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Abstract

We expand the previous analyses of the conformal barrier on the walking technirho for the 2 TeV dibo-
son excesses reported by the ATLAS Collaboration, with a special emphasis on the hidden local symmetry 
(HLS) constraints. We first show that the Standard Model (SM) Higgs Lagrangian is equivalent to the 
scale-invariant nonlinear chiral Lagrangian, which is further gauge equivalent to the scale-invariant HLS 
model, with the scale symmetry realized nonlinearly via SM Higgs as a (pseudo-)dilaton. The scale sym-
metry forbids the new vector boson decay to the 125 GeV Higgs plus W/Z boson, in sharp contrast to 
the conventional “equivalence theorem” which is invalidated by the conformality. The HLS forbids mixing 
between the iso-triplet technirho’s, ρ� and ρP , of the one-family walking technicolor (with four doublets 
ND = NF /2 = 4), which, without the HLS, would be generated when switching on the standard model 
gauging. We also present updated analyses of the walking technirho’s for the diboson excesses by fully in-
corporating the constraints from the conformal barrier and the HLS as well as possible higher order effects: 
still characteristic of the one-family walking technirho is its smallness of the decay width, roughly of order 
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�/Mρ ∼ [3/NC × 1/ND] × [�/Mρ ]QCD � 70 GeV/2 TeV (ND = NC = 4), in perfect agreement with 
the expected diboson resonance with � < 100 GeV. The model is so sharply distinguishable from other 
massive spin 1 models without the conformality and HLS that it is clearly testable at the LHC Run II. If the 
2 TeV boson decay to WH/ZH is not observed in the ongoing Run II, then the conformality is operative 
on the 125 GeV Higgs, strongly suggesting that the 2 TeV excess events are responsible for the walking 
technirhos and the 125 GeV Higgs is the technidilaton.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Higgs boson was discovered at LHC, which is so far consistent with the standard model 
(SM) [1], having no obvious hints for the new physics beyond the SM, as far as the Higgs decays 
are concerned. However, the origin of the mass, particularly of the Higgs itself, is a mere input 
parameter of the SM to be revealed by new physics at deeper level beyond SM.

One of the candidates for such new physics towards the origin of mass is the walking tech-
nicolor, which has an approximate scale symmetry and as such produces a large anomalous 
dimension γm � 1 and a light composite Higgs as the technidilaton, a pseudo Nambu–Goldstone 
(NG) boson of the approximate scale symmetry [2], in sharp contrast to the original technicolor 
as a QCD scale up [3] which was already excluded long ago by the large flavor-changing neutral 
currents and large S parameter, as well as most recently and dramatically by the absence of the 
light 125 GeV Higgs.

It was in fact shown [4–6] that the technidilaton in the walking technicolor of the one-family 
model [7], with four weak-doublets ND = NF /2 = 4 in the SU(NC) gauge group, can be nicely 
fit to the current 125 GeV Higgs data for NC = 4. It was further shown [6] that the anti-Veneziano 
limit, NC → ∞ with NCα = const. and NF /NC = fixed � 1, yields the theory becoming walk-
ing with infrared conformality, in such a way that the technidilaton mass and couplings vanish 
in the limit. Numerically, the one-family model with NF = 8 and NC = 4 is already close to the 
anti-Veneziano limit picture so to have a good approximate scale symmetry for the technidilaton 
becoming naturally light, as light as 125 GeV, and moreover its coupling even weaker than the 
SM Higgs [6], thus justifying the numerical agreement with the current LHC Higgs data. Recent 
lattice results in fact suggest that the theory with NF = 8 and NC = 3 has walking signals with 
anomalous dimension γm � 1 [8] and moreover has a light flavor-singlet scalar bound state as 
a candidate for the technidilaton [9] (there exists a light flavor-singlet scalar also in the case of 
NF = 12 [10]). This is in sharp contrast to a folklore that the strongly coupled theory would not 
produce light weakly coupled composites, which is merely a prejudice based on the analogy with 
the QCD having no scale symmetry.

Crucial issue is that the walking technicolor will give us not just the Higgs but a plenty of 
other bound states as new phenomena beyond the SM. Typical of such is the walking technirho, 
which is described by the effective theory based on the hidden local symmetry (HLS) model 
successful for the QCD rho meson [11–13] so as to be made scale-invariant via nonlinear real-
ization (“s-HLS” model) [14] in accord with the (spontaneously broken) scale symmetry of the 
underlying walking technicolor. Also used was a straightforward application of the loop expan-
sion, the HLS chiral perturbation theory [13,15] (usual chiral perturbation theory extended to 
incorporating the HLS gauge bosons), to the present scale-invariant version, s-HLS model. We 
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thus may expect that the breakthrough may take place more drastically in somewhat different 
channels than the Higgs decay processes.

In fact, the ATLAS Collaboration [16] has recently reported interesting excesses about 2.5 
sigma (at global significance) at mass around 2 TeV in the diboson channels.1 No doubt this 
could be an outstanding signature of new physics, more dramatic show-up than the possible 
deviations of the Higgs modes from the SM. Since it would definitely be the phenomenon in the 
TeV region, it should be deeply connected with the long-standing mystery of mass, such as the 
naturalness and the dynamical origin of the Higgs itself.

In the previous paper [18] we showed that these excess events can easily be identified with the 
Drell–Yan produced walking technirho decaying into the diboson channel WW , WZ based on a 
benchmark model of the one-family walking technicolor model [14]. As far as the longitudinal 
W/Z are concerned, there are only two parameters, Fρ and gρππ , relevant to the processes, 
which successfully reproduced the ATLAS excess events in a way to satisfy all other current LHC 
experiments. In particular, because of the scale-invariant form of the couplings, the model has 
no technirho couplings to 125 GeV Higgs (H ) (technidilaton) and hence no decay to WH, ZH , 
thus is free from the LHC constraints on these processes [19,20]. Another characteristic feature 
comes from the very nature of the one-family walking technicolor with ND = NF /2 = NC = 4, 
which naturally accounts for the narrowness of the reported width � < 100 GeV, since the decay 
width is scaled as �/Mρ � 3

NC

1
ND

× (�/Mρ)|QCD � (70 GeV)/(2 TeV).
We further showed [21] that the absence of the walking technirho decays to WH and ZH is 

a generic feature of the (nonlinearly realized) scale symmetry, what we called “conformal barri-
er”, which is not just our model but the universal feature of the scale-symmetric massive-vector 
model. This is in sharp contrast to other vector boson models on the market [22–47] which, 
having no scale symmetry, yield the ratio of the vector boson (V ) decay rates of almost one, 
�(V → WW/WZ)/�(V → WH/ZH) � 1, according to the “equivalence theorem”,2 see e.g., 
[22]. We in fact demonstrated that the “equivalence theorem” is realized in way incompatible 
with the scale symmetric limit. We then proposed a novel way to identify the dynamical origin of 
the 125 GeV Higgs through checking the possible decays of the 2 TeV new bosons: If the 2 TeV 
new bosons have no decays to the SM gauge bosons plus the 125 GeV Higgs, then it is suggested 
that the 125 GeV Higgs is a dilaton, pseudo NG boson of the spontaneously broken confor-
mality/scale symmetry of some underlying new physics. One such an explicit example of the 
underlying theory is the walking technicolor [2] where the 125 GeV Higgs and the new bosons 
have been successfully identified with the technidilaton [4,5] and the walking technirho [18], 
respectively.

In this paper, we first show that the SM Higgs Lagrangian is nothing but a scale-invariant 
nonlinear chiral Lagrangian, which is further gauge equivalent to the scale-invariant HLS model, 
with the scale symmetry realized nonlinearly via SM Higgs as a (pseudo-)dilaton. Thus the SM 
Higgs Lagrangian itself, when incorporating the vector mesons via HLS, forbids the HLS vector 
bosons to decay into the W/Z plus the SM Higgs as a (pseudo-)dilaton. Conformal barrier is 

1 Small excesses about ∼ 2 sigma in the same mass region have been seen also in the CMS diboson analysis [17].
2 The “equivalence theorem” of this kind customarily implies a relation obtained only when the usual Goldstone 

equivalence theorem for the processes of the new vector boson V decay to WL and ZL is combined with an additional 
specific assumption that the Higgs boson H is embedded in the electroweak doublet h in Eq. (2), as σ̂ = v + H together 
with the would-be Nambu–Goldstone bosons π̂i (eaten by WL ZL) as the chiral partner. This additional assumption is 
specific to the coordinates of the field components (σ̂ , π̂) and not general, in sharp contrast to the polar decomposition 
Eq. (8).
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already operative for the SM Higgs, and so is the walking technirho embedded into a chiral 
group SU(NF )L × SU(NF ),(NF > 2) larger than that of the SM Higgs. We further discuss in 
details the consequences of the conformal barrier on the LHC 2 TeV diboson excesses, including 
the higher order effects through mixing and transverse W , Z effects, which were not considered 
before.3

We also give another characteristic feature of our model, the gauge invariance of the HLS, the 
exact symmetry (though spontaneously broken). The HLS forbids a possible mixing between the 
iso-triplet one-family walking technirho’s, ρi

�, ρi
P , which, were it not for the HLS, would mix 

each other by the explicit breaking of the global SU(8)L × SU(8)R symmetry by the SM gauge 
interaction, thereby affecting the analyses of Ref. [21]. The ρi

� are produced by the Drell–Yan 
process, while the ρi

P orthogonal to ρi
� are not produced by the Drell–Yan process and is totally 

irrelevant to the diboson processes in the absence of the mixing thanks to the HLS. We newly 
study the mixing effect between ρ3

� and ρ0
P (iso-singlet) through the transverse modes of the 

W/Z bosons (via W/Z kinetic term mixing after mass diagonalization), which is actually of 
higher order term of (obviously scale-invariant) O(p4) under control of the HLS in the HLS 
chiral perturbation theory [13,15]. This effect was not considered in the previous studies dealing 
with only the longitudinal W/Z modes to treat the W/Z as the “external fields” (not dynamical). 
Considering such dynamical mixing and other related O(p4) terms, additional two parameters a
and z8 come into play in addition to the previous two Fρ and gρππ . We then demonstrate that 
such higher order terms are negligible, as far as a and z8 are on the order of naive dimensional 
counting, 1 � a � 10, z3 + z8/2 � 0. For the same parameter region the possible mass splitting 
between ρ3

� and ρ0
P is extremely small to be invisible at the present LHC diboson analyses.

Consequently, we show that thanks to the power of the conformal barrier and the HLS, the 
essential features of our previous results [18] of the walking technirho for the ATLAS 2 TeV 
excesses remain unchanged, including the characteristic smallness of the decay width, after all 
the phenomenological analyses are newly performed under new setting and inputs.

The paper is organized as follows: In Sec. 2 we first demonstrate that the SM Higgs sector 
can formally be scale-invariant in terms of the nonlinear realization and the Higgs can always be 
viewed as a dilaton associated with the “hidden” scale symmetry. This formulation is extended to 
a model having new vector bosons realized as gauge bosons of the hidden local symmetry, pro-
tected by the conformal barrier. Taking a generic massive spin 1 model as an example, in Sec. 3
we discuss the incompatibility of the conformal barrier with the widely quoted “equivalence the-
orem” for the vector boson decays. In Sec. 4 we describe the power of hidden local symmetry of 
our s-HLS model for the walking technirho’s in the one-family walking technicolor. It is shown 
that mixing between the iso-triplet ρi

� and ρi
P by the SM gauge interactions is strictly forbidden 

by the HLS as an exact gauge symmetry to all orders of the chiral perturbation theory (up to 
the HLS-invariant intrinsic parity odd (Wess–Zumino–Witten) term [13,48]). The order O(p4)

terms including the small mixing of ρ3
� and ρ0

P are fully considered. In Sec. 5 we reanalyze the 
LHC diboson excesses under completely new setting and inputs based on the preliminaries set 
up in Sec. 4. The results remain unchanged compared with the previous analyses. Section 6 is 
devoted to summary and discussion. Appendix A provides the explicit way of diagonalization 
of the s-HLS model including possible mass and kinetic term mixing among the SM gauge and 

3 In the one-family walking technicolor Ref. [14] discussed the coupling and decay of the color-octet iso-singlet 
technirho (ρ0

θa
, “coloron”) to the gluon plus Higgs, which actually is forbidden by the conformal barrier, but more 

fundamentally, even without the scale invariance, by the SU(3)c color gauge symmetry to keep the gluon massless after 
mass diagonalization.
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HLS gauge boson fields. The formulae for the partial decay widths of the 2 TeV technirhos are 
given in Appendix B. Appendix C complements the analysis done in Sec. 5.

2. Hidden Scale Symmetry and Hidden Local Symmetry in the standard-model Higgs – 
made explicit via nonlinear realization

In this section we demonstrate that a scale-invariance formally emerges in the SM Higgs 
sector and the theory can always be rewritten by the nonlinear realization of the scale symmetry 
with the Higgs identified with a dilaton (Hidden Scale Symmetry). After that, this formulation is 
extended to the case incorporating new vector bosons as gauge bosons (Hidden Local Symmetry
(HLS)). Important message of this section is that although Higgs as a dilaton can acquire mass 
only through the explicit breaking of the scale symmetry (pseudo-dilaton), the vector boson mass 
as a gauge boson of HLS can be generated without explicit breaking of the scale symmetry!!

2.1. Hidden Scale Symmetry – Higgs as a dilaton in the “conformal limit”

The SM Higgs Lagrangian takes the form

LHiggs = |∂μh|2 − μ2|h|2 − λ|h|4 , (1)

where

h =
(

φ+
φ0

)
= 1√

2

(
iπ̂1 + π̂2
σ̂ − iπ̂3

)
(2)

is substituted back to the Lagrangian, which yields the SU(2)L × SU(2)R linear sigma model:

LLσ = 1

2

[
(∂μσ̂ )2 + (∂μπ̂a)

2
]
− μ2

2
(σ̂ 2 + π̂2

a ) − λ

4
(σ̂ 2 + π̂2

a )2 . (3)

Now define a 2 × 2 matrix

M = (iτ2h
∗, h) = 1√

2

(
σ̂ · 12×2 + 2iπ̂

) (
π̂ ≡ π̂a

τa

2

)
, (4)

which transforms under G = SU(2)L × SU(2)R as:

M → gL M g
†
R ,

(
gR,L ∈ SU(2)R,L

)
. (5)

Then the Lagrangian takes the form

LLσ = 1

2
tr
(
∂μM∂μM†

)
− μ2

2
tr
(
MM†

)
− λ

4

(
tr
(
MM†

))2
. (6)

Note that only the Higgs mass term μ2tr[M†M] breaks the scale symmetry in Eq. (6): under 
the scale transformation of an operator O(x) with the scale dimension dO , δO(x) = (dO +
xν∂ν)O(x), the action S = ∫ d4xL(x) is invariant if

δS =
∫

d4x(dL + xν∂ν)L =
∫

d4x[(dL − 4)L+ ∂ν(x
νL)] =

∫
d4x(dL − 4)L = 0 ,

(dL = 4) . (7)

Namely, only the operators with scale dimension dO = 4 in the Lagrangian L =∑i Oi can make 
the theory be scale-invariant. Thus the mass term in Eq. (6) has the scale-dimension two, while 
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others do the scale dimension four, hence the scale symmetry is explicitly broken only by the 
mass term.

When the Higgs field gets the vacuum expectation value v, spontaneously breaking the chiral 
SU(2)L × SU(2)R symmetry down to the diagonal sum of them, SU(2)L+R=V , the three NG 
bosons emerge in the chiral broken phase. To make the symmetry of the model manifest in the 
broken phase, we parametrize the Higgs field M in terms of the nonlinear realization of the chiral 
symmetry. Note first that any complex matrix M can be decomposed into the Hermitian (always 
diagonalizable) matrix H and unitary matrix U as M = HU (“polar decomposition”):

M = H · U , H = 1√
2

(
σ 0
0 σ

)
, U = exp

(
2iπ

v

)
(v = 〈σ 〉) . (8)

The chiral transformation of M is inherited by U , while H is a chiral singlet such that:

U → gL U g
†
R , H → H , (9)

and U U† = 1 implies 〈U〉 = 〈exp
(

2iπ
v

)
〉 = 1 = 0, namely the spontaneous breaking of the chiral 

symmetry is taken granted in the polar decomposition. Then the Lagrangian takes the form:

LLσ = 1

2

(
∂μσ

)2 + 1

4
σ 2 · tr

(
∂μU∂μU†

)
− V (M)

V (M) = μ2

2
σ 2 + λ

4
σ 4 = λ

4

[(
σ 2 − v2

)2 − v4
]

,

(
M2

σ = ∂2

∂σ 2
V

∣∣∣∣∣
σ=v

= 2λv2 = −2μ2

)
. (10)

The potential V (M) is independent of the NG bosons π (phase modes) which disappear from 
the potential, entirely moved over to the kinetic term. They actually get absorbed into the weak 
bosons, acting as the gauge parameters when the electroweak gauging is switched on through the 
covariant derivative in the kinetic term. On the other hand, the radial mode σ is a chiral-singlet 
in contrast to σ̂ which is chiral non-singlet, thereby the potential obviously is chiral-invariant.

In the strong coupling limit λ → ∞ such that the potential gets decoupled, with leaving only 
σ = v (= const.), and the linear sigma model becomes the nonlinear sigma model (NLσ ):

LHiggs = LLσ
λ→∞−→ LNLσ = v2

4
· tr
(
∂μU∂μU†

)
, (11)

where the breaking of the scale invariance gets shifted to the kinetic term v2 · Tr
(
∂μU∂μU†

)
, 

which no longer transforms as dimension 4 operator. Then the LNLσ is a good effective theory 
as a basis of the successful chiral perturbation theory, when the underlying theory is based on 
the strong dynamics like QCD having no scale symmetry, perfectly consistent with each other. 
However, if the underlying strong coupling theory possesses the scale symmetry, such as the 
walking technicolor [2], the corresponding effective theory turns out to be obtained not by taking 
the λ → ∞ limit, but by sending λ → 0, with v = fixed, as will be clarified below.

Actually, we can always parametrize σ for arbitrary λ as

σ = v · χ , χ = exp

(
φ
)

, (12)

Fφ
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where Fφ = v is the decay constant of the dilaton φ, which is not necessarily the same as the 
decay constant of Fπ = v of π , Fφ = v in general case other than the SM Higgs. The scale 
transformations for these fields are

δσ = (1 + xμ∂μ)σ , δχ = (1 + xμ∂μ)χ , δφ = Fφ + xμ∂μφ . (13)

Note that 〈σ 〉 = v〈χ〉 = v = 0 breaks spontaneously the scale symmetry, but not the chiral sym-
metry since σ (χ as well) is a chiral singlet. This is a nonlinear realization of the scale symmetry: 
the φ is a dilaton, NG boson of the spontaneously broken scale symmetry. Note that although χ
is a dimensionless field, it transforms as that of dimension 1, while φ having dimension 1 trans-
forms as the dimension 0, instead.

Now the kinetic term in Eq. (10) reads:

LKinetic = F 2
φ

2

(
∂μχ

)2 + v2

4
χ2 · tr

(
∂μU∂μU†

)

= χ2 ·
[

1

2

(
∂μφ

)2 + v2

4
tr
(
∂μU∂μU†

)]
, (14)

which yields a scale-invariant action in spite of the nonzero vacuum expectation value Fφ =
v = 0. The final form coincides with the scale-invariant nonlinear sigma model (s-NLσ ) [4,6] as 
a basis of the scale-invariant chiral perturbation theory [49].

On the other hand, the potential is scale-violating but can be totally removed by taking for-
mally the limit λ → 0 keeping v =√−μ2/λ = constant = 0 (“conformal limit”). The potential 
in Eq. (10) reads

V (χ) = λ

4
v4
[(

χ2 − 1
)2 − 1

]
, (15)

with minimum at 〈χ〉 = 1. Obviously

V (χ)
λ→0−→ 0 . (16)

The scale breaking part in the potential transforms (up to total divergence) as

δV (χ) = −2
λ

4
v4
(
δχ2
)

= −λ

2
v4
(

2χ2 + xμ∂μχ2
)

= +λv4χ2 + total derivative , (17)

which yields

∂μDμ = θμ
μ = −δV (χ) = −λv4χ2 , (18)

where Dμ is the dilatation current and θμ
μ is the trace of energy-momentum tensor. Then the 

Partially Conserved Dilatation Current (PCDC) reads

M2
φF 2

φ = −〈0|∂μDμ|φ〉Fφ = −dθ 〈θμ
μ 〉 = 2λv4〈χ2〉 = 2λv4 , (19)

where θμ
μ has a scale dimension dθ = 2 (as seen from Eq. (18)). The result is consistent with the 

mass term of φ: M2
φ = 2λv4/F 2

φ (including the canonical value Mφ = 2λv2, Fφ = v), as can be 
seen by expanding the potential Eq. (15) as:

V (χ) = 1

2

(
2λv4

F 2

)
φ2 + · · · . (20)
φ
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Thus the linear sigma model LLσ goes over to the scale-invariant nonlinear sigma model in 
the limit λ → 0, v = 0:

LHiggs = LLσ
λ→0−→ Ls-NLσ

= χ2 ·
[

1

2

(
∂μφ

)2 + v2

4
tr
(
∂μU∂μU†

)]

=
(

1 + 2φ

Fφ

+ · · ·
)

·
[

1

2

(
∂μφ

)2 + v2

4
tr
(
∂μU∂μU†

)]
,

χ = exp

(
φ

Fφ

)
(21)

which is a nonlinear realization of the chiral SU(2)L × SU(2)R but not just that: It can further 
be scale-invariant by the prefactor χ2 based on the nonlinear realization of the scale symmetry 
via the NG boson (dilaton) φ. Then we are left with the scale-invariant Higgs Lagrangian (at the 
action level), having only the kinetic term in the limit λ → 0, with the mass given by Eq. (19) for 
λ � 1. Now the Higgs is nothing but a (pseudo-)dilaton φ.

The electroweak gauging is switched on through the covariant derivative:

∂μU ⇒ DμU = ∂μU − iLμU + iURμ , (22)

where Lμ and Rμ are the electroweak gauge boson fields. Then the gauged Lagrangian reads:

Lgauged
s-NLσ = χ2 ·

[
1

2

(
∂μφ

)2 + v2

4
tr
(
DμUDμU†

)]
, (23)

which is obviously still scale-invariant (at the action level), including the kinetic term of the 
electroweak gauge bosons. As can be seen from Eq. (14), the coupling of φ to the SM particles 
are proportional to 1/Fφ instead of 1/v of the SM Higgs coupling, and hence are even weaker 
coupling than the SM Higgs coupling by the factor v/Fφ(< 1), if Fφ > v.

Thus if the Higgs is a composite of an underlying scale-invariant strong coupling theory, 
such as the walking technicolor [2], then the effective field theory is precisely given by Eq. (23)
plus kinetic terms of the electroweak gauge bosons (plus higher derivative terms as in the scale-
invariant chiral perturbation theory [49]), thanks to the nonlinear realization of both the chiral 
and scale symmetries via respective NG bosons, dilaton φ and the longitudinal modes π of the 
weak bosons, with the chiral symmetry straightforwardly extendable so as to have a generic NF

as G = SU(NF )L × SU(NF )R . It was shown that Fφ � v = 246 GeV in the typical walking 
technicolor with NF = 8, in accord with the current LHC Higgs data [4–6].

The scale symmetry is not the exact symmetry of the quantum theory, even if the theory is 
scale invariant at the classical level, where there exists scale anomaly induced by the regulariza-
tion, such as the intrinsic scale �QCD in the QCD (this of course is also the case in the formally 
scale-invariant Higgs Lagrangian, Eq. (21)). In the ordinary QCD there is no infrared scale sym-
metry and no small scale other than �QCD, i.e., v = O(�QCD), while in the walking technicolor 
having approximate scale symmetry which is spontaneously broken by the strong coupling gauge 
interaction at the scale much smaller than the intrinsic scale �TC: Fφ � �TC (see, e.g., [6]). In 
the latter case the Higgs mass Mφ as the explicit breaking of the scale symmetry is given by 
the “nonperturbative” trace anomaly 〈θμ

μ 〉 (besides the usual anomaly related to the intrinsic 
scale), which is evaluated from the underlying theory such as the walking technicolor. Noting 
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that 〈θμ
μ 〉 = −M2

φF 2
φ/4 via the PCDC, a new potential generated by the trace anomaly takes the 

form (see, e.g., [6])4:

V (φ)

∣∣∣∣∣
anomaly

= M2
φF 2

φ

4
χ4
(

lnχ − 1

4

)
= −M2

φF 2
φ

16
+ 1

2
M2

φφ2 + 4M2
φ

3Fφ

φ3 + 2M2
φ

F 2
φ

φ4 + · · · ,

(24)

which indeed yields 〈δV 〉 = M2
φF 2

φ 〈χ4〉/4 = M2
φF 2

φ/4 = −〈θμ
μ 〉 and has a minimum at 〈χ〉 = 1

as desired. If Fφ � vEW = 246 GeV as in the walking technicolor with NF = 8, then the self 
couplings of φ as well as the couplings to the W, Z (including the SM fermions) in Eq. (23) are all 
weaker couplings than those of the SM Higgs. Note that this form of the potential looks similar to 
the Coleman–Weinberg type potential which is of somewhat different origin, radiatively induced 
from the classically scale-invariant Higgs model (with v = 0).

2.2. Hidden Local Symmetry – new vector boson as a gauge boson

The scale-invariant version of the Higgs Lagrangian Eq. (21) is a nonlinear realization of 
the spontaneous broken internal symmetry G = SU(2)L × SU(2)R down to H = SU(2)L+R =
SU(2)V , based on the manifold G/H as well as that of the spontaneously broken scale symmetry. 
The model actually has, besides the scale symmetry, a symmetry Gglobal × Hlocal larger than G, 
with Hlocal being the hidden local symmetry (HLS) [11,12], which can be made explicit by 
dividing U(x) into two parts:

U(x) = ξ
†
L(x) · ξR(x) , (25)

where ξR,L(x) transform under Gglobal × Hlocal as

ξR,L(x) → h(x) · ξR,L(x) · g′†
R,L , U(x) → ĝLU(x)g′†

R(
h(x) ∈ Hlocal , g′

R,L ∈ Gglobal
)

. (26)

The Hlocal is a gauge symmetry of group H arising from the redundancy (gauge symmetry) how 
to divide U into two parts. Then we can introduce the HLS gauge boson fields Vμ(x) by the 
covariant derivatives acting on ξR,L as

DμξR,L(x) = ∂μξR,L(x) − iVμ(x)ξR,L(x) , (27)

which transform in the same way as ξR,L. Then we have covariant objects transforming homo-
geneously under Hlocal:

α̂μR,L(x) ≡ 1

i
DμξR,L(x) · ξ†

R,L(x) = 1

i
∂μξR,L(x) · ξ†

R,L(x) − Vμ(x) ,

α̂μ‖,⊥(x) ≡ 1

2

(
α̂μR(x) ± α̂μL(x)

)

4 This potential is indeed obtained from the explicit computation of the effective potential of the scale-invariant un-
derlying strong coupling gauge theory, the walking technicolor, at the conformal phase transition point in the gauged 
Nambu–Jona–Lasinio model [50]. See Eq. (65) of Ref. [50].
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=

⎧⎪⎪⎨
⎪⎪⎩

1
2i

(
∂μξR(x) · ξ†

R(x) + ∂μξL(x) · ξ†
L(x)

)
− Vμ(x)

= αμ‖(x) − Vμ(x)
1
2i

(
∂μξR(x) · ξ†

R(x) − ∂μξL(x) · ξ†
L(x)

)
= αμ⊥(x)

,

{α̂μR,L(x), α̂μ‖,⊥(x)} → h(x) · {α̂μR,L(x), α̂μ‖,⊥(x)} · h†(x) . (28)

We thus have two independent invariants under the larger symmetry Gglobal × Hlocal:

LA = v2 · tr[α̂2
μ⊥(x)] , LV = v2 · tr[α̂2

μ‖(x)] = v2 · tr[(Vμ(x) − αμ‖(x)
)2] . (29)

Hence the scale-invariant version of the Higgs Lagrangian Eq. (21) can be extended to a 
gauge-equivalent model, the scale-invariant HLS model (s-HLS) [14]:

Ls-HLS = χ2 ·
(

1

2

(
∂μφ

)2 +LA + aLV

)
+LKinetic

(
Vμ

)
, (30)

with a being an arbitrary parameter, and LKinetic
(
Vμ

)
is the kinetic term of the HLS gauge boson 

Vμ which is obviously scale-invariant.5

We now fix the gauge of HLS as ξ†
L = ξR = ξ = eiπ/v such that U = ξ2. Then Hlocal and 

Hglobal(⊂ Gglobal) get simultaneously broken spontaneously (Higgs mechanism), leaving the di-
agonal subgroup H = Hlocal + Hglobal, which is nothing but the subgroup of the original G of 
G/H : H ⊂ G. According to the Higgs mechanism, the HLS gauge fields Vμ(x) acquire the 
masses 1

2a(g v)2 (V a
μ(x))2 through the invariant LV after rescaling the kinetic term of Vμ by 

the HLS gauge coupling g as Vμ(x) → g Vμ(x). Obviously the vector boson mass terms are 
scale-invariant thanks to the nonlinear realization of the scale symmetry! When the kinetic term 
is ignored in the low energy region p2 � M2

V = a(g v)2, the LV term yields just 0, after the 
equation of motion Vμ = αμ‖ is used. Noting that LA = v2 · tr[α̂2

μ⊥(x)] = v2 · tr[α2
μ⊥(x)] =

v2

4 · tr[∂μU∂μU†] = LNLσ in Eq. (11) by a straightforward algebraic calculation, Eq. (30) be-
comes identical to the scale-invariant version of the Higgs Lagrangian Eq. (21). Hence in the 
low energy p2 � M2

V = a(g v)2 where the massive vector boson Vμ gets decoupled, the s-HLS 
Lagrangian Eq. (30) is in fact reduced back to precisely the original scale-invariant nonlinear 
sigma model Eq. (21), which (when including the non-zero potential Eq. (15)) is equivalent to 
the Higgs Lagrangian Eq. (1) for Fφ = v = 0.

The electroweak gauge interactions are introduced by extending the covariant derivatives in 
Eq. (27) in the same way as Eq. (22), but this time by gauging Gglobal, which is independent of 
Hlocal in the HLS extension:

DμξR,L(x) ⇒ D̂μξR,L(x) ≡ ∂μξR,L(x) − iVμ(x) ξR,L(x) + iξR,L(x)Rμ(x)(Lμ(x)) .

(31)

As usual in the Higgs mechanism, the gauge bosons of gauged-Hglobal(⊂ gauged-Gglobal) get 
mixed with the gauge bosons of HLS, leaving massless only the gauge bosons of the unbro-
ken diagonal subgroup: (gauged-H) = Hlocal + (gauged-Hglobal) after diagonalization. We then 
finally have a gauged s-HLS version of the Higgs Lagrangian (gauged-s-HLS):

Lgauged
s-HLS = χ2 ·

[
1

2

(
∂μφ

)2 + L̂A + aL̂V

]
+LKinetic

(
Vμ,Wμ/Bμ

)
, (32)

5 The s-HLS model was also discussed in a different context, the ordinary QCD in medium [51].
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with

L̂A,V = LA,V

(
DμξR,L(x) ⇒ D̂μξR,L(x)

)
, (33)

where LKinetic
(
Vμ,Wμ/Bμ

)
stands for the kinetic terms of the HLS and SM gauge bosons.

It is straightforward to extend the internal symmetry group to Gglobal = [SU(NF )L ×
SU(NF )R]global and Hlocal = [SU(NF )V ]local. The Lagrangian then takes the form in general:

Ls-HLS = χ2 ·
(

1

2

(
∂μφ

)2 + F 2
π

[
tr[α̂2

μ⊥] + a tr[α̂2
μ‖]
])

+ · · · , (34)

where Fπ is related to Fπ = v/
√

NF /2, and “+ · · · ” includes the kinetic term of the HLS and 
SM gauge bosons and possible higher order terms in the derivative/loop expansion (“chiral per-
turbation theory”).

Thus all the mass of the gauge bosons (SM gauge bosons as well as HLS gauge bosons) 
acquired via Higgs mechanism are generated keeping the scale symmetry (spontaneously broken, 
realized in the nonlinear realization), which is in sharp contrast to the dilaton φ which can 
be massive (pseudo-dilaton) only through the explicit-scale symmetry-violation. This implies 
that when the underlying theory behind the Higgs has an approximate scale symmetry as in the 
walking technicolor, the composite vector bosons should have the masses in a scale-invariant 
way,6 in such a way that all the couplings of Higgs/dilaton φ to the gauge bosons (SM and 
HLS) are given through the overall prefactor χ2 in front in Eq. (34), hence the off-diagonal mass 
terms are rotated away by the mass diagonalization done independently of the Higgs/dilaton φ
which lives only in the overall prefactor χ2. This is fairly insensitive to the tiny explicit-scale 
symmetry-violation responsible for the Higgs/dilaton mass Mφ via the PCDC in Eq. (19) or 
Eq. (24), arising from the potential term, instead of the “kinetic term” Eq. (34). This invalidates 
the popular “equivalence theorem”, a phenomenon what we called “conformal barrier” [21], as 
we discuss in details below.

2.3. Conformal barrier

When one works on the typical one-family walking technicolor with NF = 8 as an example 
for the s-HLS, one finds that the SM gauging Gglobal includes the full SU(3)c × SU(2)W ×
U(1)Y ⊂ gauged-Gglobal. The mass mixing in Eq. (34) then takes place between ρ0

θa
(color-octet, 

iso-singlet) and the QCD gluons, between ρ�i (color-singlet iso-triplet) and Wi , between ρP 0

(color-singlet iso-singlet) and the U(1)Y gauge boson B , as well as the usual W 3 − B mixing. 
(For the definition of the one-family walking-technirho fields, see Table 1 in the later section.) 
After diagonalization, QCD gluons and photon remain massless, as they should. The mass terms 
in Eq. (34) having the φ field in the overall conformal factor χ2(x) yields φ couplings to the 
diagonal pairs of the SM gauge bosons after diagonalization. Thus the new vector bosons do not 

6 Other composite matter fields (non-NG boson fields) in the scale-invariant underlying theory can also have 
masses symmetric under the spontaneously broken symmetries via the nonlinear realization, e.g., mass term (up to 
the Yukawa coupling) of the technibaryon may be included into the nonlinearly realized “Higgs Lagrangian” via 
the obviously scale-invariant form ψ̄L(x) · M(x) · ψR(x) + h.c. = v√

2
· ψ̄L(x) · (χ(x) · U(x)) · ψR(x) + h.c. =

v√
2

· χ(x) · (�̄L(x)�R(x)) + h.c., which is also chiral-symmetric since the composite matter fields �R,L transform 
as �R,L ≡ ξR,LψR,L → h(x)�R,L. See Eqs. (8) and (12).
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decay to the weak bosons in association with the Higgs in the presence of the scale/conformal 
symmetry (Conformal Barrier) [21], i.e.,

V − W/Z − H coupling = 0 , (35)

consequently the V predominantly decays to the weak boson pairs WW/WZ. In other word, 
the “equivalence theorem” is invalidated by the scale/conformal symmetry. The absence of 
V → WH/ZH signatures at the LHC Run-II thus could indirectly probe the existence of the 
(approximate) scale/conformal invariance of the system involving V , W , Z and H .

The conformal/scale invariance should be approximate, hence the conformal barrier will be 
broken at higher order level of the perturbation theory. In fact, the scale symmetry will be broken 
at the one-loop level by Yukawa interaction terms like φf̄ f once one considers them. Thus these 
breaking terms would potentially generate off-diagonal V –W–φ terms, so the conformal barrier 
might be badly melt down. However, the size of the breaking turns out to be negligibly small: 
among possible breaking terms, the maximal effect is expected to come from the top Yukawa 
coupling ∼ mt/v. Then the one-loop diagram constructed from the φ–t–t , V –t–t and W–t–t

vertices would yield the off-diagonal V –W–φ coupling,

g
one-loop
V Wφ ∼ Nc

(4π)2
gWg

m2
t

v
, (36)

which is compared to the “equivalence theorem” coupling gVWφ ∼ gWgv

g
one-loop
V Wφ

gV Wφ

∼ Nc

(4π)2

(mt

v

)2 ∼O(10−2) , (37)

up to possible O(1) coefficients. Thus the one-loop induced off-diagonal coupling yields nonzero 
V → Wφ amplitude suppressed by a factor of O(10−2), leading to the extremely small LHC 
cross section suppressed by a factor of ∼10−4, compared with the “equivalence theorem” cou-
pling which if existed at all would give the same branching ratio as the diboson decays. Thus it 
will be too small to be detected at the LHC experiments. In this sense, the conformal barrier is 
still a powerful constraint for the vector boson.

One way out to avoid the conformal barrier may be to introduce multi Higgs fields which 
give the masses to new vector bosons as well as the weak bosons. The mixing among the Higgs 
bosons would make the mixing structures different for the V –W and V –W–φ. Models having 
such a vector boson – Higgs boson sector correspond to those studied in Refs. [32,34]. However, 
some of those Higgs bosons would phenomenologically be heavy to be integrated out, such that, 
except the lightest 125 GeV Higgs, all the Higgs fields in the linear realization can be cast into the 
nonlinear forms keeping only the NG boson fields (nonlinear realization). The aforementioned 
models will then be effectively described as a model having the lightest Higgs and multi NG 
bosons eaten by weak and new vector bosons (or some of them would be real electroweak pions 
such as technipions). Then, the conformal barrier would be operative even for such those multi 
Higgs models.

3. Incompatibility with the “equivalence theorem”

In this section we show that the conformal barrier is actually incompatible with the so-called 
“equivalence-theorem” result for the V → WW/WZ and V → WH/ZH decays, i.e., �(V →
WW/WZ) � �(V → WH/ZH). It turns out that the conformal barrier is achieved only by 
taking a special limit for the vector boson parameters.
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To demonstrate this point clearly, we shall employ a generic model, called heavy-vector triplet 
(HVT) model [52], which is quoted by the ATLAS and CMS groups for new vector boson 
searches as a benchmark. The model Lagrangian reads [52]

LV = −1

2
tr[V 2

μν] + m2
V tr[V 2

μ]

+ gV cH

(
iH †V μDμH + h.c.

)
+ 2g2

V cVVHH tr[V 2
μ]H †H

+LHiggs + · · · , (38)

where we have put the standard-model Higgs terms LHiggs including the kinetic term |DμH |2
and the usual Higgs potential. In Eq. (38) we have defined

Vμν = DμVν − DνVμ ,

DμVν = ∂μVν − igW [Wμ,Vν] , (39)

with the gW being the weak gauge couping. We have not displayed terms which do not include 
the Higgs H along with the new vector boson field V .

When the Higgs field H gets the vacuum expectation value v (�246 GeV), the new vector 
boson V starts to mix with the weak boson W through the cH term in Eq. (38). We parameterize 
the H as

H = v√
2

(
1 + φ

v

)(
0
1

)
(40)

plus the eaten NG boson terms (set to zero in the unitary gauge of the electroweak gauge interac-
tions). Momentarily, we ignore the hypercharge gauge for simplicity (without loss of generality 
for the following discussions). Then the mass matrix for Vμ = (Vμ, Wμ)T is read off:

M2 =
(

m2
V + g2

V cVVHHv2 1
4gWgV cH v2

1
4gWgV cH v2 1

4g2
Wv2

)
. (41)

In addition, one has the Higgs (φ) couplings to V and W ,

GV Wφ =
(

g2
V cVVHHv2 1

4gWgV cH v2

1
4gWgV cH v2 1

4g2
Wv2

)
. (42)

In the Lagrangian the M2 and GV Wφ terms look like

LV = 1

2
VT

μ ·M2 · Vμ + φ

v
· VT

μ · GV Wφ · Vμ + · · · . (43)

Note that the mass matrix M2 and the couplings to the Higgs φ differ only by the m2
V term.

Assuming a heavy vector limit,

x = gWv � 1 , (44)

gV v
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and expanding terms in powers of x, we diagonalize the mass matrix Eq. (41) by an orthogonal 
rotation to get the mass eigenvalues for the mass eigenstates Ṽ = (Ṽ , W̃ )T :

m2
Ṽ

= g2
V v2

4

⎡
⎢⎣ 4m2

V

g2
V v2

+ 4cVVHH + cH

4m2
V

g2
V v2 + 4cVVHH

x2 + · · ·
⎤
⎥⎦ ,

m2
W̃

= g2
V v2

4

⎡
⎢⎣

4m2
V

g2
V v2 + 4cVVHH − c2

H

4m2
V

g2
V v2 + 4cVVHH

x2 + · · ·
⎤
⎥⎦ . (45)

The corresponding rotation matrix is

(
W

V

)
=

⎛
⎜⎜⎜⎜⎝

1 − 1
2

(
4m2

V

g2
V v2 + 4cVVHH

)2

x2(1 +O(x2)) − cH

4m2
V

g2
V

v2 +4cVVHH

x(1 +O(x2))

cH

4m2
V

g2
V

v2 +4cVVHH

x(1 +O(x2)) 1 − 1
2

(
4m2

V

g2
V v2 + 4cVVHH

)2

x2(1 +O(x2))

⎞
⎟⎟⎟⎟⎠

×
(

W̃

Ṽ

)
. (46)

One also finds the couplings such as Ṽ –Ṽ –φ, W̃–W̃–φ, as well as the off diagonal coupling 
Ṽ –W̃–φ. By using the rotation matrix in Eq. (46) the off diagonal coupling Ṽ –W̃–φ is found to 
be

G
Ṽ W̃φ

= m2
V

4m2
Ṽ

cH g2
V v2x + · · · = m2

V

4m2
Ṽ

cH gV gWv2 + · · · . (47)

Crucial to notice is that the presence of the nonzero off-diagonal coupling Ṽ –W̃–φ is essentially 
due to the m2

V term in Eq. (38): without the m2
V term two mixing matrices M2 and GV Wφ would 

become identical to be diagonalized simultaneously, so the Ṽ –W̃–φ coupling would completely 
be rotated away:

G
Ṽ W̃φ

= 0 (m2
V = 0, m2

Ṽ
= 0) . (48)

Note that absence of the m2
V term does not affect the mass m2

Ṽ
of the new boson as clearly seen 

from Eq. (45) (see also Eq. (52) below).
Examining terms in Eq. (38) in quadratic order of the vector fields Vμ = (Vμ, Wμ)T with the 

scale dimensions dV = 1 taken into account, one readily realizes that the m2
V term in the model 

Lagrangian Eq. (38) transforms as δV2
μ = (2 + xμ∂μ)V2

μ, which obviously violates the scale 
invariance.

Eliminating the m2
V term, we see that the mass matrix reads

M2|mV =0 =
(

g2
V cVVHHv2 1

4gWgV cH v2

1
4gWgV cH v2 1

4g2
Wv2

)
= GV Wφ . (49)

This is the same matrix as the GV Wφ in Eq. (42), hence the off-diagonal Ṽ –W̃–φ coupling goes 
away after the diagonalization of the vector boson sector:
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LV

∣∣∣∣∣
mV =0

= 1

2
VT

μ ·M2
mV =0 · Vμ + φ

v
· VT

μ · GV Wφ · Vμ + · · ·

= 1

2

(
1 + 2φ

v

)
VT

μ ·M2
mV =0 · Vμ + · · · . (50)

In terms of the mass eigenstate fields Ṽμ = (Ṽμ, W̃μ)T , the Lagrangian Eq. (50) goes like

LV

∣∣∣∣∣
mV =0

= 1

2

(
1 + 2φ

v

)
ṼT

μ ·
(

m2
Ṽ

0

0 m2
W̃

)
· Ṽμ + · · · , (51)

with the masses of the mass eigenstate vectors (m
Ṽ
, m

W̃
). The corresponding mass eigenvalues 

are now modified from Eq. (45) to be

m2
Ṽ

→ m2
Ṽ

= cVVHHg2
V v2

[
1 +O(x2)

]
,

m2
W̃

→ m2
W̃

= g2
Wv2

4

[
1 − c2

H

4cVVHH
+O(x2)

]
. (52)

Thus the conformal barrier is realized by taking a special limit mV = 0 on the generic parameter 
space of the HVT model.

Now that we have established how to realize the conformal barrier from the generic HVT 
model, we show that the conformal barrier is actually incompatible with the “equivalence-
theorem” result for the vector boson. To this end, we explicitly compute the partial decay widths 
�(Ṽ → W̃W̃ ) and �(Ṽ → W̃φ) in the original HVT model Eq. (38) to get

�(Ṽ → W̃W̃ ) � �(Ṽ → W̃LW̃L) �
g2

Ṽ W̃LW̃L

48π
m

Ṽ
,

�(Ṽ → W̃φ) � 1

48π

g2
Ṽ W̃φ

4m2
W̃

m
Ṽ

, (53)

where the limit x = gW/gV � 1 in Eq. (44) was taken and the relevant couplings have come 
from the interaction Lagrangian parts:

LV WLWL
= g

Ṽ W̃LW̃L
εabcṼ a

μ∂μπb
Wπc

W

LV Wφ = g
Ṽ W̃φ

φṼ a
μW̃μa , (54)

with the longitudinal component of W̃ being W̃μ
L = ∂μπW/m

W̃
and

g
Ṽ W̃LW̃L

�
m2

Ṽ
cH gV

4m2
Ṽ

− c2
H g2

V v2
,

gṼ W̃φ
� m2

V

4m2
Ṽ

cH gV gWv . (55)

In addition to the limit in Eq. (44), one now considers the mass parameter mV to be

mV � gV v(� gWv) , (56)
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such that the vector boson mass m
Ṽ

is almost saturated by the bare mass mV . Then the couplings 
in Eq. (55) approximately look like

g
Ṽ W̃LW̃L

≈ cH gV

4
,

g
Ṽ W̃φ

≈ 1

4
cH gV gWv � g

Ṽ W̃LW̃L
(2m

W̃
) . (57)

Hence one reaches the “equivalence theorem”,

�(Ṽ → W̃W̃ ) ≈ �(Ṽ → W̃φ) ≈
g2

Ṽ W̃LW̃L

48π
m

Ṽ
. (58)

Thus the limit Eq. (56) to realize the “equivalence-theorem” result is incompatible with the limit 
where the conformal/scale invariance is present, mV → 0.

4. Power of scale-invariant hidden local symmetry

Hereafter we shall employ an explicit model in which the conformal barrier is realized and 
discuss the phenomenological consequences from the conformal barrier and the HLS.

The s-HLS Lagrangian in Eq. (34) is the effective theory realizing the (approximate) 
scale/conformal invariance and chiral symmetry of the underlying theory, the walking tech-
nicolor [2]. One phenomenologically interesting candidate for the walking technicolor is the 
one-family model having the technifermion flavor of the number 8 (NF = 8). In the model, the 
LHC Higgs is identified with the technidilaton (φ), a composite pseudo NG boson for the (ap-
proximate) conformal/scale symmetry, and the new vector bosons are the technirhos (V ).

The way of constructing the s-HLS for the one-family model will be just a straightforward 
extension of the procedure described in Sec. 2 for the simplest case of NF = 2. The features 
characteristic to NF = 8 will be seen when one considers the way of embedding the SM gauge 
fields and technirho fields into the 8 × 8 matrix form (see the discussions below).

4.1. Preliminaries: the s-HLS for NF = 8

The s-HLS action reflecting the underlying one-family model is constructed by nonlinear 
realization based on the coset space G/H = SU(8)L × SU(8)R/SU(8)V with the basic variable 

U = e2iπ/Fπ . We write the U : U(x) = e
i

2π(x)
Fπ = ξ

†
L(x) · ξR(x), in the same way as in Eq. (25)

for the simplest NF = 2 case. The variables ξL/R transform as ξL/R → h(x) ξL/R g
†
L/R , with 

h(x) ∈ Hlocal = SU(8)V and gL/R ∈ Gglobal = SU(8)L × SU(8)R . The theory then has a larger 
symmetry Gglobal × Hlocal, Hlocal being the HLS, where the redundant symmetry (HLS), Hlocal
symmetry, is a spontaneously broken and exact gauge symmetry (Higgs mechanism), with the 
vector mesons as the HLS gauge bosons: the HLS gauge bosons of Hlocal become massive by 
this spontaneous breakdown (Higgs mechanism) and is quantized as a unitary quantum theory, 
just like the SM electroweak gauge theory which is exact, i.e., without explicit breaking of the 
gauge symmetry (though spontaneously broken).

We parametrize the ξL,R as

ξL,R(x) = e
iP(x)
FP e

∓ iπ(x)
Fπ , (π(x) = πA(x)XA , P(x) =PA(x)XA) . (59)
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Here the broken generators are XA (A = 1, · · ·63) and the fictitious NG bosons PA(x) along 
with the decay constant FP , related to the parameter a in Eq. (34), as

a = F 2
P

F 2
π

. (60)

The PA(x) are to be absorbed into the hidden local gauge degree of freedom. When the hidden 

local gauge is fixed (e.g. unitary gauge P(x) = 0) as ξ†
L(x) = ξR(x) = ξ(x) = e

i
π(x)
Fπ , Hlocal and 

Hglobal(⊂ Gglobal) are both spontaneously broken down to a single H which is a diagonal sum 
of both of them. Then Gglobal is reduced back to the original chiral symmetry G(= Gglobal)

in the model based on G/H . ξ transforms as ξ → h(g, π) ξ g
†
L,R , with h(g, π) being the 

π(x)-dependent (global) H transformation of G/H .
As to the scale transformation property, the ξL,R have no scale dimension so that they trans-

form under the scale symmetry as

δξL,R(x) = xν∂
νξL,R(x) . (61)

Now switch on the SM gauge boson fields (Gμ, Wμ, Bμ) by gauging the Gglobal whose 
charges (gc, gW , gY ) are independent of the charge g of the independent gauge symmetry, the 
Hlocal. Then the Gglobal is explicitly broken by this gauging, so being the original G in the unitary 
gauge, since Gglobal is explicitly broken. However, the HLS as well as the SM gauge symmetry is 
exact. The covariant derivatives acting on the ξL,R are then written, in a way similar to Eq. (27)
for NF = 2 case, to be

DμξL,R(x) = ∂μξL,R(x) − iVμ(x)ξL,R(x) + iξL,RLμ(x)(Rμ(x)) , (62)

with the HLS gauge field Vμ and the external gauge fields Lμ and Rμ, in which the SU(3)c ×
SU(2)W × U(1)Y gauges are fully embedded, independently of the HLS. In addition, the tech-
nirho field strengths are defined as

Vμν = ∂μVν − ∂νVμ − i[Vμ,Vν] , (63)

which transform under the HLS homogeneously

Vμν → h(x) · Vμν · h†(x) . (64)

Finally, we introduce the nonlinear base for the scale symmetry χ(x) parametrized by the 
technidiaton field φ, which is the same as in Eq. (21), as

χ(φ) = eφ/Fφ , (65)

with the decay constant Fφ (not necessarily identical to Fπ ). The χ transforms under the scale 
symmetry just like fields having the scale dimension 1,

δχ(x) = (1 + xν∂
ν)χ(x) , (66)

while the technidilaton field does nonlinearly,

δφ(x) = Fφ + (1 + xν∂
ν)φ(x) . (67)

The s-HLS Lagrangian is thus written at the leading order of derivatives to be

L(2) = χ2(x) ·
(

1
(∂μφ)2 + F 2

π tr[α̂2
μ⊥] + aF 2

π tr[α̂2
μ‖]
)

− 1
2

tr[V 2
μν] , (68)
2 2g
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Table 1
The technipions, technirhos and their associated constituent techni-quarks Qc = (U, D)c and leptons L = (N, E). Here 
λa (a = 1, · · · , 8) are the Gell-Mann matrices, τ i SU(2) generators defined as τ i = σ i/2 (i = 1, 2, 3) with the Pauli 
matrices σ i , and the label c stands for the QCD-three colors, c = r, g, b.

Technipion Technirho Constituent Color Isospin

θi
a ρi

θa
1√
2
Q̄λaτ iQ octet triplet

θ0
a ρ0

θa
1

2
√

2
Q̄λaQ octet singlet

T i
c (T̄ i

c ) ρi
Tc

(ρ̄i
Tc

) 1√
2
Q̄cτ

iL (h.c.) triplet triplet

T 0
c (T̄ 0

c ) ρ0
Tc

(ρ̄0
Tc

) 1
2
√

2
Q̄cL (h.c.) triplet singlet

P i ρi
P

1
2
√

3
(Q̄τ iQ − 3L̄τ iL) singlet triplet

P 0 ρ0
P

1
4
√

3
(Q̄Q − 3L̄L) singlet singlet

�i ρi
�

1
2 (Q̄τ iQ + L̄τ iL) singlet triplet

where the gauge coupling g is counted as O(p), φ(x) as O(p0), and

α̂μ⊥,‖ = DμξR · ξ†
R ∓ DμξL · ξ†

L

2i
, (69)

which transform as

α̂μ⊥,‖ → h(x) · α̂μ⊥,‖ · h†(x) . (70)

Note again that without the kinetic term of the HLS gauge fields Vμ(x) (namely by integrating 
out the Vμ), the Lagrangian is reduced to the nonlinear sigma model based on G/H in the unitary 

gauge P(x) = 0 (ξ†
L(x) = ξR(x) = ξ(x) = e

i
π(x)
Fπ ).

The conformal/scale symmetry of the s-HLS is explicitly broken by the technidilaton mass in 
the potential of the form:

V (χ) = F 2
φm2

φ

4
χ4
(

logχ − 1

4

)
, (71)

which corresponds to the trace anomaly of the underlying walking technicolor: 〈θμ
μ 〉 = 〈∂μDμ〉 =

−δV (φ) = −m2
φF 2

φ

4 〈χ4〉 = −m2
φF 2

φ

4 in accord with the PCDC, with m2
φF 2

φ � (vEW/2)2 · (5vEW)2 ·
(8/NF )(4/NC) (vEW = 246 GeV) in the ladder calculations (see e.g., [6]). It was shown [4,5]
that the technidilaton for the walking technicolor with NF = 8 and NC = 4 (Fφ � 5vEW) is 
best fit to the current data of the 125 GeV Higgs. The effect of the conformal/scale symmetry 
breaking arises only at O(p6) or higher orders of the derivative expansion, since the O(p4) terms 
are already scale-invariant without involving the technidilaton field χ = eφ/Fφ . Thus, additional 
Higgs (= φ) potential terms are not generated at the O(p4).

4.2. Embedding gauge and pion fields into the s-HLS

The 63 chiral NG boson (technipion) fields are classified by the isospin and QCD color 
charges, which are listed in Table 1, where the notation follows the original literature [7]. The 
three of them (�i ) become unphysical to be eaten by W and Z bosons in the same way as in 
the usual Higgs mechanism, while the other sixty Nambu–Goldstone bosons become pseudos, 
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techni-pions, to be massive in several ways. They are embedded in the adjoint representation of 
SU(8) group as [14,53]:

63∑
A=1

πA(x)XA =
3∑

i=1

�i(x)Xi
� +

3∑
i=1

P i(x)Xi
P + P 0(x)XP

+
3∑

i=1

8∑
a=1

θi
a(x)Xi

θa +
8∑

a=1

θ0
a (x)Xθa

+
∑

c=r,g,b

3∑
i=1

[
T i

c (x)Xi
T c + T̄ i

c (x)Xi

T̄ c

]

+
∑

c=r,g,b

[
T 0

c (x)XT c + T̄ 0
c (x)XT̄ c

]
, (72)

where (τ i = σ i/2)

Xi
� = 1

2

(
τ i ⊗ 13×3

τ i

)
, Xi

P = 1

2
√

3

(
τ i ⊗ 13×3

−3 · τ i

)
,

XP = 1

4
√

3

(
16×6

−3 · 12×2

)
,

Xi
θa = 1√

2

(
τ i ⊗ λa

0

)
, Xθa = 1

2
√

2

(
12×2 ⊗ λa

0

)
,

Xi
T c = 1 − i

2

(
τ i ⊗ ec

τ i ⊗ e†
c

)
, Xi

T̄ c
=
(
Xi

T c

)†
,

XT c = 1 − i

4

(
12×2 ⊗ ec

12×2 ⊗ e†
c

)
, XT̄ c = (XT c)

† , (73)

with ec being a three-dimensional unit vector in color space and the generators normalized 
as Tr[XAXB ] = δAB/2 (except for Xi,0

Tc
and X̄i,0

Tc
which respectively satisfy the normalization 

tr[Xi
Tc

X̄
j
Tc

] = δij /2 and tr[X0
Tc

X̄0
Tc

] = 1/2). Among the above, �i become longitudinal degrees 
of freedom of the SM W± and Z bosons. It is convenient to express π in a blocked 8 × 8 matrix 
form as

πAXA =
(

(πQQ)6×6 (πQL)2×6

(πLQ)6×2 (πLL)2×2

)
, (74)

where

πQQ =
[√

2θ + 1√
2
θ0
]

+
(

1

2
� + 1

2
√

3
P + 1

4
√

3
P 0
)

⊗ 13×3 ,

πQL = T + 1

2
T 0 ,

πLQ = π
†
QL = T̄ + 1

T̄ 0 ,

2
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πLL =
(

1

2
� −

√
3

2
P −

√
3

4
P 0

)
,

θ = θi
aτ

i λa

2
, θ0 = θ0

a · 12×2 · λa

2
,

T = T i
c ecτ

i , T 0 = T 0
c ec ,

P = P iτ i , P 0 = P 0 · 12×2 ,

� = �iτ i .

All the 60 technipions not eaten by the W and Z bosons (except for the �’s) in the one-family 
model acquire masses due to the explicit breaking of the [SU(8)L × SU(8)R]global chiral sym-
metry by the electroweak and QCD as well as the extended technicolor couplings, which are 
enormously enhanced to the order of O(a few TeV) by the large anomalous dimension γm � 1
as a salient feature of the walking technicolor [54]. Hence they should be larger, or as large as 
the technirho mass. Thereby, we will ignore the 2 TeV ρ� couplings to technipions.

The 63 technirho fields are classified in terms of the technifermion fields by the SM charges 
as listed in Table 1 in a way similar to π . (The notation of the generators is taken to be the same 
as that of π , though the generators for the technirho fields are not broken generators.) They are 
parametrized as

63∑
A=1

ρA(x)XA =
3∑

i=1

ρi
�(x)Xi

� +
3∑

i=1

ρi
P (x)Xi

P + ρ0
P (x)XP

+
3∑

i=1

8∑
a=1

ρi
θa(x)Xi

θa +
8∑

a=1

ρ0
θa

(x)Xθa

+
∑

c=r,g,b

3∑
i=1

[
ρi

T c(x)Xi
T c + ρ̄i

T c(x)Xi

T̄ c

]

+
∑

c=r,g,b

[
ρ0

T c(x)XT c + ρ̄0
Tc

(x)XT̄ c

]
. (75)

They are embedded in a 8 × 8 block-diagonal form, Vμ = V A
μ XA, as

ρμ = V μAXA

g
=
(

(ρ
μ
QQ)6×6 (ρ

μ
QL)2×6

(ρ
μ
LQ)6×2 (ρ

μ
LL)2×2

)
, (76)

with

ρ
μ
QQ =

[√
2ρ

μ
θ + 1√

2
ρ

μ0
θ

]
+
(

1

2
ρ

μ
� + 1

2
√

3
ρ

μ
P + 1

4
√

3
ρ

0μ
P

)
⊗ 13×3 ,

ρ
μ
QL = ρ

μ
T + 1

2
ρ

0μ
T ,

ρ
μ
LQ = (ρ

μ
QL)† = ρ̄

μ
T + 1

2
ρ̄

0μ
T ,

ρ
μ
LL =

(
1

2
ρ

μ
� −

√
3

2
ρ

μ
P −

√
3

4
ρ

0μ
P

)
,



420 H.S. Fukano et al. / Nuclear Physics B 904 (2016) 400–447
ρ
μ
θ = ρ

iμ
θaτ i λa

2
, ρ

0μ
θ = ρ

0μ
θa · 12×2 · λa

2
,

ρ
μ
T = ρ

iμ
T cecτ

i , ρ
0μ
T = ρ

0μ
T cec ,

ρ
μ
P = ρ

iμ
P τ i , ρ

0μ
P = ρ

0μ
P · 12×2 ,

ρ
μ
� = ρ

iμ
� τ i .

Here we used the same basis of SU(8)V matrix as that of π . This base allows us to definitely 
separate the isospin-triplet technirhos into two classes: one can be produced by the Drell–Yan 
(DY) process through the mixing with W and Z bosons, while the other cannot. The former 
corresponds to ρi

� in Table 1 and the latter is ρi
P which can be seen from the orthogonality of 

tr[Xi
�X

j
P ] = 0. We shall hereafter call this base the DY-base. We will be back to this point in the 

next subsection.
The external gauge fields Lμ and Rμ involve the SU(3)c , SU(2)W and U(1)Y gauge fields 

(Gμ, Wμ, Bμ) in the SM as follows:

Lμ = 2gWWi
μXi

� + 2√
3
gY BμXP + √

2gsG
a
μXθa ,

Rμ = 2gY Bμ

(
X3

� + 1√
3
XP

)
+ √

2gsG
a
μXθa . (77)

Through the standard diagonalization procedure, the left and right gauge fields are expressed in 
terms of the mass eigenstates (W±, Z, γ, g) as

Lμ = gsG
a
μ�a + eQemAμ + e

sc

(
I3 − s2Qem

)
Zμ + e√

2s

(
W+

μ I+ + h.c.
)

,

Rμ = gsG
a
μ�a + eQemAμ − es

c
QemZμ , (78)

where s (c2 = 1 − s2) denotes the standard weak mixing angle defined by gW = e/s and gY =
e/c, and

�a = √
2Xθa , I3 = 2X3

� , Qem = I3 + Y ,

Y = 2√
3
XP , I+ = 2(X1

� + iX2
�) , I− = (I+)† . (79)

It is convenient to define the vector and axial-vector gauge fields Vμ and Aμ as

Vμ = Rμ +Lμ

2
, Aμ = Rμ −Lμ

2
, (80)

so that they are expressed in a blocked-8 × 8 matrix form:

Vμ =
(

(Vμ
QQ)6×6 02×6

06×2 (Vμ
LL)2×2

)
, (81)

Aμ =
(

(Aμ
QQ)6×6 02×6

06×2 (Aμ
LL)2×2

)
, (82)

where

Vμ
QQ = 12×2 · gsG

μ
a

λa +
[
eQ

q
emAμ + e

z
q
V Zμ + e√ (

τ+Wμ+ + h.c.
)] · 13×3 ,
2 2sc 2 2s
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Vμ
LL =

[
eQl

emAμ + e

2sc
zl
V Zμ + e

2
√

2s

(
τ+Wμ+ + h.c.

)]
,

Aμ
QQ = −

(
e

2sc
τ 3Zμ + e

2
√

2s

(
τ+Wμ+ + h.c.

)) · 13×3 ,

Aμ
LL = −

(
e

2sc
τ 3Zμ + e

2
√

2s

(
τ+Wμ+ + h.c.

))
,

Q
q
em =

(
2/3 0
0 −1/3

)
, Ql

em =
(

0 0
0 −1

)
,

z
q,l
V = τ 3 − 2s2Q

q,l
em , τ+ =

(
0 1
0 0

)
, τ− = (τ+)† .

4.3. Walking technirho couplings

Now that all the relevant fields are explicitly incorporated into the s-HLS Lagrangian Eq. (68), 
it is straightforward to extract the relevant couplings between technirhos and SM gauge fields. 
In the present study we shall focus on the technirhos which allow to couple to the dibosons W
and Z.

Among 63 technirhos classified as in Table 1, it turns out that only the ρi
� and ρ0

P are relevant 
to the study of diboson signatures thanks to the HLS: actually, there exist other isospin triplet 
technirhos, ρi

P . However, the ρi
P does not couple to the diboson due to the SU(8)V orthogonality:

ρi
P − W − W/Z coupling = 0 since tr[Xi

�X
j
P ] = 0 . (83)

One might further suspect the presence of mixing between isospin-triplet technirhos ρi
� and ρi

P

because the SU(8)V symmetry is merely approximate to be explicitly broken by the SM gauge 
interactions. However, it is not the case thanks to the gauge invariance of the HLS. We shall first 
demonstrate this point below.

4.3.1. Power of the HLS
The SM gauge bosons (Gμ, Wμ, Bμ) introduced by gauging the Gglobal whose charges 

(gs, gW , gY ) are independent of the charge of the HLS (g) since it is the independent gauge 
symmetry, Hlocal. Then the global chiral Gglobal = [SU(8)L × SU(8)R]global is explicitly broken 
by this gauging, while the HLS as well as the SM gauge symmetry is intact. For instance, the 
HLS prohibits the SU(8)V breaking terms like

tr[α̂μ‖α̂μ
‖ Xθa ] , tr[α̂μ‖Xθa α̂

μ
‖ Xθa ] , (84)

which, if they are present, would yield the ρi
�–ρi

P mixing at the lowest order of the derivative 
O(p2). Obviously, terms such as above explicitly break the HLS (recall the transformation law 
of α̂μ‖ in Eq. (69)), hence these are not incorporated in the Lagrangian Eq. (68) which has to be 
gauge invariant under the HLS.

Actually, one can write down Gglobal-breaking terms without breaking the HLS as done in 
Ref. [55] for NF = 3 case, which do not take the invariant form made only by the 1-form α̂μ‖,⊥
covariantized through the SM gauging. Note also that the explicit breaking of the gauge symme-
try, the HLS simply destroys the unitarity of the quantized theory, i.e., meaningless as a quantum 
theory. Unitarity of the quantum theory is manifestly proved in terms of the BRS symmetry 
which is a quantum version of the gauge symmetry.
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Fig. 1. The Feynman graphs contributing to the ρi
�–ρ

j
P

two-point function at one-loop level.

If one employed vector boson models other than the HLS, vector bosons would be introduced 
as conventional massive-spin 1 fields of the SU(8)V flavor symmetry, Rμ, transforming like 
Rμ → gV ·Rμ ·g†

V , where gV ∈ SU(8)V . Since the global SU(8)V is nothing but an approximate 
symmetry to be explicitly broken by the SM gauges, one naively introduces terms such as in 
Eq. (84), tr[RμRμXθa ] , · · · , leading to the isospin-triplet ρi

�–ρi
P mixing.

Beyond the leading order, one might think that loop corrections would generate the ρi
�–ρi

P

mixing, for instance, by the technipion and SM gauge boson loops. However, it cannot happen, 
either, because of the HLS invariance: examining the s-HLS Lagrangian in Eq. (68) and expand-
ing terms in powers of technipion fields, one readily finds the ρ–π–π coupling term in the 8 × 8
matrix form,

agtr[ρμ[∂μπ,π]] . (85)

This term arises from the aF 2
π tr[α̂2

μ‖] in the HLS-invariant manner, hence the ρi
�–ρi

P mixing 
breaking the HLS cannot be generated even through the one-loop diagrams constructed from this 
part. To see this clearly, consider the SU(8) algebraic form to appear in the one-loop diagram 
corresponding to the ρA–ρA′

two-point function made of the term in Eq. (85). It should come 
with the SU(8) group structure like

f ABCf A′BC = C2(G)δAA′
, (86)

where XAXA = C2(G) ·18×8 for the adjoint representation. Hence the ρA–ρB two-point function 
should be diagonal, i.e., include no mixing between the technirhos.

One can easily check this also in terms of the DY base parametrized as in Eqs. (74) and (76): 
the ρ–π–π couplings in the DY-base are7

Lρi
�/ρi

P −π−π = −ag

[
1

4
εijk∂μ�i�jρ

kμ
� + 1

4
εijk∂μP iP jρ

kμ
�

+ 1

4
εijk

(
∂μT̄ i

c T
j
c − T̄ i

c ∂μT
j
c

)
ρ

kμ
� + 1

4
εijk∂μθi

aθ
j
a ρ

kμ
�

− 1

2
√

3
εijk∂μP iP jρ

kμ
P − 1

4
√

3
εijk

(
∂μT̄ i

c T
j
c − T̄ i

c ∂μT
j
c

)
ρ

kμ
P

7 In Ref. [14] the rho couplings to the isospin-triplet color-octet pions θi
a are missing, which have properly been 

incorporated in Eq. (87).
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+ 1

4
√

3
εijk∂μθi

aθ
j
a ρ

kμ
P

− 1

2
√

3

(
∂μT̄ i

c T 0
c + ∂μT̄ 0

c T i
c − T̄ i

c ∂μT 0
c − T̄ 0

c ∂μT i
c

)
ρ

iμ
P

]
. (87)

From these couplings one can easily compute the ρi
�–ρ

j
P two-point functions at the one-loop 

level as depicted in Fig. 1. The one-loop terms are then evaluated for each graph to be dramati-
cally canceled as[

1

2
·
(

− 1

2
√

3

)(
1

4

)]
PP -loop

+
[

3 ·
(

− 1

4
√

3

)(
1

4

)]
T T̄ -loop

+
[

1

2
· 8 ·

(
1

4
√

3

)(
1

4

)]
θθ-loop

= 0 . (88)

Thus the ρi
�–ρ

j
P mixing cannot be generated even at the loop level.

As to the SM gauge loop corrections, it turns out that the HLS also protects the absence of 
the ρi

�–ρ
j
P mixing at any order of the quantum theory. One might naively think that even when 

the ρi
P does not couple to weak bosons at O(p2), the ρ coupling to weak boson might arise 

when one considers higher derivative order of O(p4) such as in Eq. (97) in the next subsection. 
However, it is not the case: examining the couplings one finds that it takes the form

tr[Xi
P [Xj

�,Xk
�]] , (89)

where the Xi
P comes from the ρi

P field and two Xi
� from the W boson field. Noticing that

[Xi
�,X

j
�] = 1√

NF /2
εijkXk

� , (90)

with NF = 8, and the orthogonality tr[Xi
P X

j
�] = 0, one readily arrives at no coupling between 

ρi
P and WW ,

gρi
P WW = 0 . (91)

The coupling is still zero even when the hypercharge (∝ XP ) is turned on since [Xi
�, XP ] = 0.

Actually, the absence of the ρi
�–ρi

P mixing is exact to all orders of derivative expansions of 
the chiral perturbation theory, as far as the intrinsic-parity8 even sector is concerned: beyond 
the one-loop (O(p4)) order, one can find that the triple gauge vertices like ρi

P –W/B–W would 
arise at the O(p6) from the operators,

tr[Vμν[V̂νλ, V̂μ
λ ]] , tr[Vμν[Âνλ, Âμ

λ ]] , (92)

where

V̂μν = R̂μν + L̂μν

2
,

8 The intrinsic parity of a particle is defined to be even, if its parity is (−1)spin, and odd otherwise.
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Âμν = R̂μν − L̂μν

2
,

R̂μν = ξRRμνξ
†
R , L̂μν = ξLLμνξ

†
L ,

R(L)μν = ∂μR(L)ν − ∂νR(L)μ − i[R(L)μ,R(L)ν] . (93)

In writing operators in Eq. (92) the charge conjugation, parity and intrinsic-parity invariance 
has been taken into account. Note, however, that the terms in Eq. (92) take the same form as in 
Eq. (89) (or [Xi

P [XP , Xj
�]]), hence do not yield the coupling between the ρi

P and weak bosons 
by the same argument for the O(p4) terms as above. Even if one further goes to higher order 
terms, one cannot see any operators which generate triple gauge vertices since terms beyond 
O(p6) should involve at least four gauge fields by construction. Thus the ρi

P – weak boson 
– weak boson coupling, hence the ρi

P –ρi
� mixing is completely forbidden by the HLS chiral 

perturbation theory, the HLS gauge invariance.
If one considers terms having the intrinsic-parity odd property, such as εμνσλ∂μBνW

i
σ ρi

Pλ, 
at the O(p4) level, one could see the nonzero ρi

P –Wi–B coupling because those terms do not 
take the commutator form for generators as in Eq. (89). However, the contribution to the ρi

�–ρi
P

mixing generated by such terms at the O(p6) level will be highly suppressed since it is in total 
of order of the two-loop level, to be safely negligible, as noted in Ref. [18].

Thus the HLS is powerful and gives the strong constraint for the vector boson phenomenology, 
such as no mixing between isospin triplet states like among ρi

� and ρi
P .

4.3.2. The ρi
� and ρ0

P couplings in the mass-eigenstate basis
Now we are allowed to safely pick up only the ρi

� and ρ0
P thanks to the HLS invariance. In 

Ref. [18] the ρi
� couplings to the SM particles have been discussed. The ρi

� couplings to the 
SM fermions were evaluated by the vector meson dominance, through mixing between the ρi

�

and the SM gauge bosons. As for the ρ0
P , since the couplings to longitudinal modes of weak 

bosons (πW and πZ) vanish due to the orthogonality, tr[XP [Xi
�, Xj

�]] ∝ tr[XP Xi
�] = 0, the ρ0

P

was excluded in studying the diboson signatures. As clearly seen in Appendix A, it turns out, 
however, that the ρi

� actually mixes with the ρ0
P through the hypercharge gauge when one takes 

into account transverse modes of the dynamical weak bosons, so that the ρ0
P couplings to diboson 

can arise through the mixing with the ρi
�. In this subsection, we shall update the evaluation of the 

2 TeV technirho couplings by taking into account such dynamical contributions of weak bosons. 
Possible higher derivative coupling terms will also be incorporated, some of which were not 
listed in Ref. [18] because the weak bosons were taken not to be dynamical. This will make the 
diboson analysis more accurate than Ref. [18] as will be seen in the next section.

To discuss the dynamical mixing between the ρi
�, ρ0

P and the weak bosons, we first introduce 
the weak boson kinetic terms,

− 1

2g2
W

tr[W 2
μν] − 1

4g2
Y

B2
μν , (94)

where gW and gY are counted as O(p2) and

Wμν = ∂μWν − ∂νWμ − i[Wμ,Wν] ,
Bμν = ∂μBν − ∂νBμ , (95)

and the trace is taken only over the SU(2) isospin space.
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Using the explicit expressions for the external and HLS fields given in the last section, one 
can easily find the mixing mass matrices for the charged and neutral gauge boson sectors. Ac-
tually, beyond the leading order O(p2), one has the kinetic mixing terms at the O(p4), so may 
incorporate them to diagonalize the gauge propagator matrix.

The full s-HLS Lagrangian up to O(p4) [13,15] relevant to the present study is thus written 
as

Ls-HLS = χ2F 2
π

(
tr[α̂2⊥μ] + atr[α̂2‖μ]

)
− 1

2g2
tr[V 2

μν] − 1

2g2
W

tr[W 2
μν]

− 1

2g2
Y

tr[B2
μν] +L4 , (96)

L4 = z3tr[V̂μνV
μν] − iz4tr[Vμνα̂

μ
⊥α̂ν⊥] + iz5tr[Vμνα̂

μ
‖ α̂ν‖ ]

+ iz6tr[V̂μνα̂
μ
⊥α̂ν⊥] + iz7tr[V̂μνα̂

μ
‖ α̂ν‖ ] − iz8tr[Âμν(α̂

μ
⊥α̂ν‖ + α̂

μ
‖ α̂ν⊥)] . (97)

Among O(p4) couplings in Eq. (97) only the z3 and z4 terms have been incorporated in Ref. [18], 
which contribute to the couplings to the SM fermions (Fρ ) and the longitudinal modes of 
weak bosons (gρππ ) as will be seen below (Eqs. (117) and (119)). Other O(p4) couplings 
(z5, z6, z7, z8) are newly introduced here, which can enter the couplings to the transverse modes 
of weak bosons as the O(p4) corrections. As it turns out, however, only the z8 terms contribute 
by accident (see Eqs. (122)–(125)).

Let the mass and kinetic eigenstates be fields with tilde,

ρ̃
±,0
� , ρ̃0

P , (98)

and the weak bosons be W̃ and Z̃, similarly. One can thus find the relevant couplings of the 
technirhos as shown below. The details on the diagonalization are given in Appendix A. Here we 
just list some formulae by which one can easily follow the coupling expressions. We evaluate the 
couplings by assuming

x = gW

g
� √

a

(
mW

Mρ̃�,P

)
� 0.04

√
a � 1 , (99)

where the second approximation follows from the explicit expressions of mass eigenvalues of the 
W and the technirho masses given below (see Eqs. (107), (111) and (110)). Then the gauge eigen-
states (W±

μ , ρ±
�μ) in the charged current sector and (W 3

μ, ρ3
�μ, Bμ, ρ0

Pμ) in the neutral current 

sector are related to the mass eigenstates at O(p4) as follows:

(
W±

μ

ρ±
�μ

)
=
[

−1 −(1 − g2z3)x

−x 1

](
W̃±

μ

ρ̃±
�μ

)
, (100)

⎛
⎜⎜⎜⎜⎝

W 3
μ

ρ3
�μ

Bμ

ρ0

⎞
⎟⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

c s −(1 − g2z3)cρx (1 − g2z3)sρx

c(1 − t2)x 2sx cρ −sρ

−s c −(1 − g2z3)(cρ + 2√
3
sρ)tx (1 − g2z3)(sρ − 2√

3
cρ)tx

− 2√ ct2x 2√ sx sρ cρ

⎤
⎥⎥⎥⎥⎦
Pμ 3 3
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×

⎛
⎜⎜⎜⎜⎝

Z̃μ

Ãμ

ρ̃3
�μ

ρ̃0
Pμ

⎞
⎟⎟⎟⎟⎠ , (101)

up to corrections of O(x2), where we have defined the mixing angles as

t = gW

gY

, c = 1√
1 + t2

, s =
√

1 − c2 , (102)

cρ = 1√
2

√√√√ (3 − t2) +√(3 − t2)2 + 48t4√
(3 − t2)2 + 48t4

, sρ =
√

1 − c2
ρ , (103)

in which t = tan θW = sin θW/ cos θW is identical to the weak mixing angle (up to O(x2)) and 
cρ (sρ ) denotes the mixing angle between the gauge-eigenstate ρ3

� and ρ0
P . Then the electro-

magnetic coupling e is expressed as e = gWs = gW sin θW + O(x2). The angle parameter t can 
numerically be fixed by the experimental values of the Z boson mass, the electromagnetic cou-
pling αEM (at the scale of Z mass) and the Fermi constant GF as

t � 0.55 . (104)

This allows us to estimate also the mixing angle cρ (sρ ) between the ρi
� and ρ0

P :

cρ = 1√
2

√√√√ (3 − t2) +√(3 − t2)2 + 48t4√
(3 − t2)2 + 48t4

� 0.95 , sρ =
√

1 − c2
ρ � 0.33 , (105)

which implies that the gauge-eigenstate ρi
� and ρ0

P hardly mix each other, such that the ρ̃0
P has 

almost vanishing couplings to weak bosons, in accord with the analysis done in Ref. [18]. The 
mass eigenvalues corresponding to the mass eigenstates are evaluated up to corrections of O(x2)

to be

m2
W̄

= g2
Wv2

EW

4

(
1 +O(x2)

)
= m2

W

(
1 +O(x2)

)
, (106)

M2
ρ̄±

�

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (107)

m2
Z̄

= g2
Wv2

EW

4c2

(
1 +O(x2)

)
= m2

Z

(
1 +O(x2)

)
, (108)

m2
Ā

= 0 , (109)

M2
ρ̄3

�

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (110)

M2
ρ̄0

P

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (111)

where we have defined

m2
W = g2

Wv2
EW , M2

ρ = ag2v2
EW . (112)
4 4



H.S. Fukano et al. / Nuclear Physics B 904 (2016) 400–447 427
Note that the mass difference between ρ̃3
� and ρ̃0

P is very small:

�M =
M2

ρ̃0
P

− M2
ρ̃3

�

Mρ̃0
P

+ Mρ̃3
�

�
M2

ρ̃0
P

− M2
ρ̃3

�

2Mρ

� Mρ

2
×O(x2) , (113)

where use has been made of Eqs. (110), (111) and (134).
The ρ̃±,3

� and ρ̃0
P couplings to the SM fermions arise from the weak bosons coupled to 

fermions via the propagator mixing between the weak bosons and ρ̃±,3
� and ρ̃0

P . Using Eqs. (100)
and (101) one can easily find the couplings:

Lρ̃3
�ff = ψ̄γ μ

[
A

ψ
V + A

ψ
Aγ5

]
ψ ρ̃3

�μ ,

Lρ̃P ff = ψ̄γ μ
[
B

ψ
V + B

ψ
A γ5

]
ψ ρ̃0

Pμ ,

Lρ̃±
�ff = C

ψ
L

(
ψ̄uL

γ μψdL

)
ρ̃+

�μ + h.c. , (114)

where ψu(d)L denotes the left-handed SM fermion fields having the isospin charge τ
ψ

3 =
1/2(−1/2) and

A
ψ
V = − e2

2s2

(√
ND

2

)(
Fρ

Mρ

){[
cρ −

(
cρ + 2√

3
sρ

)
t2
]

τ
ψ

3 + 2t2
(

cρ + 2√
3
sρ

)
Q

ψ
em

}
,

A
ψ
A = e2

2s2

(√
ND

2

)(
Fρ

Mρ

)[
cρ −

(
cρ + 2√

3
sρ

)
t2
]

τ
ψ

3 ,

B
ψ
V = e2

2s2

(√
ND

2

)(
Fρ

Mρ

){[
sρ −

(
sρ − 2√

3
cρ

)
t2
]

τ
ψ

3 + 2t2
(

sρ − 2√
3
cρ

)
Q

ψ
em

}
,

B
ψ
A = − e2

2s2

(√
ND

2

)(
Fρ

Mρ

)[
sρ −

(
sρ − 2√

3
cρ

)
t2
]

τ
ψ

3 ,

C
ψ
L = − e2

√
2s2

(√
ND

2

)(
Fρ

Mρ

)
, (115)

with

Q
q
em =

(
2/3 0
0 −1/3

)
, Ql

em =
(

0 0
0 −1

)
, (116)

Fρ = √
aFπ(1 − g2z3) . (117)

The prefactor 
√

ND in Eq. (115) stands for the number of electroweak doublets formed by 
technifermions, which is 4 in the case of the one-family model. Note that the ND depen-
dence is canceled out in the combination (

√
NDFρ): 

√
NDFρ ∝ √

ND

√
aFπ = √

avEW where 
vEW � 246 GeV. In the limit where the ρ3

�–ρ0
P mixing is turned off, i.e., sρ = 0, and the rho mass 

scale is much larger than weak boson masses (Mρ � mW/Z), the ρ̃±,3
� couplings to fermions in 

Eq. (115) precisely become the same as those (without the symbol of tilde) given in Ref. [18], as 
it should.

The couplings to the weak bosons W̃W̃/W̃ Z̃ in the mass-basis arise from the non-Abelian 
vertex terms in tr[V 2

μν] and tr[W 2
μν] in Eq. (96) as well as the O(p4) terms in Eq. (97) to be
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L
ρW̃W̃/W̃ Z̃

= i

[
g

ρ̃�W̃Z̃

(
∂μρ̃−

�ν − ∂νρ̃
−
�μ

)
Z̃μW̃+ν + g

W̃Z̃ρ̃�

(
∂μW̃+

ν − ∂νW̃
+
μ

)
Z̃μρ̃−ν

�

+ g
Z̃W̃ ρ̃�

(
∂μZ̃ν − ∂νZ̃μ

)
W̃μ+ρ̃−ν

�

+ 1

2
g

ρ̃�W̃W̃

(
∂μρ̃3

�ν − ∂νρ̃
3
�μ

)
W̃μW̃+ν

+ 1

2
g

ρ̃P W̃W̃

(
∂μρ̃0

Pν − ∂νρ̃
0
Pμ

)
W̃μW̃+ν

+ g
W̃W̃ ρ̃�

(
∂μW̃+

ν − ∂νW̃
+
μ

)
W̃μ−ρ̃3ν

�

+ g
W̃W̃ ρ̃P

(
∂μW̃+

ν − ∂νW̃
+
μ

)
W̃μ−ρ̃0ν

P

]

+h.c. (118)

To the nontrivial-leading order of expansion in x = gW/g = √
a(mW/Mρ) � 1, we thus have

g
ρ̃�W̃Z̃

= e√
NDsc

x

(
1 + 1

2
g2z4

)
= 1

c

2√
ND

(
mW

Mρ

)2

gρππ ,

gρππ = 1

2
ag

(
1 + 1

2
g2z4

)
, (119)

g
ρ̃�W̃W̃

= − 2√
ND

cρ

(
mW

Mρ

)2

gρππ , (120)

g
ρ̃P W̃W̃

= 2√
ND

sρ

(
mW

Mρ

)2

gρππ , (121)

g
W̃Z̃ρ̃�

= − e√
NDsc

x

[
1 − g2

(
z3 + 1

2
z8

)]

= − e√
NDsc

√
a

(
mW

Mρ

)[
1 − g2

(
z3 + 1

2
z8

)]
, (122)

g
Z̃W̃ ρ̃�

= e√
NDsc

x

[
1 − g2

(
z3 + 1

2
z8

)]

= e√
NDsc

√
a

(
mW

Mρ

)[
1 − g2

(
z3 + 1

2
z8

)]
, (123)

g
W̃W̃ ρ̃�

= − e√
NDs

x cρ

[
1 − g2

(
z3 + 1

2
z8

)]

= − e√
NDs

√
a

(
mW

Mρ

)
cρ

[
1 − g2

(
z3 + 1

2
z8

)]
, (124)

g
W̃W̃ ρ̃P

= e√
NDs

x sρ

[
1 − g2

(
z3 + 1

2
z8

)]

= e√
NDs

√
a

(
mW

Mρ

)
sρ

[
1 − g2

(
z3 + 1

2
z8

)]
. (125)

The longitudinal modes of the weak bosons only contribute to the couplings proportional to gρππ

in Eqs. (119)–(121). One can easily check this by replacing the weak boson fields Wμ, Zμ with 
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the eaten pion fields as Wμ = ∂μ�W/mW and Zμ = ∂μ�Z/mZ , to see that only the couplings 
in Eqs. (119)–(121) survive. Then the couplings to the longitudinal modes of the weak bosons 
are precisely the same as those given in Ref. [18], and the suppression factor (mW/Mρ)2 cancels 
when one considers to multiply by the longitudinal polarization vector of weak bosons in ampli-
tudes evaluated at the onshell of weak bosons, potentially yielding the dominant contribution to 
the rho widths, inn accord with Ref. [18].

As to the couplings to the transverse modes of weak bosons in Eqs. (122)–(125), one should 
note that the parameter a dependence explicitly enters there. We will come back to this point 
when the LHC phenomenology is addressed in the next section.

Crucial to note is also the flavor dependence of the couplings to weak bosons, ND =
NF /2 = 4, which makes the total width much smaller than the naive scale-up version of QCD 
with NF = 2, to be lower than 100 GeV, in accord with the ATLAS diboson data (for the detail, 
see discussions in the next section). When the partial decay width to the longitudinal parts of 
WW/WZ, ρ̃� → WLWL/WLZL, is evaluated one can see the narrowness more explicitly:

�(ρ̃� → WLWL/WLZL) �
(

1

ND

)
· g2

ρππ

48π
· c2

ρ · Mρ̃�
, (126)

where the heavy rho mass limit Mρ̃ � mW/Z has been taken (the exact expression for the partial 
decay widths are shown in Appendix B). Thus the ρ̃� width generically gets smaller as the 
number of the flavor (ND = NF /2) increases.

Note also that the custodial partner of the ρ̃±
� involves both ρ̃3

� and ρ̃P due to c2
ρ + s2

ρ = 1, in 
such a way that

c2 g2
ρ̃�W̃ Z̃

= g2
ρ̃�W̃W̃

+ g2
ρ̃P W̃W̃

, (127)

c2 g2
W̃ Z̃ρ̃�

= g2
W̃W̃ ρ̃�

+ g2
W̃W̃ ρ̃P

, (128)

c2 g2
Z̃W̃ ρ̃�

= g2
W̃W̃ ρ̃�

+ g2
W̃W̃ ρ̃P

. (129)

Again, the technirhos do not couple to the Higgs (technidilaton) plus weak gauge bosons, due 
to the conformal barrier:

g
ρ̃

±,3
� /ρ̃0

P −W̃/Z̃−φ
= 0 . (130)

5. LHC phenomenology of walking technirho at 2 TeV

In this section, we explore the 2 TeV walking technirho phenomenology at the LHC. We first 
set the LHC-Run I limits on the technirho couplings explicitly derived in the last section. Then we 
analyze the walking technirho signals in the diboson channel to see if the signals can explain the 
recently reported ATLAS diboson excesses [16]. This section will update the previous analysis 
in Ref. [18] including the mixing effect from the dynamical weak gauge bosons (transverse 
components of W and Z) as noted in the last section.

First of all, we summarize the parameters of the 2 TeV walking technirhos ρ̃±,3
� and ρ̃0

P

relevant to the LHC phenomenology and discuss the way to fix those parameters.
Looking at the couplings to the SM fermions and weak bosons listed in the previous section, 

one can find that they are controlled by the six parameters,

Fπ, a, g, z3, z4, z8 . (131)
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Among these parameters, the technipion decay constant Fπ is related to the electroweak scale 
vEW � 246 GeV for the one-family model with four weak-doublets, ND = NF /2 = 4, as

Fπ = vEW/
√

ND � 123 GeV , (132)

through the W/Z mass formula obtained by examining the F 2
π term in Eq. (96). In place of the 

original parameters z3 and z4, we shall use Fρ and gρππ defined in Eqs. (117) and (119). The 
HLS gauge coupling g is determined through the rho mass formulae in Eqs. (107), (111) and 
(110), once the rho mass is set to 2 TeV and the parameter a is chosen:

g = Mρ√
aFπ

� 16√
a

. (133)

Note from Eqs. (119)–(121) that as far as the longitudinal-mode contributions of weak bosons 
(Eqs. (119)–(121) and Eq. (115)) are concerned, all the rho couplings are completely free from 
the parameter a, as addressed in Ref. [18]. The a-dependence thus only comes in the transverse-
mode contributions of weak bosons in Eqs. (122)–(125). To be consistent with our perturbative 
analysis in expansion with respect to x = √

a(mW/Mρ) � 0.04
√

a � 1 (see Eq. (99)), we may 
choose the value of a to be moderately small, say,

1 � a � 10 , s.t., 0.04 � x = √
a

(
mW

Mρ

)
� 0.13 . (134)

Then the HLS gauge coupling g is determined to be in a range,9

5.1 � g � 16 . (135)

As to the remaining O(p4) coupling z8 included in the transverse ρ̃�,P –W–W/Z couplings 
in Eqs. (122)–(125), we may take a special choice,10

z3 + 1

2
z8 � 0 , (136)

such that the technirho couplings to the transverse modes of W and Z in Eqs. (122)–(125) are 
highly suppressed by a factor of x = √

a(mW/Mρ). Then the rho couplings to W and Z are 
almost saturated by the longitudinal modes of W and Z, i.e. gρππ , in accordance with the analysis 
in Ref. [18].

Note also that the mass difference between ρ̃3
� and ρ̃0

P is very small for the value of x in 
Eq. (134) (see Eq. (113)),

�M � (1.6–16) GeV , for 0.04 � x � 0.13 . (137)

Thus, with these inputs, we are left only with two parameters

(Fπ , a, g, z3, z4, z8) −→ (
Fρ, gρππ

)
, (138)

which control the ρ� couplings to the SM fermions (Eq. (115)) and the longitudinal modes of 
weak gauge bosons (Eqs. (119)–(121)), respectively.

9 The large value of g implies large corrections from higher order in the HLS chiral perturbation theory, with the ex-

pansion parameter ξ = NF · g2/(4π)2 � NF · p2/(4πFπ )2|p=Mρ � 16 � 1 (NF = 8), in comparison with the real-life 
QCD (NF = 3), ξ � 1. Origin of the large corrections will be discussed in the Summary and discussion.
10 The order of magnitude for O(p4) parameters can be estimated by the naive dimensional analysis to be zi =
O(NC/(4π)2) = O(10−2) for NC = 3, 4. Hence the cancellation in Eq. (136) possibly takes place, though the non-
perturbative estimate has not been done on the size of z8 even in the QCD case.
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Fig. 2. Left panel: The 95% C.L. limits on the (gρππ , Fρ) plane from the ATLAS and CMS data in the LHC-Run I [17,
56–66]. Right panel: The total widths as a function of gρππ and Fρ . The solid-, dashed- and dot-dashed curves running 
along the vertical axes respectively denote � = 60(1), 80(5) and 100(10) GeV for the ρ̃±,3

� (ρ̃0
P

), together with the most 
stringent constraints from dilepton and diboson channels extracted from the left panel.

5.1. Constraining walking technirho couplings: gρππ and Fρ

The LHC limits obtained from searches for W ′/Z′ candidates [17,56–66] constrain the 2 TeV 
technirho couplings to fermions (Fρ) and weak bosons (gρππ ). We compute the partial decay 
rates and the DY cross sections by using the analytic formulae given in Appendix B. The DY 
cross section is evaluated by using the narrow width approximation (NWA),

σDY(pp → ρ)

∣∣∣∣∣
NWA

= 16π2

3s

∑
q=quarks

�(ρ → qq̄)

Mρ

×
YB∫

−YB

dη fq/p

(
Mρ√

s
eη,M2

ρ

)
fq̄/p

(
Mρ√

s
e−η,M2

ρ

)
, (139)

where YB = − 1
2 ln(M2

ρ/s) and fq/p denotes the parton distribution function [67]. We constrain 
the size of the total widths to be � 100 GeV in light of the ATLAS data on the diboson-tagged 
dijet mass distribution [16], so that the relevant couplings Fρ and gρππ are constrained. The 
constraint plots are displayed in Fig. 2. As to the dijet limit, we have quoted the upper limit 
set on generic narrow resonances (with the width being 0.1 percent of the mass) decaying to 
the qq-jet reported from the CMS group [57], while the ATLAS bound [56] includes all the jet 
candidates.

In addition to limits shown in Fig. 2, there are other limits from W ′/Z′ → Higgs plus weak 
bosons reported from the ATLAS and CMS [19,20], in which the analyses are based on the Higgs 
decay to bb or WW . However, the ρ�s in the present study do not decay to the Higgs candidate 
(technidilaton), due to the conformal barrier.

Recently the ATLAS Collaboration released preliminary results on the combined limits on the 
W ′ and Randall–Sundrum gravitons from various diboson search channels [68]. The combination 
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leads to a tighter constraint over the entire mass range between 300 and 2500 GeV, except the 
2 TeV mass region where the excess was observed in the diboson-tagged dijet channel [16]. 
Given this, the constraints shown in Fig. 2 are not altered by the combined results.

From Fig. 2, we see that the current LHC limits require

Fρ � 650 GeV . (140)

For reference values of Fρ we shall therefore take

Fρ[GeV] = 250,500,650 . (141)

As for the gρππ coupling, we may take

gρππ = 3,4,5 , (142)

in which the middle number can be supported by a holographic estimate [69] and the last one 
can be deduced from the large NC scaling of gρππ ,

gρππ ∼
√

3

NC

[gρππ ]QCD � 5.2 , for [gρππ ]QCD � 6 , (143)

with NC = 4, to be consistent with the technidilaton coupling property versus the LHC 
Higgs [4–6].

The decay and production properties of the ρ̃
±,3
� and ρ̃0

P are summarized for Fρ =
(250, 500, 650) GeV as follows:

• The partial decay widths to diboson:

gρππ = 3 gρππ = 4 gρππ = 5
�(ρ̃3

� → W̃W̃ )[GeV] = (29.2,29.2,29.2), (50.3,50.3,50.3), (77.3,77.3,77.3)

�(ρ̃3
� → W̃LW̃L)[GeV] = (26.6,26.6,26.6), (47.2,47.2,47.2), (73.8,73.8,73.8)

�(ρ̃±
� → W̃±Z̃)[GeV] = (33.1,33.1,33.1), (56.8,56.8,56.8), (87.1,87.1,87.1)

�(ρ̃±
� → W̃±

L Z̃L)[GeV] = (29.7,29.7,29.7), (52.9,52.9,52.9), (82.6,82.6,82.6)

�(ρ̃P → W̃W̃ )[GeV] = (3.48,3.48,3.48), (6.00,6.00,6.00), (9.22,9.22,9.22)

�(ρ̃P → W̃LW̃L)[GeV] = (3.17,3.17,3.17), (5.63,5.63,5.63), (8.80,8.80,8.80) .

(144)

• The total widths:

gρππ = 3 gρππ = 4 gρππ = 5
�tot

ρ̃3
�

[GeV] = (29.7,31.2,32.6), (50.8,52.4,53.8), (77.8,79.4,80.8)

�tot
ρ̃±

�

[GeV] = (33.5,34.8,36.0), (57.2,58.5,59.8), (87.5,88.9,90.1)

�tot
ρ̃P

[GeV] = (3.56,3.82,4.06), (6.08,6.34,6.58), (9.3,9.56,9.80) .

(145)

• The relevant branching ratios:

gρππ = 3 gρππ = 4 gρππ = 5
Br[ρ̃3

� → W̃W̃ ][%] = (98.2,93.4,89.4), (99.0,96.8,93.6), (99.3,97.4,95.7)

Br[ρ̃±
� → W̃±Z̃][%] = (98.7,95.0,91.8), (99.2,97.6,95.0), (99.5,98.0,96.7)

Br[ρ̃P → W̃W̃ ][%] = (97.6,91.0,85.6), (98.6,95.5,91.1), (99.1,96.4,94.0) ,

(146)
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for j = u, d, s, c, b,

gρππ = 3 gρππ = 4 gρππ = 5
Br[ρ̃3

� → jj ][%] = (1.2,4.6,7.5), (0.71,2.8,4.5), (0.46,1.8,3.0)

Br[ρ̃±
� → jj ][%] = (0.66,2.5,4.1), (0.38,1.5,2.5), (0.25,0.99,1.6)

Br[ρ̃P → jj ][%] = (1.6,6.0,9.5), (0.94,3.6,5.9), (0.61,2.4,3.9) ,

(147)

and for l = e, μ,

gρππ = 3 gρππ = 4 gρππ = 5
Br[ρ̃3

� → ll][%] = (0.30,1.2,1.9), (0.18,0.69,1.1), (0.12,0.46,0.76)

Br[ρ̃±
� → lν][%] = (0.22,0.84,1.4), (0.13,0.50,0.83), (0.084,0.33,0.55)

Br[ρ̃P → ll][%] = (0.23,0.87,1.4), (0.14,0.52,0.85), (0.089,0.35,0.57) .

(148)

• The DY production cross sections at 
√

s = 8 TeV decaying to WW/WZ:

gρππ = 3 gρππ = 4 gρππ = 5
σDY(pp → ρ̃3

� → W̃W̃ )[fb] = (0.69,2.6,4.2), (0.69,2.7,4.4), (0.69,2.7,4.5)

σDY(pp → ρ̃±
� → W̃±Z̃)[fb] = (1.3,5.1,8.3), (1.3,5.1,8.5), (1.3,5.1,8.5)

σDY(pp → ρ̃0
P → W̃W̃ )[fb] = (0.094,0.35,0.56), (0.094,0.36,0.59), (0.095,0.45,0.61) .

(149)

Note that thanks to the presence of the custodial symmetry reflected by the relations in Eq. (129), 
the decay rates for the charged ρ̃±

� are almost the same as those for the ρ̃3
� combined with the ρ̃0

P

(via c2
ρ + s2

ρ = 1). As to the cross sections, the custodial (isospin) symmetry is also well reflected 
as σDY(pp → ρ̃±

�) � 2σDY(pp → ρ̃3
� + ρ̃0

P ).
Let us compare the present analysis with the previous one in Ref. [18] where the mixing 

between ρ3
� and ρ0

P via the dynamical hypercharge gauge boson and other dynamical SM gauge 
contributions, such as the transverse modes of W and Z were not taken into account. Actually, 
as seen from Eq. (149), the numerical numbers of the decay rates and cross sections for ρ̃±,3

� are 
almost the same, since the ρ3

�–ρ0
P mixing is tiny (which is supplied by sρ � 0.3 in Eq. (105)) and 

the W/Z transverse-mode contributions are set to be quite small in accord with our perturbation 
analysis based on the assumption that x = √

a(mW/Mρ) � 1 (Eq. (134)). Hence the LHC limits 
shown in Fig. 2 look like almost the same as in Ref. [18], so do the diboson signatures.

Considering the LHC detection of the DY coupling of the technirho, (Fρ/Mρ), contributions 
from not only the walking technicolor sector, but also an extended technicolor (ETC) sector 
should be included there. (ETC communicates between the technifermion and the SM fermion 
sectors, being necessary to account for the SM-fermion mass generation.) The ETC generates an 
effective four-fermion interaction among the technifermions of the form (F̄ γμF )2. This effective 
interaction affects Fρ to shift the value obtained from the walking technicolor sector alone. In 
that sense, one can say that the constraint on Fρ from the current LHC data in Fig. 2 would 
imply the desired amount of the ETC contributions to the Fρ . To see the desired ETC value more 
quantitatively, one may take the DY coupling estimated only from the walking technicolor sector 
to be F TC

ρ � 250 GeV, which is supported from the result of nonperturbative calculations [70,
71]. Then the remaining amount may be supplied from the ETC,

F ETC = 0–400 GeV , for the total Fρ = (F TC + F ETC) = 250–650 GeV . (150)
ρ ρ ρ
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This can be thought of as an indirect constraint on modeling of the ETC derived from the current 
LHC data. Looking back the present analysis, one may say that a role similar to such ETC 
effects has been played by the parameter z3 in Eq. (117) which shifts the Fρ at O(p2) just like 
Fρ |O(p2) → Fρ |O(p4) = F TC

ρ + F ETC
ρ .

One might suspect that the walking technirho with somewhat large DY coupling Fρ/Mρ ∼
(250–650 GeV)/(2000 GeV) = 0.1–0.3, leads to the sizable contribution to the S parameter [72]. 
One can in fact estimate the size of the S coming only from the technirho contribution within the 
s-HLS model, including the above-mentioned (F̄γμF )2-type ETC contributions, to find

S|ρ � 4πND

(
Fρ

Mρ

)2

� 0.8–5.3 , for Fρ = 250–650 GeV , (151)

where ND = 4 for the one-family model. However, the techni-axialvector (techni-a1) may de-
structively contribute to the S|ρ term, even including the above ETC effects. It has been suggested 
from several approaches [5,70,71,73] that the masses of the techni-ρ and -a1 mesons are degen-
erate, Mρ � Ma1 , due to the characteristic walking feature. Taking into account this, one may 
add the techni-a1 meson contribution to the S as

S = S|ρ + S|a1 = 4πND

(
Fρ

Mρ

)2
[

1 −
(

Fa1

Fρ

)2
]

. (152)

Thus, if one has Fa1 � Fρ , the S parameter can be vanishingly small, as it happens in a different 
context [74]. This can actually occur in the one-family model of the walking technicolor, in view 
of a holographic dual (without ETC sector) [69].

The contribution to the S parameter may actually come not only from the walking technicolor 
sector, but also from the ETC sector through the possible four-fermion operator (F̄ γμfSM)2

other than the above (F̄ γμF )2, in a way analogous to “delocalization” effect proposed in other 
models of electroweak symmetry breaking [75]. The possible cancellation in the S parameter 
may therefore take place including such extra terms.

One should also note that the gρππ coupling generically gets modified due to the mixing 
between the pions and axialvector mesons such as the techni-a1 mesons, as it happens in the case 
of the generalized HLS model [12], in application to QCD. Actually, in place of the techni-a1
mesons, the z4 term in Eq. (119) mimics such a role of the shift effects, in that the gρππ coupling 
gets modified from the O(p2) form (1/2ag) by the z4 term of O(p4). In this respect, as well 
as the cancellation to the S parameter in Eq. (152), it is of importance to discover the 2 TeV 
techni-a1 mesons at the LHC Run-II, which will be definitely a smoking-gun of the one-family 
model of the walking technicolor to be pursued elsewhere.

5.2. LHC diboson signatures at 2 TeV

In this subsection, without the NWA, we perform the Monte Carlo simulation of the full 
hadronic decaying diboson analysis for the 2 TeV technirho mesons at the LHC.

We use the FeynRules [76,77] to implement the coupling between technirho mesons 
and the SM particles into the UFO format [78], then the events at the parton level (pp →
ρ̃±

�/ρ̃3
�/ρ̃0

P → V V , V → qq ′ where V = W±, Z0) are generated by Madgraph5_
aMC@NLO-2.3.0 [79]. Here we set the factorization scale (μF ) and renormalization scale 
(μR) to the 2 TeV, μF = μR = 2 TeV. The hadronization and parton showering are performed 
by using the Pythia8.186 [80]. We use the CTEQ6L1 [67] as a parton distribution function 
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and the A2/AU2 tune [81] for Pythia8. The jets are reconstructed through the Cambridge–
Aachen algorithm with the radius parameter R = 1.2 (CA12) by the FastJet-3.0.6 [82]. 
To make a direct comparison with the ATLAS analysis [16], the CA12 jets are processed 
through a splitting and filtering algorithm described BDRS-A in Ref. [83]. We call this CA12 
jets groomed jets hereafter. In addition, to account for the migration due to the ATLAS detec-
tor resolution, the groomed jet momentum/energy and mass values are smeared by Gaussian 
distributions with the mean of 0 and the standard deviations of 5% (as in Ref. [16]) and 8% 
(taken from 600 < pT < 1000 GeV bin in Table 2 of Ref. [83]), respectively. We generate 
10000 signal events for the Mρ̃±

�
= Mρ̃3

�
= 2 TeV and then we scale it to the DY cross sec-

tion, σDY(pp → ρ̃±
�/ρ̃3

�/ρ̃0
P → V V → jj), times luminosity, L = 20.3 fb−1, for 

√
s = 8 TeV.

We apply the following event selections for groomed jets:

Cut 1: (# of groomed jets) ≥ 2, pT1 > 540 GeV, |η1,2| < 2 and |y1 − y2| < 1.2,
Cut 2: (pT1 − pT2)/(pT1 + pT2) < 0.15,
Cut 3 (i):

√
y ≥ 0.45, ntrk < 30,

Cut 3 (ii): |mj − mV | < 13.0 GeV where mW = 82.4 GeV and mZ = 92.8 GeV,

where 
√

y = min(p̂Tj1 , p̂Tj2)�R̂12/m̂12 is the momentum balance, p̂Tj
is the transverse momen-

tum of the two subjets, �R̂12 is the distance between two subjets and m̂12 is the mass of the 
parent groomed jets. ntrk is the number of the charged particle tracks which is associated with 
the original, ungroomed jets.

In the previous analysis in [18], it was assumed that the ρ̃±,3
� has the same ntrk distribution as 

the W ′ signal used in ATLAS (Fig. 1b of Ref. [16]). The charged particle multiplicity and kine-
matic properties are studied in the present analysis and it is confirmed that the two signals have 
consistent charged particle distributions. It is also checked that the combined ntrk cut efficiency 
and scaling factor (0.90 ± 0.08 in Ref. [16] to account for the efficiency difference in data and 
the W ′ simulation) is properly reproduced by the cut on the charged particle track multiplicity. 
In the present analysis, we thus apply the ntrk requirement to the simulated technirho samples 
without any scaling factors.

The Cut 1 and 2 correspond to the event topology requirements in Ref. [16] and the Cut 3 
does to the boson tagging requirements. We find from above event selection Cut 3 (ii) that the 
ρ̃±

�/ρ̃3
�/ρ̃0

P → WW/WZ events may contaminate in the ZZ selection since WW, WZ and ZZ

selections are distinguished only by the jet mass window of the groomed jets. In order to see the 
contamination in the ZZ selection, it is convenient to use the efficiencies of the jet mass window 
cuts in Cut 3 (ii). For this purpose, we divide Cut 3 (ii) into the six categories [84]:

Category A: mW − 13.0 ≤ mj1,j2 ≤ mZ − 13.0,
Category B: mW − 13.0 ≤ min(mj1 , mj2) ≤ mZ − 13.0 and mZ − 13.0 ≤ max(mj1 , mj2) ≤

mW + 13.0,
Category C: mZ − 13.0 ≤ mj1,j2 ≤ mW + 13.0,
Category D: mW − 13.0 ≤ min(mj1 , mj2) ≤ mZ − 13.0 and mW + 13.0 ≤ max(mj1 , mj2) ≤

mZ + 13.0,
Category E: mZ − 13.0 ≤ min(mj1 , mj2) ≤ mW + 13.0 and mW + 13.0 ≤ max(mj1 , mj2) ≤

mZ + 13.0,
Category F: mW + 13.0 ≤ mj ,j ≤ mZ + 13.0.
1 2
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Fig. 3. Results for the signal events after all cuts selected in WW (top row), WZ (middle row) and ZZ (bottom row) 
selections for technirhos with gρππ = 3 (left column), 4 (middle column) and 5 (right column), Fρ = 650 (dotted line), 
550 (solid line), 450 (dashed line) and 250 (dashed–dotted line) at M

ρ̃
±,3
�

= 2 TeV. For comparison, the data given 

in Table 2 are also shown. All the histograms include the ρ̃0
P

contributions with the small mass difference and width 
explained in the text.

The number of events after each cut of signal events from ρ̃±
� , ρ̃3

� + ρ̃0
P are listed in Appendix C. 

The numbers of signal events at 1.85 TeV ≤ mjj ≤ 2.15 TeV, corresponding to three mjj bins 
centered at the mjj = 2 TeV bin, are also shown in Appendix C.

In Fig. 3, we show the signal events in dijet mass distributions/100 GeV bin with WW (top 
panel), WZ (middle panel), ZZ (bottom panel) selections at 

√
s = 8 TeV and the integrated 

luminosity L = 20.3 fb−1 where each signal is the sum of all signal events from ρ̃±
�, ρ̃3

� and ρ̃0
P . 

In Fig. 3, the data given in Table 2 in the WW , WZ and ZZ selections in the dijet mass with 
the mass window 1850 GeV ≤ mjj ≤ 2150 GeV are also shown for comparison. One should 
notice it hard to distinguish ρ̃0

P from ρ̃3
� at the present level of the resolution of the detector 

(100 GeV bin) since the mass difference �M = Mρ̃3
�

−Mρ̃0
P

� (1.6–16) GeV is very small as in 

Eq. (137). In addition, the total decay width of ρ̃0
P , �ρ̃0

P
, is much smaller than �ρ̃3

�
(see Eq. (145)

or Fig. 2). Therefore, the diboson events/100 GeV bin generated from the ρ̃0
P contaminate in the 

2 TeV events from the ρ̃±,3
� . In Fig. 3 the numbers of events in the histograms thus include the 

contribution from the ρ̃0 .
P
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Table 2
The number of events obtained by subtracting the predicted events of the background-only fit from the events observed 
in the WW , WZ, and ZZ selections in each dijet mass bin.

The ATLAS results [16]

mjj bin [GeV] WW selection WZ selection ZZ selection

1850 ≤ mjj ≤ 1950 1.33 ± 2.04 1.88+2.28
−2.29 3.81 ± 2.25

1950 ≤ mjj ≤ 2050 5.16+2.66
−2.67 5.92+2.85

−2.86 2.24+1.74
−1.75

2050 ≤ mjj ≤ 2150 0.7+1.43
−1.44 0.59+1.44

−1.45 0.5 ± 1.01

1850 ≤ mjj ≤ 2150 7.19+3.62
−3.64 8.39+3.89

−3.92 6.55+3.01
−3.02

From Fig. 3 we thus see that the 2 TeV walking technirhos (ρ̃±,3
� , ρ̃0

P ) account for the observed 
excesses in the WW , WZ and ZZ selections, with the DY coupling Fρ in a range,

Fρ = 450–650 GeV
(
Fρ/Mρ = 0.23–0.33

)
, (153)

and the coupling to diboson gρππ ,

gρππ = 3,4,5 , (154)

which controls the total width to be � 100 GeV. Thus, if at the ongoing Run II the excesses grow 
in the diboson channels, but not in the VH channel, then it can be a strong hint of the presence 
of the 2 TeV walking technirhos with the conformal barrier.

6. Summary and discussion

In this paper, we discussed in details the consequences of the conformal barrier, including 
the higher order effects through mixing and transverse W, Z effects, which were not consid-
ered in the previous analysis. We also demonstrated another characteristic feature of our model, 
the gauge invariance of the HLS, the exact symmetry (though spontaneously broken): the HLS 
forbids a possible mixing between the isospin-triplet one-family walking technirho’s, ρi

�, ρi
P , 

which, were it not for the HLS, would mix each other by the explicit breaking of the global 
SU(8)L × SU(8)R symmetry by the SM gauge interaction, thereby affecting the previous analy-
sis. The ρi

� are produced by the Drell–Yan process, while the ρi
P orthogonal to ρi

� are not 
produced by the Drell–Yan process and is totally irrelevant to the diboson processes in the ab-
sence of the mixing. Instead, we newly investigated the small mixing effect of ρ3

� with ρ0
P

(isospin-singlet) through the transverse modes of the W/Z bosons (via W/Z kinetic term mixing 
after mass diagonalization), being of higher order term of O(p4) in the s-HLS chiral perturbation 
theory, which was not considered in the previous studies dealing with only the longitudinal W/Z

modes to treat the W/Z as the “external fields” (not dynamical). We showed that such higher 
order terms are substantially negligible, and the essential features of our previous results, includ-
ing the characteristic smallness of the decay width, remain unchanged thanks to the power of the 
conformal barrier and the HLS, after all the phenomenological analyses were newly performed 
under new setting and inputs.

At the ongoing Run II the excesses could grow in the diboson channels, but not in the VH

channel. If that happens, the new resonance is strongly suggested to be the 2 TeV walking tech-
nirho protected by the conformal barrier and the HLS.
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Several comments are in order:
As noted in Eq. (152), due to the S parameter constraint, the large Fρ requires a large Fa1 , 

DY coupling of techni-a1 having the same mass �2 TeV as the technirho. This implies that the 
techni-a1 meson at 2 TeV can be sufficiently produced through the DY process, to be discovered 
at the LHC Run-II. LHC discovery channels of the techni-a1 mesons will be pursued in another 
publication.

Our model includes charged vector bosons (ρ±
�, ρ±

P ) which are allowed to couple to 
electroweak gauge bosons and the Higgs (technidilaton φ) such as ρ+

�,P –ρ−
�,P –Z/γ and 

ρ+
�,P –ρ−

�,P –φ, so one might suspect that their radiative corrections could affect the Higgs cou-
pling property, say, the Higgs coupling to diphoton. However, it is not the case, since the relevant 
process receives non-decoupling contributions, the effective theory estimate should be equiva-
lent to the estimate based on the ultraviolet (UV) completion, namely the underlying walking 
technicolor, which has actually been already done in Refs. [4,5], shown to be consistent with 
the current Higgs data. In fact, explicit evaluation shows that the techni-ρ loop contribution is 
negligibly small compared with the UV completed estimate [4,5], due to the suppression of the 
ρ+

�,P –ρ−
�,P –γ coupling by a factor of x ∼ (mW/Mρ) ∼ O(10−2–10−1) (see Eq. (134)), thanks 

to the HLS invariance. Of course, the effective theory estimate of such non-decoupling quantities 
should include not just the techni-ρ loop but also all the possible composite states contributions, 
which, if done properly, would match the UV completed estimate of the Refs. [4,5] anyway, as it 
naturally be expected.

As seen from Fig. 2 a large region of the model-parameter space has already been strongly 
constrained by the present 8 TeV data. The upcoming LHC-Run II data will further squeeze 
the parameter space. Among constraints, the most severe bound has presently come from the 
WZ(lνJ ) channel, σ8TeV × Br � 9.5 fb, which constrains the DY coupling Fρ to be � 650 GeV
(see Eq. (140)). Recently ATLAS and CMS Collaborations released preliminary results from 
13 TeV data collected in LHC Run 2 on the diboson WZ(lνJ ) channel [85,86]. The resulting 
σ ×BR limits from 3.2 fb−1 (ATLAS) [85] and 2.2 fb−1 (CMS) [86] data are similar between the 
two experiments (given the difference of the collected luminosities). The ATLAS result shows 
improved sensitivity with respect to the σ8TeV × Br limit scaled by the parton luminosity ratio 
between 8 and 13 TeV for the DY processes. More data at 13 (or future 14) TeV LHC could be 
enough to prove or disprove the present model.
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Appendix A. Expanding the s-HLS Lagrangian in terms of the mass-eigenstates

In this appendix we diagonalize the gauge sector in the s-HLS Lagrangian including the dy-
namical SM gauges and possible higher order corrections in the derivative expansion.

The starting Lagrangian relevant to the present analysis is:

Ls-HLS = χ2F 2
π

(
tr[α̂2⊥μ] + atr[α̂2‖μ]

)
− 1

2g2
tr[V 2

μν] − 1

2g2
W

tr[W 2
μν]

− 1
2

tr[B2
μν] +L4 , (A.1)
2gY
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L4 = z3tr[V̂μνV
μν] − iz4tr[Vμνα̂

μ
⊥α̂ν⊥] + iz5tr[Vμνα̂

μ
‖ α̂ν‖ ]

+ iz6tr[V̂μνα̂
μ
⊥α̂ν⊥] + iz7tr[V̂μνα̂

μ
‖ α̂ν‖ ] − iz8tr[Âμν(α̂

μ
⊥α̂ν‖ + α̂

μ
‖ α̂ν⊥)] . (A.2)

In the unitary gauges for the HLS and chiral symmetry, we have (τ i = σ i/2)

Wμ = Wi
μτ i , Bμ = Bμτ 3 ,

Vμ = g

2

(
(ρi

�μτ i + 1
2
√

3
ρ0

Pμ · 12×2) × 13×3 0

0 ρi
�μτ i − 3

2
√

3
ρ0

Pμ · 12×2

)
, (A.3)

α̂⊥μ =Aμ = 1

2

(
(gY Bμτ 3 − gWWi

μτ i) × 13×3 0

0 (gY Bμτ 3 − gWWi
μτ i)

)
, (A.4)

α̂‖μ = Vμ − Vμ

= 1

2

(
(gWWi

μτ i + gY Bμ(τ 3 + 1
3 12×2)) × 13×3 0

0 gWWi
μτ i − gY Bμ(1 − τ 3)

)
− Vμ ,

(A.5)

where we have focused only on the color-singlet vector and axialvector fields relevant to the 
LHC diboson study and discarded terms involving the color-singlet isospin-triplet ρi

P since they 
do not couple to the electroweak sector up to the cubic order in fields, due to the orthogonality 
reflected by the HLS gauge invariance (see text).

A.1. Diagonalization at O(p2)

At the leading order of the derivative expansion, O(p2), substituting the above expressions 
into the Lagrangian Eq. (A.1), we find the mass matrices for the charged and neutral vector boson 
sectors (M2

CC and M2
NC ),

LO(p2)
mass =

(
W+

μ

ρ+
�μ

)T

·M2
CC ·

(
W+

μ

ρ+
�μ

)
+ 1

2

⎛
⎜⎜⎝

W 3
μ

ρ3
�μ

Bμ

ρ0
Pμ

⎞
⎟⎟⎠

T

·M2
NC ·

⎛
⎜⎜⎝

W 3
μ

ρ3
�μ

Bμ

ρ0
Pμ

⎞
⎟⎟⎠ , (A.6)

M2
CC = g2v2

EW

4

[
(1 + a)x2 −ax

−ax a

]
, (A.7)

M2
NC = g2v2

EW

4

⎡
⎢⎢⎢⎢⎣

(1 + a)x2 −ax −(1 − a)tx2 0

−ax a −atx 0

−t (1 − a)x2 −atx (1 + 7
3a)t2x2 − 2√

3
atx

0 0 − 2√
3
atx a

⎤
⎥⎥⎥⎥⎦ (A.8)

Since x = gW/g ∼ mW/Mρ � 1, one may diagonalize the mass matrices by expanding terms in 
powers of x.
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Thus the charged sector can be diagonalized by the orthogonal rotation R(2)
CC ,

R
(2)
CC =

[
1 x

−x 1

]
+O(x2) ,

(
W+

μ

ρ+
�μ

)
= R

(2)
CC ·

(
W̄+

μ

ρ̄+
�μ

)
, (A.9)

with the corresponding eigenvalues

m2
W̄

= g2
Wv2

EW

4

(
1 +O(x2)

)
= m2

W

(
1 +O(x2)

)
, (A.10)

M2
ρ̄±

�

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (A.11)

where we have defined

m2
W = g2

Wv2
EW

4
, M2

ρ = ag2v2
EW

4
. (A.12)

Similarly for the neutral sector, one can easily find

R
(2)
NC =

⎡
⎢⎢⎢⎢⎣

c s −cρx sρx

c(1 − t2)x 2sx cρ −sρ

−sρ cρ −
(
cρ + 2√

3
sρ

)
tx −

(
2√
3
cρ − sρ

)
tx

− 2√
3
ct2x 2√

3
sx sρ cρ

⎤
⎥⎥⎥⎥⎦+O(x2) , (A.13)

⎛
⎜⎜⎜⎝

W 3
μ

ρ3
�μ

Bμ

ρ0
Pμ

⎞
⎟⎟⎟⎠= R

(2)
NC ·

⎛
⎜⎜⎜⎜⎝

Z̄3
μ

Āμ

ρ̄3
�μ

ρ̄0
Pμ

⎞
⎟⎟⎟⎟⎠ ,

with the corresponding eigenvalues:

m2
Z̄

= g2
Wv2

EW

4c2

(
1 +O(x2)

)
= m2

Z

(
1 +O(x2)

)
, (A.14)

m2
Ā

= 0 , (A.15)

M2
ρ̄3

�

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (A.16)

M2
ρ̄0

P

= ag2v2
EW

4

(
1 +O(x2)

)
= M2

ρ(1 +O(x2)) , (A.17)

where we defined

m2
Z = m2

W

c2
= g2

Wv2
EW

4c2
. (A.18)

In Eq. (A.13) we have defined the mixing angles as

t = gW

gY

, c = 1√
1 + t2

, s =
√

1 − c2 , (A.19)

cρ = 1√
2

√√√√ (3 − t2) +√(3 − t2)2 + 48t4√
(3 − t2)2 + 48t4

, sρ =
√

1 − c2
ρ . (A.20)
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A.2. Diagonalization at O(p4)

Inclusion of the O(p4) terms gives rise to the kinetic term mixing through the z3 term in 
Eq. (A.2) as

L(2)+(4)
kin = −

(
W̄+

μ

ρ̄+
�μ

)T

· Dμν ·KCC ·
(

W̄−
ν

ρ̄−
�ν

)
− 1

2

⎛
⎜⎜⎜⎝

Āμ

Z̄μ

ρ̄3
�μ

ρ̄0
Pμ

⎞
⎟⎟⎟⎠

T

· Dμν ·KNC ·

⎛
⎜⎜⎜⎝

Āν

Z̄ν

ρ̄3
�ν

ρ̄0
Pν

⎞
⎟⎟⎟⎠ ,

(A.21)

where Dμν = −∂2gμν + ∂μ∂ν and

KCC =
[

1 −g2z3x

−g2z3x 1

]
+O(x2) , (A.22)

KNC =

⎡
⎢⎢⎢⎣

1 0 KAρ� KAρP

0 1 KZρ� KZρP

KAρ� KZρ� 1 0

KAρP
KZρP

0 1

⎤
⎥⎥⎥⎦+O(x2) , (A.23)

with

KAρ� = −2s

(
cρ + 1√

3
sρ

)
x , (A.24)

KAρP
= 2s

(
sρ − 1√

3
cρ

)
x , (A.25)

KZρ� = −c

(
cρ −

(
cρ + 2√

3
sρ

)
t2
)

x , (A.26)

KZρP
= c

(
sρ −

(
sρ − 2√

3
cρ

)
t2
)

x . (A.27)

The kinetic term mixing for the charged sector can be diagonalized by the orthogonal rotation 
OCC :

OCC = 1√
2

[
1 + x

2 1 − x
2

−1 + x
2 1 + x

2

]
+O(x2) ,

(
W̄−

ν

ρ̄−
�ν

)
=OCC

(
Ŵ−

ν

ρ̂−
�ν

)
, (A.28)

with the eigenvalues

kW = 1 − g2z3x , kρ±
�

= 1 + g2z3x . (A.29)

After canonically normalizing the fields as Ŵ(ρ̂�) →√
kW(ρ�)Ŵ (ρ̂�), one gets the mass matrix 

for the charged sector at the O(p4),

M2
CC

∣∣∣∣∣
O(p4)

= g2v2
EW

4

(
OT

CC ·
(

1 + g2z3
2 x 0

0 1 − g2z3
2 x

))T

·
[

x2 0

0 (1 + x2)a

]

×
(
OT

CC ·
(

1 + g2z3
2 x 0

0 1 − g2z3 x

))
. (A.30)
2
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This can be diagonalized by the orthogonal rotation,

UCC = 1√
2

(
−1 + g2z3−1

2 x 1 + g2z3−1
2 x

1 + g2z3−1
2 x 1 − g2z3−1

2 x

)
+O(x2) ,

(
Ŵ±

μ

ρ̂±
�μ

)
= UCC ·

(
W̃±

μ

ρ̃±
�μ

)
,

(A.31)

with the mass eigenvalues which are the same as in Eqs. (A.10) and (A.11) up to corrections 
of O(x2). Using Eqs. (A.9), (A.28) and (A.31), we see that in the charged sector the gauge 
eigenstates (W±

μ , ρ±
�μ) are related to the mass eigenstates (W̃±

μ , ρ̃±
�μ) at O(p4) as

(
W±

μ

ρ±
�μ

)
=
[

−1 −(1 − g2z3)x

−x 1

](
W̃±

μ

ρ̃±
�μ

)
, (A.32)

up to components of O(x2). Note that this transformation is not orthogonal because both the 
kinetic and mass mixing cannot simultaneously be diagonalized by the same orthogonal rotation 
matrix.

Similarly for the neutral sector, we see that the gauge eigenstates (W 3
μ, ρ3

�μ, Bμ, ρ0
P ) are 

related to the mass eigenstates (Z̃μ, Ãμ, ρ̃3
�μ, ρ̃0

Pμ) at O(p4) as

⎛
⎜⎜⎜⎜⎝

W 3
μ

ρ3
�μ

Bμ

ρ0
Pμ

⎞
⎟⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

c s −(1 − g2z3)cρx (1 − g2z3)sρx

c(1 − t2)x 2sx cρ −sρ

−s c −(1 − g2z3)(cρ + 2√
3
sρ)tx (1 − g2z3)(sρ − 2√

3
cρ)tx

− 2√
3
ct2x 2√

3
sx sρ cρ

⎤
⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎝

Z̃μ

Ãμ

ρ̃3
�μ

ρ̃0
Pμ

⎞
⎟⎟⎟⎟⎠ , (A.33)

up to components of O(x2). The mass eigenvalues are the same as those given in Eqs. (A.14)–
(A.17) up to corrections of O(x2). Note, again, that the transformation in Eq. (A.33) is not 
orthogonal because both the kinetic and mass mixing cannot simultaneously be diagonalized by 
the same orthogonal rotation matrix.

Appendix B. The partial decay widths

In this appendix we give the analytic formulae for the ρ̃±,3
� and ρ̃0

P decay widths.

• The decays to the SM fermions:

�(ρ̃� → ψψ̄) = N
(ψ)
c

12π

[
(A

ψ
V )2

(
1 + 2m2

ψ

M2
ρ

)
+ (A

ψ
A)2

(
1 − 4m2

ψ

M2
ρ

)]√
M2

ρ − 4m2
ψ,

(B.1)
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�(ρ̃P → ψψ̄) = N
(ψ)
c

12π

[
(B

ψ
V )2

(
1 + 2m2

ψ

M2
ρ

)
+ (B

ψ
A )2

(
1 − 4m2

ψ

M2
ρ

)]√
M2

ρ − 4m2
ψ,

(B.2)

�(ρ̃+
� → ψuψ̄d) = N

(ψ)
c

48π
|cL|2 2M4

ρ − (m2
ψu + m2

ψd
)M2

ρ − (m2
ψu

− m2
ψd

)2

M4
ρ

×
√

(M2
ρ − (mψu + mψd

)2)(M2
ρ − (mψu − mψd

)2)

Mρ

, (B.3)

• The decays to weak bosons:

�(ρ̃�,P → W̃W̃ ) = 1

192π

(
Mρ

mW

)4 (M2
ρ − 4m2

W)3/2

M2
ρ

×
[

12g
ρ̃W̃W̃

g
W̃W̃ ρ̃

(
mW

Mρ

)2

+ g2
ρ̃W̃ W̃

(
1 + 4

(
mW

Mρ

)2
)

+ 4g2
W̃W̃ ρ̃

{(
mW

Mρ

)2

+ 3

(
mW

Mρ

)4
}]

, (B.4)

�(ρ̃±
� → W̃±Z̃) = 1

192π

(
M2

ρ

mWmZ

)2

×
[
(M2

ρ − (mW + mZ)2)(M2
ρ − (mW − mZ)2)

]3/2

M5
ρ

×
[

6

{
g

ρ̃�W̃Z̃
g

Z̃W̃ ρ̃�

(
mZ

Mρ

)2

− g
ρ̃�W̃Z̃

g
W̃Z̃ρ̃�

(
mW

Mρ

)2

− g
W̃Z̃ρ̃�

g
Z̃W̃ ρ̃�

(
mW

Mρ

)2(
mZ

Mρ

)2
}

+ g2
ρ̃�W̃ Z̃

{
1 + 2

(
mW

Mρ

)2

+ 2

(
mZ

Mρ

)2
}

+ g2
W̃ Z̃ρ̃�

(
mW

Mρ

)2
{

2 +
(

mW

Mρ

)2

+ 2

(
mZ

Mρ

)2
}

+ g2
Z̃W̃ ρ̃�

(
mZ

Mρ

)2
{

2 + 2

(
mW

Mρ

)2

+
(

mZ

Mρ

)2
}]

. (B.5)

Appendix C. The breakdown of signal events

In this appendix we give a list of tables (3, 4 and 5) to present the number of events for the 
2 TeV walking technirho signals after each cut selection applied described in the text.
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Table 3
The number of events for gρππ = 3.

gρππ = 3 Fρ = 650 GeV Fρ = 550 GeV Fρ = 450 GeV Fρ = 250 GeV

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

Total events 68.77 38.30 50.38 28.28 34.41 19.46 10.95 6.28

After Cut 1 48.50 27.13 35.57 20.00 24.29 13.66 7.79 4.45
After Cut 2 47.87 26.83 35.12 19.75 24.03 13.48 7.69 4.40
After Cut 3 (i) 15.93 9.74 11.71 7.31 8.00 4.87 2.72 1.58

1050 GeV ≤ mjj ≤ 3550 GeV
After Cut 3 (ii) (WW = A + B + C) 8.60 6.76 6.28 5.10 4.19 3.47 1.46 1.12
After Cut 3 (ii) (WZ = B + C + D + E) 11.66 5.89 8.67 4.56 5.85 3.05 2.00 0.98
After Cut 3 (ii) (ZZ = C + E + F) 6.37 2.37 4.60 1.74 3.22 1.27 1.12 0.38

1850 GeV ≤ mjj ≤ 2150 GeV
After Cut 3 (ii) (WW = A + B + C) 7.49 6.19 5.63 4.71 3.73 3.19 1.32 1.03
After Cut 3 (ii) (WZ = B + C + D + E) 10.25 5.41 7.77 4.18 5.25 2.80 1.80 0.90
After Cut 3 (ii) (ZZ = C + E + F) 5.64 2.13 4.12 1.59 2.89 1.18 1.01 0.33

Table 4
The number of events for gρππ = 4.

gρππ = 4 Fρ = 650 GeV Fρ = 550 GeV Fρ = 450 GeV Fρ = 250 GeV

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

Total events 70.47 39.80 51.18 29.05 34.63 19.77 10.91 6.28

After Cut 1 49.49 28.45 36.70 20.79 24.60 14.04 7.76 4.44
After Cut 2 48.97 28.06 36.31 20.51 24.30 13.87 7.66 4.39
After Cut 3 (i) 16.21 10.09 12.27 7.52 8.49 5.14 2.60 1.58

1050 GeV ≤ mjj ≤ 3550 GeV
After Cut 3 (ii) (WW = A + B + C) 8.56 7.18 6.36 5.26 4.55 3.60 1.36 1.13
After Cut 3 (ii) (WZ = B + C + D + E) 11.66 6.13 8.82 4.69 6.26 3.18 1.87 0.98
After Cut 3 (ii) (ZZ = C + E + F) 6.39 2.43 4.80 1.81 3.25 1.29 1.04 0.40

1850 GeV ≤ mjj ≤ 2150 GeV
After Cut 3 (ii) (WW = A + B + C) 7.13 6.30 5.36 4.56 3.92 3.12 1.18 0.97
After Cut 3 (ii) (WZ = B + C + D + E) 9.84 5.39 7.48 4.08 5.44 2.76 1.61 0.85
After Cut 3 (ii) (ZZ = C + E + F) 5.41 2.11 4.12 1.58 2.82 1.08 0.89 0.34

Table 5
The number of events for gρππ = 5.

gρππ = 5 Fρ = 650 GeV Fρ = 550 GeV Fρ = 450 GeV Fρ = 250 GeV

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

Total events 70.85 40.34 51.15 29.24 34.41 19.79 10.78 6.23

After Cut 1 50.73 28.72 36.60 21.09 24.44 14.06 7.64 4.45
After Cut 2 50.05 28.26 36.14 20.81 24.14 13.89 7.54 4.39
After Cut 3 (i) 17.17 10.55 12.57 7.60 8.29 4.96 2.59 1.56
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Table 5 (continued)

gρππ = 5 Fρ = 650 GeV Fρ = 550 GeV Fρ = 450 GeV Fρ = 250 GeV

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

ρ̃±
� ρ̃3

� + ρ̃0
P

1050 GeV ≤ mjj ≤ 3550 GeV
After Cut 3 (ii) (WW = A + B + C) 8.95 7.42 6.27 5.28 4.29 3.48 1.36 1.07
After Cut 3 (ii) (WZ = B + C + D + E) 12.48 6.59 9.16 4.84 6.16 3.03 1.92 0.96
After Cut 3 (ii) (ZZ = C + E + F) 6.73 2.46 4.87 1.99 3.34 1.19 1.08 0.38

1850 GeV ≤ mjj ≤ 2150 GeV
After Cut 3 (ii) (WW = A + B + C) 7.17 6.24 5.11 4.36 3.49 2.88 1.09 0.89
After Cut 3 (ii) (WZ = B + C + D + E) 10.04 5.57 7.29 3.98 4.97 2.50 1.53 0.79
After Cut 3 (ii) (ZZ = C + E + F) 5.30 2.03 3.90 1.61 2.64 1.00 0.86 0.31
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