must take k � 8 × 104.

Therefore the Hubble parameter in this regime is

HMS(t) ≈ k

2(
√

1 + 2k − 1)t
. (20)

Hence, from (16) and (19) it follows that

ψ2+MS(t) ≈
√

k

2g2(
√

1 + 2k − 1)

1

t
,

ψ2−MS(t) ≈ β

2g

√
2(

√
1 + 2k − 1)

k
, (21)

so, the leading order of ψ− is constant in this regime, as indicated
in Fig. 6.

When α1t ≈ π , the numerator in (17) equals to zero, and there-
fore εMS → 2. Just like the simple ansatz in Section 2, for large k,
the universe almost evolves through inflation period but eventually
exits abruptly when t → π/α1.
Using (17), the Taylor expansion of ε(t) in (18) around t =
π/α1 is

εMS(t) ≈ 2 − α4
1k

π4

(
t − π

α1

)4

. (22)

The Hubble parameter in this regime can be derived by integration
of (22), that is

HMS(t) ≈ 1

2t

(
1 + α4

1k

10π4t

(
t − π

α1

)5)
, (23)

similarly, the leading order of ψ± are given by the following for-
mulas

ψ2+MS(t) ≈
√

2

2gt

(
1 − α4

1k√
8π4

(
t − π

α1

)4)
,

ψ2−MS(t) ≈ β
√

2α2
1

2gπ2

(
t − π

α1

)2

, (24)

for t > 1, the other terms, (α2, . . .), in (17) are important, and
fMS(t) oscillates faster, so ε(t) and ψ± oscillate faster.

Finally, for t � 1, the denominator in (17) is increased, and re-
sults in fMS ≈ 0. Therefore in this regime, ε(t) → 2, ψ− → 0 as
indicated in Fig. 5 and Fig. 6. Also, using (16), we have

HMS(t) → 1

2t
, ψ+ → 1√

2g

1

t
. (25)

Results from various numerical analysis of the model with var-
ious initial values [3] have similar properties of the MS solutions,
that lead us to the following conjecture about the model: the MS
solution, (17), is the attractor solution of the model.

5. Complementary slow roll conditions

If we demand that our fields be inflaton fields, complemen-
tary slow roll conditions are required in inflationary period, i.e.,
not only ε(t) � 1 but also

δ± f ≡ − ψ̇± f

H f ψ± f
� 1,

δ̇± f

H f δ± f
� 1. (26)

For ψ+ f , the conditions do not have any restriction on the param-
eters of ψ+ f , therefore we will focus on ψ− f .

5.1. Complementary slow roll conditions for the simple ansatz

For the simple ansatz, (8), the conditions in (26) yield

ω

H
� 2 tanωtinf ,

ω

H
� sin 2ωtinf

2
. (27)

If 0 < ωtinf < π/2, the conditions in (27) are reduced to ω � H ,
that is agreement with (13).

If we take ω�tinf = 1/2, then using the condition ω � H , we
obtain

H�tinf � 1. (28)

The current cosmic microwave background data indicate that dur-
ing inflation epoch, H � 10−5 M pl [7]. If H ≈ 10−5 M pl , the rela-
tion (28), implies that �tinf � 105tpl .

Number of e-folding is given by

Ne =
t f∫

H dt. (29)
ti



A. Ghalee / Physics Letters B 717 (2012) 307–312 311
If we use ω�tinf = 1/2, then assuming that t f > 10ti , the numeri-
cal integration of the Hubble parameter in (11) shows that to have
Ne > 60, we must take k > 4 × 106.

So, if we set β = 10−6 (in Plank units), then to have sufficient
e-folds, we must take κ > 2 × 109.

5.2. Complementary slow roll conditions for the MS solution

As for the MS solutions, (26) yields

2
(
α1t cot(α1t) − 1

) � HMSt,

1 − (α1t cscα1t)2

−1 + α1t cotα1t
� HMSt. (30)

Here we have neglected other terms that do not have any effect in
inflation period. For α1t < 1 we have

2
(
α1t cot(α1t) − 1

) ≈ −2(α1t)2

3
,

1 − (α1t cscα1t)2

−1 + α1t cotα1t
≈ 1 + 2

15
(α1t)2. (31)

Using Eqs. (20), (30) and (31), the complementary slow roll condi-
tions are reduced to

k

2(
√

1 + 2k − 1)
� 1, (32)

hence, it is sufficient that k > 8 × 104.
Just like the simple ansatz, if we take α1	tinf = 1/2, from rela-

tions (30) and (31), we have H	tinf � 1.
Number of e-folding is given by (20) and (29) as

Ne ≈ k

2(
√

1 + 2k − 1)
ln

t f

ti
, (33)

so, for k > 8 × 104 we have

Ne > 100 ln
t f

ti
. (34)

The general cosmological perturbation of the model was developed
in [3].

6. Reheating

In the most models for inflation to have successful reheating
period, it is necessary that after inflation period, inflaton(s) be-
haves like dust matters, and then decays into relativistic matter.
But in the Gauge-flation model the fields can be decayed into rel-
ativistic matter, without going to dust matter phase as we saw in
Section 4. One way to see this point is to see the Lagrangian (1), in
the inflationary period the (F F̃ )2 term is dominate, but after infla-
tion this term is irrelevant, and the second term in (1) is dominate
after inflation. Therefore the energy stored in fields are to be trans-
ferred to other fields by thermal bath of fields.

But if we demand that the energy density at the beginning of
radiation epoch is the same as at the end of inflation, the thermal
bath is not sufficient, due to the expansion of universe. So, a cou-
pling between fields and matter is needed.

We suppose that the fields decay into relativistic particles, χ ,
with decay rate, Γ , which depends on details of interactions be-
tween the fields with the relativistic particles. Here, we will obtain
a bound on Γ from conservation of energy. We have [1]

ρ̇ψ± + 3H(ρψ± + pψ±) = −Γ ρψ± ,

ρ̇χ + 3H(ρχ + pχ ) = Γ ρψ± . (35)
Here

pχ/ρχ = 1/3, pψ−/ρψ− ≡ weff = −1 + 2

3
ε(t), (36)

where weff is the equation of state. Hence, we can solve (35) as

ρχ = ρψ±(tr)

a4(t)

Γ M2

ωH2(tr)

ωt∫
ωtr

a4
(

τ

ω

)
H2

(
τ

ω

)
e

Γ
ω (τr−τ ) dτ , (37)

where tr is the time just after the end of inflation and M is the
scale energy of H(t) that we explicitly show. After short time H →
1/2t , and a(t) → a0t

1
2 . By assuming that Γ � ω, the fields almost

immediately decay into χ , i.e. H(tr) ≈ M , so

ρχ ≈ ρψ±(tr)

(
ao(tr)

a(t)

)4

. (38)

Therefore, to have successful inflation and reheating with this sce-
nario, we need H�tinf � 1 and Γ �tinf � 1, one can set Γ ≈ H .
For the standard scalar field, to produce a successful radiation
epoch after reheating period, we must take Γ � H [1].

7. Summary

We have studied the Gauge-flation by analytic methods and we
have investigated the simple (but nontrivial) ansatz that shows the
main features of the model. Then, we have derived formulas for
leading order of fields in the model. The formulas are valid in all
range of history of the early universe.

Using the formulas, we have provided analytic solutions for the
MS solutions [3], and with the analytic solutions, we studied some
features of the MS solutions which cannot be obtained without
analytic methods. Then, we obtained constraints from slow roll
conditions on the parameters of the solutions.

Moreover, we studied preheating period in the model and ob-
tained a bound on decay rate of fields, that may be useful for
future works.
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Appendix A

In this Letter we give some solutions for Eq. (6). It is necessary
to show that they are also solutions of the equation of motion
for fields. To show this point, in this appendix we will obtain the
equation of motion for fields in terms of variables that we use in
this Letter.

The equation of motion can be obtained by variation of (1) with
respect to the fields as [3](

1 + κ g2 φ4

a4

)
φ̈

a
+

(
1 + κ

φ̇2

a2

)
2g2 φ3

a3

+
(

1 − 3κ g2 φ4

a4

)
H

φ̇

a
= 0. (A.1)

But, another standard way, that we use here, to obtain (A.1) is to
use the Friedman equations. For what we will do, let us review
this method.

From (4), we obtain the following equations

H2 = 1
(

φ̇2

2
+ g2φ4

4
+ κ2 g2φ4φ̇2

6

)
, (A.2)
2 a a a
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and

Ḣ = −
(

φ̇2

a2
+ g2φ4

a4

)
. (A.3)

The derivative of (A.2) with respect to time results in

2H Ḣ = 1

2

d

dt

(
φ̇2

a2
+ g2φ4

a4
+ κ2 g2φ4φ̇2

a6

)
. (A.4)

Substituting Eq. (A.3) into the left hand side of (A.4), with algebraic
manipulations, gives us (A.1).

One way to obtain the equation of motion in terms of variables
that we use in this Letter is to substitute variables in Eq. (A.1), but
it is better to rewrite Eqs. (A.2) and (A.3) in terms of our variables,
and then to derive the equation of motion.

For Eq. (A.2), we have

H2 = H2

2

(
ε(t) + κ2

4
ε2(t)H2 sin2 2α(t)

)
, (A.5)

and for Eq. (A.3), we have

Ḣ = −ε(t)H2. (A.6)

The derivative of (A.5) with respect to time, substituting Eq. (A.6)
into the left hand side of the result, is

−2H3ε(t) = H Ḣ

(
ε(t) + κ2

4
ε2(t)H2 sin2 2α(t)

)

+ 1

2
H2 d

dt

(
ε(t) + κ2

4
ε2(t)H2 sin2 2α(t)

)
. (A.7)
We rearrange Eq. (A.7) as

0 = −ε(t)H3
(

−2 + ε(t) + κ2

4
ε2(t)H2 sin2 2α(t)

)

+ 1

2
H2 d

dt

(
ε(t) + κ2

4
ε2(t)H2 sin2 2α(t)

)
. (A.8)

Eq. (A.8) is the equation of motion of fields in terms of our vari-
ables.

If we rewrite Eq. (6) as

ε(t) + κ2

4
ε2(t)H2 sin2 2α(t) − 2 = 0, (A.9)

then, from Eqs. (A.8) and (A.9), we have

−ε(t)H
(
L.H.S. (A.9)

) + 1

2

d

dt

(
L.H.S. (A.9)

) = 0. (A.10)

Therefore, solutions of Eq. (A.9) are the solutions of Eq. (A.10).
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