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Abstract 

Consider a set of coins where each coin is either of the heavy type or the light type. The 
problem is to identify the type of each coin with minimal number of weighings on a balanced 
scale. The case that only one coin, called a counterfeit, has a different weight from others, is 
a classic mathematical puzzle. Later works study the case of more than one counterfeit, but the 
number of counterfeits is always assumed known. Recently, Hu and Hwang gave an algorithm 
which does not depend on the knowledge of the number of counterfeits, and yet perform 
uniformly good whatever that number turns out to be in the sample considered. Such an 
algorithm is known as a competitive algorithm and the uniform guarantee is measured by its 
competitive constant. Their algorithm has competitive ratio 21og23. In this paper, we give 
a new competitive algorithm with competitive ratio log 2 3 + ½. 

l .  Introduction 

Consider a set of n coins which contains d light coins and n - d heavy coins (the 
cases, d is known or unknown are considered as two different models). We want to 
sort the coins by using a balance scale and call a test every time of using the balance 

scale. The problem is how to arrange the tests in order to identify the d light coins and 

n - d heavy coins by using minimum number of tests. 
Let MA(n:d)(MA(n,d)) denote the maximum number of tests required by an 

algorithm A to sort a (n, d) problem when d is unknown (known) before testing. Let 

M(n :d) -- rain MA (n:d) 
A 

(M(n,d) = min M a(n, d)) 
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An algorithm A is called a c-competitive algorithm if there exits a constant b such 
that for all 0 < d < n, 

MA(n:d) <~ c-MA(n, d) + b 

and c is called the competitive ratio. 
Hu and Hwang 1'5] first proposed a bisecting algorithm with a competitive ratio 

3 log2 3. Soon after, Hu et al. 1'4] discovered a doubling algorithm with competitive 
ratio 2 logz 3. In this paper, we present a new doubling-backtracking algorithm with 
competitive ratio log2 3 + ½. 

2. Preliminaries 

The analysis of competitive ratio involves both lower-bound and upper-bound 
problems. In this section, we first list some results about the lower-bound for MA(n:d) 

and M A(n, d). 
Hu and Hwang I'5] gave a lower-bound for MA(n, d): 

Lemma 2.1. 

( n ~_3_) log2d 0.567 1 d 
log2~ + log2 MA(n,d) l > ~  21og23 1og23 2" 

Cairns [1] discovered an optimal algorithm to find the single counterfeit in a set of 
coins, when it is known before testing there is only one counterfeit. 

Lemma 2.2. M(n, 1) = [-logan']. 

Hu and Hwang [3] also gave the value of M(n: 1). 

Lemma 2.3. M(n: 1) = [-Iog2n']. 

For convenience we assume that the value of function d log2 ~ at d = 0 is 0 because 
limd,o d logz fl = 0. The following lemma, given by Du and Park [3], is an important 
tool for analysis [2]. 

Lemma 2.,1. Let d = di 4- dz and n = nl + n2 where dt >I O, de ~ O, n| > 0 and nz > O. 
Then 

d ,  nl n2 ~ dlogzd" i logz~-~( + d2 log., d22 
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3. Algorithms 

A set of coins are called uniform if they are all of the same type, and called unique if 
there is only one exception. We also use the modifier "heavy" and "light" to specify the 
type of the majority of coins in a uniform or unique set. For a set of S of coins, ISI 
denotes the cardinality of S and I)SI[ denotes the total weight of coins in S. Let X and 
Y be two nonempty sets of coins, then a comparison between X and Y means to 
compare X' _ X with Y' ~_ Y such that IX'I = I Y'I and either X' = X or Y' = Y. In 
other wor~s, we compare two largest equinumerious subsets of X and Y. A compari- 
son can have three possible outcomes: [IX'l[ = I)Y'I[, IIX'[I > [IY'II, IlX'll < IIY'[I. We 
say the comparison yields equality for the first outcome, and yields inequality for the 
other two inequalities. A comparison path of a procedure is the series of comparison 
outcomes in the testing order. 

The idea of our doubling-backtracking algorithm is as follows: The algorithm 
compares two sets of size 2 i (i = 0,1, 2 . . . .  ). If  the comparison yields equality, we get 
a uniform set of size 2 i+ t by merging the two sets and then we fetch a disjoint set of size 
2i+ l to compare the two sets of size 2 ~+ t. If the comparison yields inequality, we can 
identify the type of the previous uniform set of size 2 i. We then use a ~ g  algorithm 
on the other set of size 2 i to find at least one coin of different type. We then backtrack 
the comparison path for the bisecting procedure to explore as much information as 
possible from the comparison path. After the backtracking, we either end our algo- 
rithm, or start another cycle of doubling, or continue the doubling comparison of size 
2 i (not 2 i+ 1) until the next inequality yield appears, which is dealt in the same way. 

We first describe some variables used in the algorithm: 

S: the input set of coins 
U: all the coins of unknown type (initially is S) 
L: all identified light coins (initially is empty) 
H: all identified heavy coins (initially is empty) 
Continue: a boolean variable indicating the actions a f t ra  backtracking (continue 

one main loop or restart another main loop). 
n: a linked list representing the comparison path for a bisecting procedure. Each 

element is of form I-X~ ? XI],  where ? could be > ,  = or < ,  which corresponds 
to a result of comparison between X~ and X~. Two neighbouring elements, say 
... [X'I ? X 1] ~ [X~ 9. X2] . . . .  have the relation X ~ = X~ u X2. 

We now describe some procedures that will be used by our algorithm. 

3.1. UNIQUE-L and UNIQUE-H 

The procedure UNIQUE-L (UNIQUE-H) takes as input a light (heavy) unique set 
of coins and use the algorithm given by Cairns [1] to identify the types of all coins in 
the input. We only give the code for UNIQUE-L here. The code for UNIQUE-H is 
similar. 
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Procedure UNIQUE-L(X);  
Use the algorithm of Cairns [1] on X and let x be the light coin; 
L : =  Lu{x};  
n : =  H u t X  - {x}); 
u : =  u - x ;  

end-procedure 

3.2. DIG-L, DIG-H 

Tile procedure D I G - L  (DIG-H) takes as input the set X containing at least one 
light (heavy) coin and use the bisecting method to find one light (heavy) coin. Here 
also we give the code only for DIG-L.  The code for D I G - H  is similar. Notice that in 
DIG-L,  when I X'I < [ X"I and IIX' u {h} [I = [I X"tl, next time we test on X" rather than 
on X'. This choice has great importance in our  analysis. 

Procedure DIG-L(X);  
~ : ~  ~.; 

repeat 
I i i P l !  

x' :--I from x ;  

X" := X - I X ' ;  
if IX'l < IX"l 
then pick up a heavy coin h and compare X ' u  {h} with X"; 

else compare X'  to X"; 
if (IX'I = IX"I and IIX'll < IIX"I[) or (IX'l < IX"l and I IX'u  {h}ll < ]IX"II) 
then X := X'; 

:= ~ -~ IX" > X"l; 
else if (IX'l = IX"l and [IX'[[ = [IX"ll) or (IX'l = IX"l and IIX'u{h}lt < I[X"ll) 

then X := X", 
re:= ~ - -  CX' = X"]; 

else X := x"; 

n := n ~ CX' > X"]; 
until X is a singlton; 

end-procedure 

3.3. TEST-L, TEST-H 

The procedure TEST-L (TEST-H) takes as input a set X of coins and compares 
X with a heavy (light) unique set of coins of same size to determine whether X is heavy 
(light) uniform, or heavy (light) unique, or neither. According to the comparison, it will 
determine whether to continue the current cycle or not. 
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Procedure TEST-L(X): BOOLEAN; 
choose Y from the identified coins, s.t. Y is heavily unique and I Y[ = IX[; 
Compare Y with X: 

case IIXll > tlgll: 
H :=  H w X ;  

U:= U - X ;  
if IOl > 0 
then return TRUE; 
else return FALSE; 

case IIXll = II YII: 
UNIQUE-L(X); 
then return TRUE; 
else return FALSE; 

case IlXl[ < II YII: 
return FALSE; 

end-procedure 

3.4. BACKTRACK-L, BACKTRACK-H 

The procedure BACKTRACK-L (BACKTRACK-H) takes as input a set X of coins 
and the comparison path ~ for procedure DIG-L(X) (DIG-H(X)). It tries to explore as 
much information as possible from the comparison path ~. 

Procedure BACKTRACK-L(X, it): BOOLEAN 
/ .  Consider the number of equality yields and inequality yields in l r , /  
Case 1: n contains 0 equality yield. 

/ ,  This implies X is heavily unique , /  
Suppose ~ is ... [{y'} > {y}]. 
H : =  X u t x  - {y}); 
L:= Lu{y}; 
U:= U - X ;  

if IVl > 0 
then return TRUE; 
else return FALSE; 

Case 2: ~ contains 0 inequality yield: 
/ ,  This implies X is lightly uniform , /  
L:=  L u X ;  

U:= U - X; 
return FALSE; 

Case 3: it contains 1 equality yield and 1 + inequality yields. 
/ ,  consider the position of the equality in ~ , /  
Case 3.1: The equality is in the first position in ~. 

Suppose ~ is [x~ = x , l  . . . . .  [{y'} > {y}]. 
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/* this implies both X, and X[ are heavily unique. , /  
H:-- H u ( X ,  - {y}); 
L : = L u { y } ;  

U:=  U - X ' ~ ;  
UNIQUE-L(X~); 
if IUI > 0 
then return TRUE; 
else return FALSE; 

Case 3.2: The equality yield is in some middle position in ~. 
Suppose n is . . . .  [Xi  = X , ]  . . . . .  [{y'} > {y}] 
/ ,  This implies both XI and X~ are heavily unique. , /  
H : =  H u ( X ,  - {y}); 
L : =  L u { y } ;  
U : =  U - X' , ;  

UNIQUE-L(X~); 
return TEST-L(X - (X, uX~)); 

Case 3.3: The equality yield is in the last position in ~t. 
if IXI = 3 
then compare the other coin, say z, with an identified coin: 

if z is light 
then L := L u X ;  

U := U - X;  

else L : =  L u ( X  - {z}); 
H : = H u { z } ;  

U : = U - X ;  

return FALSE; 
if IxI  - -  4 
then compare the other two coins, say z and z': 

if the yield is equality 
then L : =  L u ( X  - {z, z'}); 

n : =  nu{z,z '};  
rise w.l.o4., say iiZll > IIzll: 

L : ~  L u ( x  - {z'}); 
H:~- Hu {z'}; 

U : =  U - X ;  

if IUl > 0 
then return TRUE; 
else return FALSE; 

if IXI > 4 
then suppose it is . . . .  [{y '}  = {y}] ;  

L : =  L u  {y,y'}; 
v : =  u - {y, y'}; 
Continue:= TEST-L(X - {y, y'}); 
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if ]XI is not a power of 2 and Continue = FALSE 
then remm TEST-H(X - {y,/});  
else return Continue; 

Case 4: lr contains 2 + equality yields and 1 + inequality yields. 
Case 4.1: x contains 2 + consecutive equality yields in the end. 

Suppose ~ is . . . .  [X~ > XI ]  ~ [. = .] . . . . .  [. = .], then 
L:= L u X ~  
U := U -  X~; 
return FALSE; 

Case 4.2: 7r contains only 1 equality yield in the end 
Suppose ~ is dots ~ [{y'} = {y}], then 
L : = L u { y , y ' } ;  
v : - -  v - {y ,y} ;  
if IXl is a power of 2 
then return TRUE; 
else return TEST-H(X - {3, y'}); 

Case 4.3: it contains 2 + consecutive inequality yields in the end 
Suppose lr is . . . .  [X~ = X l ]  ~ [- > .] . . . . .  [{y'} > {y}], then 
H:= H~(X, - {y}); 
c : =  c u { y } ;  

U := U - X, ;  
UNIQUE-L(X~); 
return FALSE; 

Case 4.4: lr contains only 1 inequality yield in the end 
Suppose lr is . . . .  [X~ = X~] ~ [{y'} > {y}] 
if IX~l = 1 
then X~ is light; 

L:= L u X ' l  u{y}; 
H:= H u  {y'}; 
U:= U -  (X~ u X , ) ;  

if IX]l = 2 

then compare the two coins in X] ,  say z and z'. 

w.l.o.g, suppose IIz'll > Ilzll 
L : f  Lu{y , z } ;  
H:= Hu{y' ,z '};  
U:= U -(X, uX;); 

if IX[ is a power of 2 
then return FALSE; 
else return TEST-H(X - (X~ uX~)); 

end-procedure 
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3.5. Algorithm 

The Algorithm A keeps doubly comparing until an inequality yield appears. 
Whenever an inequality yield appears, a pair of calls of DIG and BACKTRACK will 
be used to explore as much information as possible from the previous tests. In each 
while-loop, the following test will compare an unidentified set with a unique set. 
Notice that in the repeat-loop in Case 2, k is incremented only when Y is uniform. So 
in this repeat-loop, all other ca~es that return a TRUE value to Continue could be 
regarded as the 'interludes" in the main algorithm. 

Now we give the algorithm as follows. 

Algorithm A. 
input S; 
L :=O;  
H : =  0; 
U : =  S; 
while [U[ > 2 do 

X := one coin from U; 
U : =  U - X ;  
k:=O;  
repeat 

Y:=  min {2 k, ISl} coins from U; 
X ' : -  [YI coins from X; 
compare Y with X'; 

i f  IIX'[i = it g[[ 
then X := X w Y; 

U := U - Y; 
k : = k +  1; 

until  IIX'll = t)YII or U = 0 .  
Case 1: U = O: 

If  there is any unidentified coin 
then use one more comparison to identify the type of X; 

i f  X is heavy 
then H : =  H w X ;  
else L:= L u X ;  

else S is uniform. 
Case 2: IIX'it > tJgll: 

H:= H w X ;  

i f  [)"~ = 1 
then L :=  L w Y; 

U : = U - Y ;  

i f  )UI = 0 
then stop; 
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else break;/* restart another while-loop , /  
else ~ := DIG-L(Y); 

Continue := BACKTRACK-L( Y, ~); 
if Continue = TRUE 
theu repeat 

Y:= min{2 k, IUI} coins from U; 
Continue := TEST-L(Y); 
if Continue = TRUE 
then 7~ := DIG-L(Y); 

Continue := BACKTRACK-L(Y, ~); 
else if Y is uniform 
then k:= k + 1; 

until Continue = FALSE; 
Case 3: {IX'l{ < I[Yll- 

/* similar to case 2 , /  
end-while 
if IUI = l 
then compare U with an identified coin; 

if U is heavy 
then H:= H u U ;  
else L:= L~JU; 
U:= 0; 

end-algoritkm 

4. Analysis 

Next, we analyze Algorithm A. 
For any set X coins, we denote: 

f ( n , d ) ~ - ( 1  + ½10g22)dlog2~ + 1.5d. 

d& min {d, n - d } .  
Lx & the light coins in X, 
Hx & the heavy coins in X, 
dx & the number of light coins in X. 
Let S be the original input set ofcoins. From the symmetry of Algorithm A, we have 

Ma(n: d) = M .4(n:n - d). 

So we can denote 

MA(n:J)&MA(n:d)=M~(n:n-d). 
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The following lemmas are fundamental  to the inductive proof  of our  main result. 

L e m m a  4.1. For any subset Y of  X,  the following hold: 

¢1) ,/y + dx_r ~< d,,; 

(2) f(lYI, ~r) + f ( l X  - YI, C/x-r) ~< f(lX[, dx)- 

Proof. (1)W.i.o.g., suppose i lx=lLxl .  Since d r ~ l L r [ ,  
[Lr[ + ILx-r l  = [Lxl, 

dr + ~ x - r  ~< ILrl + [Lx-r l  = ILxl = Clx 

(2) It follows i,~mediately from (1) and Lemma 2.4. [ ]  

dx-  r <~ [Lx- rl and 

L e m m a  4.2. Consider a path lr returned by DIG-L. 
(1) Suppose I X  > Y] is in it, then [Hxl >1 [Hr[; 
(2} Suppose IX  -~ Y] io ;,, ,,, :~;en ',Hx[ ~ IH~.[ - !, ]Lx[ = [Lr[. 

Proof.  (1): If IX[ = IY[, then IHxl > [Hr[. 
I f lXI  < IYI, then IHxl + 1 > IHrl, hence [Hxl >1 IHr[. 
If [XI = [Y[, then [Hx[ > IHr[ + 1 > IHrl. 
{2): If IX[ = IYI, then [Hx[ > [Hr[ and ]Lxl = [Lrl. 
if IXI < IYI, then IHxl + 1 = l H r l  hence IHxl >i I H r l -  1. It is obvious that 

[Lxl = ILr[. 
If [XI > [Y[, then IHx[ -- [Hrl + 1 >i [Hrl - 1. It is obvious that ILx[ = [Lr[. [ ]  

The following lemma considers the "interlude' cases at the end of which Continue is 
assigned with T R U E  value. 

L e m m a  4.3. Consider the procedure B A C K T R A C K - L ( X ,  ~). I f  Continue gets the 
T R U E  return value, then the following hold: 

(1) All coins in X are identified and lhere are still some unidentified coins in the input 
set of  coins; 

(2) ISl = 2k for some k > 1; 
(3) X contains at most 3 light coins; 
(4) The total number of  tests to identify X, including the first test finding X containing 

light coins, the tests in DIG-L(X) and the tests in B A C K T R A C K - L ( X ,  ~), is not more 
than f(IX[, aVx); 

(5) I f  X contains all the light coins in S, then the total number of  tests to identify S is at 
most f([SI, ILxl). 

Proof. We will consider all the possible cases in B A C K T R A C K - L ( X ,  n) that could 
return a T R U E  value to Continue. Since (1)-(3) are obvious in each case, here we only 
give the proof  for (4) and (5). Let [XI = 2 k, ISI -- n. 
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In Case 1: 
(4): dx = 1. The total number of tests to identify X is 1 + k ~<f(2 k, 1) by Lemma 

5.4 
(1). 

(5): It does not apply. 
In Case 3.1: 
(4): dx = 2. The total number of tests to identify X is 1 + k + [ 'loga2 k-l"] 

f (2  k, 2) by Lemma 5.5(1). 
(5): ILx[ = 2. The total number of tests to identify S is 

1 + k + ['loga 2/-1"] + ['log2 (n - 2k) -] <<,f(n, 2) 

by Lemma 5.5(5). 
In Case 3.2: 
(4): In T E S T - L ( X -  (XI uX'~)), if X -  (XI wX'~), contains no light coin, then 

dx = 2 and the total number of tests to identify X is 

1 + k + ['log3[X~['] + 1 ~< k + 2  + ['log3 2k-2"] ~<f(2k,2) 

by Lemma 5.5(2). If X -  (X~ uX ' l )  contains 1 light coin, then dx = 3. Suppose 
IX t[ = IX'l [ = 2 i- t for some i ~< k - 1, then the total number of tests to identify X is 

1 + k + [-loga 2 i- t -] + 1 + {-log 3 (2 k - 21) "] ~ f(2 k. 3) 

by Lemma 5.6(1). 
(5): If X contains 2 light coins, then the total number of tests to identify S is 

1 + k + [-loga IX'~I'] 4- 1 4- ['log2(n - 2h)] 

~< k 4- 2 4- ['logs 2 ~-2]  + I-log2(n - 2h)'] ~<f(n, 2) 

by Lemma 5.5(6). If X contains 2 light coins, then the total number of tests to identify 
S is 

1 + k + [-Iog3 2 ' -  1"] + 1 + [-log 3 (2 k -- 21) "] + ['log2 (n -- 2h) "] ~<f(2  ~, 3) 

by Lemma 5.6(3). 
In Case 3.3: 
(4): If IxI = 4, then the total number of tests to identify X is 1 4- 2 + 1 = 4. If 

X contains 2 light coins, then 

f(4,  2) = (2 + log2 3)1og2 ~ = 5 + log2 3 > 4. 

If X contains 3 light coins, then 

f(4,  l) = (1 + ½log2 3)!og24 + 1.5 = 3.5 Iog23 > 4. 

IflXI > 4 and X - {y, y'} contains no light coin, then ILxl = 2 and the total number 
of tests to identify X is 

! + k 4- 1 = k  + 2 ~<f(2h, 2) 
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by Lemma 5.4(2). 
lflX] > 4 and X - {y, y'} contains 1 light coin, then ILxl = 3 and the total number 

of tests to identify X is 

1 + k + 1 + [-loga(2 k - 2)'] ~<f(2 k, 3) 

by Lemma 5.6(1). 
(5): If IXI = 4 and ILxl = 2, then the total number of tests to identify S is 

4 + [-Iog2(n -- 4)-] <~f(n, 2) 

by Lemma 5.7(3). 
If IXI = 4 and [Lx[ = 3, then the total number of tests to identify S is 

4 + [-log2(n - 4)'] ~ f ( n ,  2) <-..f(n, 3) 

by Lemma 5.7(3). 
If ]X[ > 4 and [Lx] = 2, then the total number of tests to identify S is 

k + 2 + [-Iog2(n - 2k)-[ ~<J'(n, 2) 

by Lemma 5.5(6). 
If IX] > 4 and ]Lx[ = 3. then the total number of tests to identify S is 

k + 2 + Flog3(2 ~ - 2) 7 + rloga(n - 2k)7 ~<f(n, 3) 

by Lemma 5.6{4). []  

The following lemma consider the 'restarting" cases in the procedure BACK- 
TRACK-L(X, 7t) at the end of which Continue is assigned with a FALSE value. 

Lemma 4.4. in B A C K  T R A C K - L ( X ,  7t), a F A L S E  value ~s returned to Continue iff'one 

of the fidlowinfl holds: 
(1) X is identified and X is uniformly li~,lht with Igl = 2 k h~r some k; 
(2) X is identified and X contains at most 3 liqht coins, hut there are no unidentified 

coins in the ori~,linal input set; 

(3) A subset Y c X is identified, s.t. Y contains 4 + liqht coins; 

(4) A subset Y c. X is identilied, s.t. Y contains 2 li~jht coins and ¢1 x _ r >1 2. 

Proof. We will consider all the possible cases in BACKTRACK-L(X, ~) that could 
return a FALSE value to Continue. 

In Case 1: This is (2). 
In Case 2: This is (1). 
In Case 3.1: This is (2). 
In Case 3.2: If X contains 2 or 3 light coins, this is (2). 
if X contains 4" light coins, then X - (X~ u X'~) contains 2" light coins. We show 

this is (4) by showing th,~t ]Hx-qx,,,x,d/> 2. Suppose n contains 3 + inequality yields, 
then we could prove IHx-~x,,:x0l >/2 by using Lemma 4.2 bottom-up. Now we 
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assume ~ contains 2 inequality yields. Then 7t is of the form 

[ x ~  > x 2 ]  - -  rx'~ = x , ]  --, r{y,} > {y}], 

where X = X'~wX2  and X2 = X'l wXl ,  thus X'2 = X - ( X ' l  w X l ) .  

If IX'd -- IX,I -- 2, then IHx,I = IHx,I = 1 and IHx~l = 2. So IHx21 >1 [[Hx:!l -- 2 by 
Lemma 4.2(1). 

If IX'll -- 1, then JHx, J = 0 and IHx~l = IHx,[ = 1. 
If IX'_,l/> IXzl = 3, then IHx~l > IHx:l -- 1 and thus IHxhl >>- 2. 
If IX~l<lX21--3 ,  then IX~l--2  and IHx,~l=l. Thus ILx21=l  and 

ILx[ = ILx~l + [Lx~l = 1 + 2 = 3, which contradicts to the condition that X contains 
4 + light coins. 

in Case 3.3: 
If [XI ~< 4, this is (2). 
If IXI > 4 and X contains 2 or 3 light coins, this is (2). 
lflXJ = 2 k for some k > 2 and X contains 4 + light coins, then JLx-b,.y}J/> 2. Also 

JHx-ly.~,'l }J I> 2 since 7t contains 2 + inequality yields. So it is (4). 
if IX[ > 4 but JXI is not a power of 2 and X contains 4 + light coins and 0 or I heavy 

coins, then it is (2). 
IflXJ > 4 but [XI is not a power of 2 and X contains 4 + light coins and 2 ÷ heavy 

coins, then it is (4). 
In Case 4.1: This is (3). 
in Case 4.2: 
If [XI is a power of 2, then it is (2). 
If IXI is not a power of 2 and X contains at most 1 heavy coin, then it is (4). 
If IX[ is not a power of 2 and X contains at most 2 + heavy coins, then it is (3). 
in Case 4.3: This is (4) which follows from Lcmma 4.2(2). 
In Case 4.4: 
If IXl is a power of 2, then it is (3). 
It iX[ is not a power of 2 and X contains at most 2 heavy coins, then it is (4). 
if IX[ is not a power of 2 and X contains at most 3 + heavy coins, then it is (3). [ ]  

Lemma 4.5. MA(n :0) = ['log, n.]. 

Proof. Since the coin set is uniform, Algorithm A simply compares [-logzn.] 
times. [ ]  

Lemma 4.6. M~.(n:T) ~< 21og2n. 

Proof. W.l.o.g., assume the unique coin is light. There are only 3 possible cases: 
(1): The light coin is identified in the first test. 
In this case the total number of tests is: 

1 + 1 + [ ' l og2 (n -  2)'] ~< 2 log2n 

by Lemma 5.7(1). 
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(2): The light coin is identified in DIG-L on some 2 k coins for 1 ~< k ~< Llog2 n_~ 
In this case the total number of tests is 

1 + k + Flog2(n - 2~) 1 ~< 21o$2n 

by Lemma 5.7(1). 
~31, The light coin is identified in DIG-L on the last n - 2 L~°g~"j coins. 
In this ~.ase the total number of tests is 

1 + L log2 n J + [" log2 (n - 2 tl°a~"j)'] ~< 2 log2 n 

by Lemma 5.7(1). [ ]  

Lemma 4.7. M,dn:~) ~< 2 log2 n. 

Proof. W.l.o.g., assume there are exactly 2 light coins in the n (n/> 4) coins. 
If the first test identifies one light coin, then the total number of tests is at most 

1 + MA(n -- 2 : ] )  ~ 1 + 21og2(n - 2) <.f(n, 2) 

by Lemmas 4.6 and 5.7(2). 
Next we examine each case in the first call of BACKTRACK. If the first call of 

BACKTRACK is BACKTRACK-H,  then it could happen only in case 2 in BACK- 
TRACK-H. In the case, the total number of tests is at most 

3 + I + [-Iog2(n - 4)-] = 4 + Flog2(n - 4).] ...<f(n, 2) 

by Lemma 5.7(3). 
So now we suppose the first call of BACKTRACK is BACKTRACK-I .  We 

examine each case in the following discussion. 
In Case 1: 
Only one light coin is identified. Then the other light coin will be identified by a call 

of UNIQUE-L(Y)  on some set Y. Let IYI = m, then the total number of tests is at 
most 

I + [Iog3m'l  + MA(n - - m : i )  ~< 1 + ['logam.] + 21og2(n - m) ...<f(n, 2) 

by Lemmas 4.6 and 5.7(2). 
In Case 2: 
If n = 4 then the total number of tests is 3 and 

f(4, 2) = 5 + log2 3/> 3 

If n = 4 then the total number of tests is 

4 + ['log2(n - 4 ) 7  ~f(n, 2) 

by Lemma 5.7(3). 
in Case 3.1: 
If a TRUE value is returned to Continue, then it follows from Lemma 4,3. 
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If a FALSE value is returned to Continue, then all coins are identified. Let IXI = m, 
then n -- 2 k + m for some k with m ~ 2 h. The total number of tests is 

1 + k + [ ' log2ml + [-log3[.½mJ'] ~ f ( n ,  2) 

k,, Lemma 5.5(8). v j  

In Case 3.2: 
If a TRUE value is returned to Continue, then it follows from Lemma 4.3. 
If a FALSE value is returned to Continue, then all coins are identified. Let IXD -- m 

and IXll + IX'~l = I, then n = 2 ~ + rn for some k with m ~ 2 ~. The total number oftests 
is 

1 + k + [ ' logem 1 + 1 + [-log3L½m.]'] ~<f(n, 2) 

by Lemma 5.5(8). 
In Case 3.3: 
If a TRUE value is returned to Continue, ~.~en it follows from Lemma 4.3. 
I r a  FALSE value is returned to Continue, then all coins are identified. Let IXI = m, 

then n = 2 k + m for some k with m ~< 2 ~. Consider the value of m as follows: 
If m = 3, then n = 2 h + 3 and the total number of tests is 

l + k + 3 = k + 4 ~ f ( 2  . + 3, 2) -- f (n ,  2) 

by Lemma 5.4(3). 
If m = 4, then n -- 2 h + 4 and the total number of  tests is 

1 + k + 3 = k + 4 ~ f ( 2  h + 4, 2) = f ( n , 2 )  

by Lemma 5.4(3). 
If m > 4, then the total n u m ~ r  of tests is 

1 + k + r l o g ,  m]  + 1 ~ f ( n ,  2) 

by Lemma 5.5(8). 
In Case 4: 
This case cannot happen. I-I 

[ ,emma 4.8. M , ( n : a  T) <~f(n, il). 

Proof. We prove by induction on 4. If ~ = 2, this is exactly Lemma 4.7. Now we 
assume aT >/3. 

If the first comparison is an inequality yield, let the two coins be x and x'. Then 
a~s_lx.x, 1 = d -  I t> 2. By induction, the total number of  tests is at  most 

1 + MA(n -- 2, g - -  1) -..<f(2, 1) + f ( n  -- 2, Ta -- 1) ~<f(n, ~ .  

Next we suppose the first comparison is equality yield. We consider the two cases in 
which the number of while-loops is one or  greater than one. 

(1) There is only one while-loop. 
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W.l.o.g., suppose the first inequality i s '  > '. If there exists a call of UNIQUE-L(Y) 
with I YI/> 2 in the main algorithm, then S - Y contains at least I YI heavy coins and at 
least d -  1 ligh: c•ins. Fhus 

i[s_ y >i min {I YI, ~ - ! } >I min {2, 3 - 1 } = 2. 

Since Y is just an "interlade' and its existence does not affect the identificatiort of other 
coins. So the total number of tests is at most 

1 + Vlogs IYl'l + M a ( I S -  Y l : d s - v )  

~<f(IYI, 1) + f ( IS  - YI, ds-r)  (by induction and Lemma 5.4(1)) 

= f ( I Y I ,  dr) +f ( IS  - YI, ds-v) ~<f(ISI, aTs) (by Lemma 4.1). 

We further suppose that there are no calls of U N I Q U E - L  in the main algorithm. If 
the first pair of calls of DIG-L(Y) and BACKTRACK(Y, n) in the main algorithm 
finds only one light coin, then I YI = 2 ~ for some k > 0 and only case 1 in BACK- 
TRACK(Y, n) happens. Since there are no calls of UNIQUE-L,  whether Y exists or 
does r.o: affect all the following tests, that is, Y is also an "interlude'. By the same 
argument as above, aTs- r >/2 and the total number of tests is at most 

1 + I-log2 IYI-I + MA(IS -- Yl:Tas-r) 

~<f(IYI, 1 )+f ( IS  - YI, ds-r)  (by induction and Lemma 5.4(1)) 

= f ( I Y l , d v )  + f t l S  - YI, ~s-v) ~<f(ISI, d~) (by Lemma 4.1). 

Next we can assume there are no calls of U N I Q U E - L  and the first pail of calls of 
DIG-L and BACKTRACK-L finds 2 + light coins. Suppose there are more than one 
such pair, then each pair of DIG-L and BACKTRACK-L will find 2 + light coins and 
can be regarded as independent. Let the first pair of calls be DIG-L(Y) and BACK- 
TRACK(Y, n). Then ds--r/> 2 since S - Y contains at least IYI I> 2 heavy coins and 
2 ÷ light coins. By Lemma 4.3, the total number of tests to identify Y is at most 
f ( I Y l ,  dv). By induction, the number of tests to identify S - Y  is at most 
f ( I S  - YI, J s -  v). So the total number of tests to identify S is at most f(ISI, aTs) by 
Lemma 4.1. 

Next. we suppose there are no calls of U N I Q U E - L  and there is only one pair of calls 
of DIG-L and BACKTRACK. If this pair is in the middle of the main algorithm, then 
by Lemma 4.3, the total number of tests is also at most f(ISI, ds). So we only need to 
consider the case in which the pair of calls happen last in the main algorithm. We 
examine all the possible cases in BACKTRACK(X, n). 

In Case 2: 
Suppose IXI = 2 ~ and ISI = 2k+  2 z with 2 ~< I ~< k. Then ds = 2 t and the total 

number of tests to indentify S is at most 

! + k + l ~ < 2 k + l  ~<f(2 k + 2 , 2 )  (by Lemma 5.4(3)) 

~< f (2  k + 2 s, 2) (by Lemma 5.1) 
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~<f(2 k + 2 t, 2 z) (by Lemma 5.1) 

= f (ISi, ds) 

In Case 3.2: 
X must  conta ins  3 light coins and  thus 3"s = 3. Let IX] = m, then ISl = n = 2 ~ + m 

for some k with 2 k >I m. Suppose IX't uX~[  = I, then the total  n u m b e r  of tests to 

identify S is at most 

l + k + rlog3.~l + [qog3/½t/7 + [-log3(m - t)7 ~<f{,,, 3) 

by Lemma 5.6(4). 

In Case 3.3: 
X must  conta in  all ds >/3 light coins. Let IXI = m, then [SI = n = 2 k + m for some 

;. with ~k >/m. 
If m = 3, then n = 2 k + 3 and  the total  number  of tests is 

~1 + k + 3 = k + 4 ~<f(2 k + 3, 2) = f ( n ,  2) <~f(n,  3) 

by Lemma 5.4(31. 
if  m = 4, then n = 2 ~ + 4 and  the total n u m b e r  of tests is 

l+k+3=k+4~<f (2  ~+4,2)=f(n,2)<<.f(n,3) 

by Lemma 5.4(3). 
I fm > 4 and  X conta ins  3 light coins, then the total n u m b e r  of tests to identify S is 

at most  
1 + k + [ ' log, m'] + 1 + [ ' l o g 3 ( m -  2)'} ~<f(n, 3) 

by Lemma 5.6(5). 
If m > 4 and  X conta ins  no  heavy coins, then the total  n u m b e r  of tests to identify 

S is at most  

1 + k + [ ' log,  m'] + 1 + 1 = k + 3 + I-log2 m-] ~<f(2 h + re, m) 

by Lemma 5.6(6). 
If m > 4 and  X conta ins  only one heavy coin, then the total  n u m b e r  of tests to 

identify S is a;. most 

l + k + I - log ,  m'] + l + [ ' log3(m - 2)-] 

= k + 2 + I-log2 m-] + ['log3(m - 2)'} ~<f(2 k + m , m  - 1) 

by Lemma 5.6(71. 
In Case 4.2: 
}XI cannot  be a power of 2. Let IXl = m, then m ~< 5 and  IS] = n = 2 ~ + m for ~ome 

k with 2 k >/m. 
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If X conta ins  no heavy coins, then ds = m. The total n u m b e r  of tests to identify S is 
at most 

! + k + [-Iog~ m]  + I ~< 2k + 2 ~<f(2 h + 2, 2) (by Lemma 5.4(3)) 

~<f(2 k + m, 2) (by Lemma 5.1) 

~<f(2 h + m,m) (by Lemma 5.1). 

If X conta ins  1 heavy coin, then us ~ :-  m - _l _>~ 4. The total n u m b e r  of tests to 
identify S is at most  

1 + k + I-log2 m'] + 1 + [-log3(m - 2}-] ~< 2k + 2 + [-log3(m - 2)'] 

~ < f ( 2  ~ + 2, 2) +f(m - 2, 1) (by Lemma 5.4(1) and  (3)) 

<<.f(2 h + m. 3) (by Lemma 2.3) 

~<f(2 k + m, m) (by Lemma 5.1). 

In Case 4.4: 

tSl canno t  be a power of 2. Let tX{ = m. then m ~< 5 and  IS[ = n = 2 k + m for some 
k with 2 k t> m. 

If IX'I[ = 1 and  X conta ins  1 heavy coin then ds = m - 1 and  the total n u m b e r  of 
tests to identify S is at most  

1 + k + [ ' log2m'] + 1 ,<.< 2k + 2 ~<f(2 k + re, m -  1) 

by the same a rgument  as in Case 4.2. 
If [X'll = 1 and X conta ins  2 heavy coins then ds = m - 2 and  the total  n u m b e r  of 

tests to identify S is at most  

1 + k + [-log2m'] + 1 + [-Iog3(m - 3)'] ~< 2k + 2 + [-log3(m - 3)'] 

~<f(2 k + 2, 2) + f ( m  - 3, 1) 

~<f(2 k + m - l , 3 ) ~ < f ( 2  k + m , m - 2 )  

by the same a rgument  as in Case 4.2. 

If IX'll -- I and  X conta ins  2 heavy coins then ~s = m - 2 and  the total number  of 
tests to identify S is at most  

I + k + rlog2m'] + 1 + Flogs(m - 3)] 

~< 2k -t- 2 + ['log3(m - 3)] 

<~]'(2 k + 2, 2) ÷ f ( m  - 3, 1) ~<f(2 k + m - 1, 3) ~<f(2 ~ + m, m - 2) 

by the same argument  as in Case 4.2. 

If IX'il = 2 and  X conta ins  1 heavy coin then ds = m - 1 and  the total n u m b e r  of 
tests to identify S is at most 

I + k + rlog2 m-] + ! + 1 ~< 2k + 3 ~<f(2 k + 2,2) <~f(2 h + m,2) 

~<j'12 ~ + m, m - 1) 

by the same argument  as in Case 4.2. 
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If ]X'~J = 2 and X contains 2 heavy coins then ds = m - 2 and the total number of 
tests to identify S is at most 

1 -I- k + I-log2 m-] + 1 + 1 + [-Iogs(m - 4)'] ~< 2k + 3 + ['loga(m - 4)'] 

~<f(2 k + 2, 2) + f ( m  - 4, 1) ~<f(2 h + m - 2, 3) ~<f(2 s + m, m - 2) 

by the same argument as in Case 4.2. 
(2) The algerithm contains more than one while-loop. 
Consider the first while-loop. W.l.o.g., assume the first inequality comparison yield 

is ' > '. By the same argument as in (1), we can assume that there are no calls of 
U N I Q U E - L  in the main algorithm. Also by Lemmas 4.1 and 4.3, we can assume that 
there are no "interlude" cases. We consider each case in BACKTRACK-L(X, g) that 
could return a FALSE value to Continue and yet at the end of which there are still 
some unidentified coins. Let Z be the set of  coins idenuhed in the first while-loop and 
suppose that before testing X we already have identified 2 ~ heavy coins for some 
k~>l.  

in Case 2: 
In this case, X is lightly uniform and [XI = 2 ~. 
Ifds -z i> 2, then by induction the total number of tests to identify S - Z is at most 

f ( IS  - ZI, ds-z). The *.otal number of tests to identiiy Z is at most 

2k + 1 ~<f(2 h + 2, 2) ~ f ( 2  k+ ~, 2) ~ f ( 2  ~+ 1, 2 h) =f( lZI ,  dz). 

So by Lemma 4.1, the total number of tests to identify S is at mostf(IS[,  as). 
If ds -z  = I and k ~< 2, then the total number of tests to identify S is at most 

2k + 1 + MArlS -- Z [ : i )  ~< 2k + 1 + 21og(n - 2 ~+t) 

~<f(2 h + 2 + n - 2~+1,4) (by Lemma 5.4(5)) 

~<f(n, 4) <~f(n, 2 ~ + 1) =f(ISI,  c/s). 

If ds -z  = I and k = 1, then the total number of  tests to identify S is at most 

3 + MAin -- 4 : i )  ~< 3 + 21og(n -- 4) <~f(n, 2) (by Lemma 5.7(2)) 

<~f(n, 2) <~f(n, 3) =f(ISI, ds). 

If ds-  z = 0, then k < 2 and the total number of tests to identify S is at most 

2k + 1 + [ l o g , ( n  - 2k+~) "] + 1 .~<f(2 ~ + 2 + n - 2~+t, 3) (by Lemma 5.4(4)) 

<~f(n, 3) <~f(n, 2 k) =f(ISl ,  C/s). 

In Case 3.2: 
In this case X must contain 4 + light coins and by l.emma 4(4) dx -(x,,~xO ~ 2, hence 

ds -z  1> 2. Suppose [XI = m and IX,  u X ' d  = l, then the total number of  tests to 
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identify Z is at most 

I + k + r log2m]  + [-logs L½,'J ] + 1 ~ f ( 2  ~ + 1,2) (by Lemma 5.5(8)) 

= f (IZl, dz). 

So by Lemma 4.1, the total number of tests to identify S is at mostf(IS[, ds). 
In Case 3.3: 
In this case X must contain 4 + light coins and 2 + heavy coins. By Lemma 4(4) 

dx-:,.,, : ~ 2, hence ds -z />  2. Suppose IXI = m, then the total number of tests to 
identify Z is at most 

1 + k + Flog2m 7 + 2 ~< 2k + 3 ~<f(2 k + 2, 2) (by Lemma 5.4(3)) 

=f(IZI,  de). 

So by Lemma 4.1, the total number of tests to identify S is at most f(lSl, ds). 
In Case 4.1: 
In this ease, IX1 u X ' d  = 21 for some !/> 2. The proof is similar to the proof in 

Case 2. 
In Case 4.2: 
In this case X must contain 4 + light coins. The proof is similar to the proof in 

Case 3.2. 
In Case 4.3: 
In this case X must contain 3 + heavy coins by Lemma 4(4) dx-~x,vx ,} t> 2, hence 

tls-z/> 2. Suppose IXI = m. 
if IX'd = 1, then the total number of tests to identify Z is at most 

1 + k + [-log21n'] + 1 ~ 2k + 2 ~<f(2 k + 2, 2) (by Lemma 5.4(3)) 

~<./(2 ~ + 3, 2) =f(IZI, dz). 

So by Lemma 4.1, the total number of tests to identify S is at most f(ISI, ds). 
If IX%I = 2, then the total number ol tests to identify Z is at most 

1 + k + Flog2 m-] + 2 ~ 2k + 3 <~J'(2 k + 2, 2) (by Lemma 5.4(3)) 

~<./(2 k + 4, 2) =f(IZl,  rID. 

So by Lemma 4.1, the total number of tests to identify $ is at most f(I$1, ds). 
Thus in either case, the total number of tests to identify S is at mostf(I$1, ds). [ ]  

Now we can prove our main result: 

Theorem 4.9. For 0 < d < n, 

Ma(n :iT) ~< (log2 3 + ½)M(n:d) + 4. 
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Proof. By Lemma 2.3, M(n: 1)= ['log2 n']. 
By Lemma 4.6, MA(n: 1") ~< 2 log2 n ~< (iog23 + ½) log2 n. So 

MA(n:1") ~< ( log23 + ½) M(n: 1). 

For d >/2, by Lemm 2.1 we have 

(log23 + ½)M(n :d) I> (log23 + ½)M(n, d) >.f(n, d) + h(d), 

where 

f(n,d) = (1 + ½1og32)dlog2[ + 1.5d, 

h(d) =(l + ~log32)l_\log2 "~ 1 + ½log3 
/ 

1 
- ~ log2 3]. log2 d - 0.567 1 

Since h'(d) = 0 iff d = 7.6 . . . .  

h(d) >1 min{h(7), h(8}} = - 3.8 --- I> - 4. 

Thus by Lemmas 4.8 and 5.2, 

(log2 3 + ½)M(n:d) >~f(n,d) - 4 >~f(n:a ~) - 4 t> M,dn:t/) - 4. 

So M A(n:cT) <~ (log2 3 + ½)M(n:d) + 4. [] 

193 

Appendix 

In this section, we present some properties and inequalities used by our algorithm 
analysis. 

1 n 
Letf(n,d) = (1 + ~logs2)dlog2~ + 1.5d. 

Lemma 1. f is an increasmg funczion o fn  ,nd d for d <~ ~. 

Proof. It is obvious that f is an increasing function of n. 
Since row d <~ ½ n, 

1 n 1 
f'a(n, d) = ( 1 + ~ log.~ 2) loga ~ - (1 + ~ log32) log2 e + 1.5 

1 n + 
= ( 1  + ~logs 2 ) 1 o g 2 ~ .  e 1.5 

1 2 
~>(I + ~logs2)logze + 1.51>0. 

f is also an increasing function of d for d ~< ½ n. l"l 
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Lemma 2. For d <<. ½ n, 

f(n, d) <~ f(n, n - d). 

Proof. Let g(d) = f(n, d) - f ( n ,  n - d), then 

g ' (d)= 1+~1og32 l o g 2 ~ . e + 1 . 5 +  1+~1og32 i o g z ~ + l . 5  

= 1+~1og32 lOg2d(n_d).e 2 + 3  

(1 / 
= 1 + ~1og32 log2[( d d)/212.e 2 + 3 

[(, ) i = 2  1 +-gloga2 logz_2+l.5 >0 .  
g. _l 

So g is strictly increasing. Since O(½ n) = 0, for d <~ ½ n, o(d) <~ O(½ n) = O. This means 
for d <<. ½n, f (n ,d)  <<.f(n,n-d).  [] 

Lemma 3. Let o(k, m) = f (2  k + m, d) for any f ixed d ~ 2. 
(I) I f  m >1 2 h, then O's(k, m ) >  I/(m In 2). This implies that g increases faster than 

log2 m as m increases. 
(2) I f  m <<. 2 k, then g'k(k, m) > 1. This implies that O increases faster than k as 

k increases. 

Proof. (1) For d ~- 2 and m 1> 2 k, 

( , ) , , ( ,  ) , ,  
g'm(k,m)= I +~Iog32 d 2k+m In2 ~> I +~Iog32 2 . . . .  m+m In2 

I 

> mln2" 

(2) Ford~>2andm~<2 k, 

1 (1 + ~ 1 o g 3 2 ) 2 . 2 ~ 2 ~ >  I. []  g ' k (k ,m)=( l  + ~log3 2 ) d . 2 k ~ m  ~> 

Lemma 4. 
(1) ['log~ml + I <~f(m, 1). 

(2) 21og2m <~f(m, 2). 

(3) 2k + 3 ~<f(2 k + 2, 2). 

(4) 2k + [" log2 ml + 2 ~<f(2 k + 2 + m, 3). 

(5) 2k + 21og2m + 1 ~<f(2 ~ + 2 + m, 4). 

(6) 2k + 2 + [- log3 L½1J 1 ~< f( 2k + l, 2). 
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Proof. (1): If m = 1, then 

f ( m , l ) - ( r l o g 2 m "  ] + 1 ) =  1 . 5 -  1 > 0 .  

If m = 2, then 

f(m, 1) - ([- log2 m'] + 1) = ½log3 2 + 2.5 - 2 > 0. 

Fo r  m/> 3, 

f(m, 1) - ([- log2 m'] + 1) >.f(m, 1) - l o g 2 m  - 2 

= (1 + ½ log 3 2) log2 m - log2 m - 0.5 = ½ log3 m - 1 / >  0. 

Thus  ['log2 m'] + 1 <~f(m, 1). 
(2): It  follows that 

f(m, 2) - 2 log2 m = (2 + log3 2) log2 ½m + 3 - 2 log2 m 

= log3 m - log3 2 + 1 > 0. 

(3): Let g(k) = f ( 2  h + 2, 2) - (2k + 3). Then  

g(k) = (2 + log3 2) log2 ½ (2 k + 2) - 2k = (2 + logs 2) log2 2 *- ~ + 1 - 2k 

and  

So 

2 k -  1 
g'(k) = (2 + l o g 3  2)~,_-c:-~--~.. - 2. 

g'(k) t>O ¢~ 2 h - z / > l o g 2 3  ¢:" k>13. 

Since 

g(3) = (2 + log32)1og25 - 6 .~ 0.10 > 0 

g(2) -- (2 + log32) log23 -- ~ -: 2 log23 - 3 --- log29 - k~g2 b > 0 

g ( l )  = 2 + ! o g 3 2  - 2 --- 1og32 > 0. 

We have g(k) > 0 for all k > 0. Thus  2k + 3 ~<f(2 ~ + 2, 2). 
(4) and  (5) follow immediately from 0)- (3) .  
(6): Let g(l) = f ( 2  h + I, 2) - ( 2 k  + 3 + log3 ½), then 

g(l) = (2 + log3 2)Iog2 ½(2 k + / )  - -  2k - log31 + log3 2 

= (2 + log3 2 ) log2  2 h + l - 2k - logs  I - 2 

and  

2 + log3 2 1 
g'(I) -- (2 k + l) in 2 l l n  3" 
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So 

g'(I) >~ 0 ~ (2 + Iog32) log23"! />  2 k + I ~ ,  (21og23 + 1) ' / />  2 k + l 

I >t 2 k- t ioga 2. 

Since 

.q(2 k- t log 32) = (2 + log32) log 2 (2 k + 2 k- 1 log32) - 2k - log3 (2 k - t Ioga 2) - 2 

= (2 + loga 2) [k + h-,g2 (1 + ½1oga 2)] - 2k - (k - l ) log32 

- log3 Iog32 - 2 

= (2 + log3 2) log2(l + ½ Ioga 2) + log32 - loga loga 2 - 2 

0.09 > O, 

for all l, 

g(l)  >t g(k, 2 ~= t loga 2) > 0. 

This implies 

2k + 2 + F loga L½1J -] <~f( 2k + l, 2). [ ]  

Lemma 5. ( 1 ) K + I + [ ' log32 k- t -1 ~ f(2 ~, 2), for  all k >t 1. 

(2) K + 2 + F log32~'-2] ~<f(2k, 2), for  all k >1 2. 

(3) 2K + 2 + [" log32 k- t -] ~<f(2k+ l, 2), for  all k >1 1. 

(4) 2K + 3 + ~- log 32 k- 2-] ~<f(2k+ t, 2), for  all k >1 2. 

(5) K + 1 + [- 1og32 k- l -] + [- log2m]  <~ f (2  k + m, 2), for  all k >1 1 and m >1 2 k. 

(6) K + 2 + V l °g32k-2 ]  + F log2 m ]  <~ f (2  k + m, 2), for  all k >t 2 and m >1 2 ~. 

(7) K + l + f log2 m-] + F loga L½1J ] ~<f( 2k + l, 2), Jot  all m ~ 2 k and I <~ F½nl]. 

(8) K + 2 + F log2 m.] + F log3 L½1J ] ( f ( 2  k + m, 2), for  all m <~ 2 k and 1 ~ F½m-]. 

Proof. (l): For  k/> l, 

f (2  k. 2) - (K + 1 + ['loga 2 k - ! -])/> (2 + log32)(k - 1) + 3 

- ( k + 2 + k l o g 3 2 - 1 o g 3 2 ) = k -  1.>-0. 

Hence for k/> I, 

k + l + Floga2 k-~ ] 6f(2k,  2). 

(2): For  k/> 2, 

f(2 k. 2} - (K + 2 + ~-log32 ~- 2])  >I (2 + log32)(k - 1) + 3 

- (k + 3 + k Ioga2 - 2 log32) 

= k -  2 + ! o g 3 2  > 0. 
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Hence for k i> 2, 

k + 2 + Vloga2 k-2]  ~<f(2k, 2). 

(3): For k/> 1, 

j.(2 k + i 2) - (2k + 2 + [" log32 k- ~ -1)/> (2 + log32) k + 3 

- (2k + 3 + k log32  - log32)  = l o g 3 2 / >  0. 

Hence for k 1> 1, 

2 k + 2 + [ ' l o g 3 2  A ~7 ~<.f(2k*L2) • 

(4): For k/> 2, 

f(2 k÷ ~, 2) - (2K + 3 + [ ' log32k-2])/> (2 + log32)k + 3 

- (2k + 4 + k log32  - 2 log32)  

= 2 1 o g 3 2 -  1 > 0 .  

Hence for k >/2, 

2k + 3 + [-1og32 k-2]  ~f(2k+ !, 2). 

(5) and (6): By Lemma 5.3(1), for m >i 2k,f(2 ~ + m, 2) increases faster than log2 m as 
in increases. So (5) and (6) hold for m >/2 ~ iffthey hold for m = 2 k, which are (3) and (4), 
respectively. 

(7): By Lemma 5.3(2), for k > log2 m, ./'{2 k + m, 2) increases faster than k as k in- 
creases. So we only need to prove that (7) holds for k = [ log ,  m].  

./'(2 k + I, 2) - (K + I + Flog2m] + ['log3L½/J-I) 

1> (2 + log32)log2½(2 k + I) + 3 - ( k  + 1 + k + 1 +log3½/) 

=(2 + log32)[k + iog2(~ + 2J-~)]- (2k  + kiog32 + log32J-~) + l 

( , )  l 
=12 + log32)log2 1 + ~ - 7  - i o g 3 ~ 7  + ! > 0 .  

(81: By Lemma 5.312), for k > Iog~ m, f(2 k + m, 21 increases faster than k as k in- 
creases. So we only need to prove (8) holds for k -- [log_, m].  

f(2 ~ + I, 2) - ( r  + 2 + I-log, m] + ]-logaL½/J ])  

I> (2 + ioga 2)iog2½(2 ~ + m) + 3 - (k + 2 + k + I + log3½O 

= (2 -~ !og32)iog2 ~ + ~ - > O. [ ]  
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Lemma 6. (1) K + 2 + [-1og32 ~ - j ]  + ['1og3(2 k - 2i) -] ~<f(2 k, 3), for  all k >i 3 and 

i < ~ k - 1 .  
(2) 2K + 3 + [-loga2~-~-] + [-ioga(2 k - 21)-] ~<f(2k+ t, 3), for  all k >~ 2 and i 

k - 1 .  
(3) K + 2 + [-log2 m-] + ['log3 2 ' -  ~ -] + ['1og3(2 k - 2~) "] ~<f(2 ~ + m, 3),for all k >t 3, 

i <~ k - l and m >~ 2 ~. 

(4) K + 2 + [-log2 m'] + [" log3 [.½ l.J -1 + ['log3 (m - !)-1 ~< f(2 k + l, 3), for  all k >i 3, 
m >I 2 k and I ~ r½m ]. 

(5) k + 2 + I-log2 m-] + [ ' loga(m - 2)" I ~<f(2 k + m, 3),fo~ 4 < m <~ 2 ~. 
(6) k + 3 + [-log2 m-1 ~<f(2 k + m,m) , for  4 < m <~ 2 ~. 

(7) k + 3 + Flog2m-] + [-logs(m - 2)'1 <-g. f(2 k + m , m  - l ) , for  4 < m ~ 2 k. 

ProoL (l): For  k >i 3 and i ~< k - 1, 

f(2 k, 3) - (K + 2 + ]-log3 2 ' -  17 + [-!og3(2 k - 2')-]) 

2 ~ 
I> ( ! + ½ l o g 3 2 )  3 log2 ~ "4" 4.5 -- (k + 4 + ioga 2; + log3 (2 k - 2 i) - l o g 3 2 )  

= (3 + ~log32) k - (3 log23 + 1.5) + 4.5 - {k + 4 + log3 [-2" (2 k - 21)] 

+ 4 - l o g 3 2 }  

>~ (3 + 3 l o g 3 2 )  k - [~k + log3 (2 k-  I.  2 k- l) + 4 - l o g 3 2 ]  

- (3 l o g 2 3  + 1 - l o g 3 2 )  

= ( 3  + ~ i o g 3 2 ) k -  (k + 21og32"k - 2 1 o g 3 2 ) -  (31og23 + 1 - Iog32) 

= (2 - ½ log32) k - (3 log23 + 1 - 3 log32) 

1> (2 - ½ log32) 3 - (3 log23 + 1 - 3 log32) ~ 1.19 ... > 0. 

(2): F o r k t > 2 a n d i ~ < k - 1 ,  

2K + 3 + [- iog32'-  1-1 + [-Iog3(2 k - 2i)-] 

= (2K + 2 + [-log3 2 ' -  ' 7) + (1 + [-Iog3(2 k - 2')-]) 

<.g.f(2 k + 2 i, 2) + f ( 2  k - 2', l) (by Lemmas 5.4(1) and 5.5(3)) 

~ f ( 2  k÷ 1 3). 

(3): Holds by Lemma 5.3(1) iffit  holds for m = 2 k, which is exactly (2). 
(4): Holds by Lemma 5.3(2) iff it holds for k = [-log, m']. When k = [-log2 m-], 

g + 2 + k + L [-log3[.½1J-] + [ - i o g 3 ( m -  !)-] 

= (2K + 2 + [-loa3L~tJ-]) + (l + I-iog3(m - 1)-]) 

<~f(2 k + I, 2) + f ( m  - l, l) (by Lemmas 5.4(1) and 5.5(8)) 

~<f(2 ~ + m, 3). 
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(5): Holds  by L e m m a  5.3(2) iff it holds for k = ['log2 m,]. When  k = rlog2ml, 

k + 2 + r l og2m "] + r loga  ( / -  2)-] = (2k + 3) + logs(m - 2) 

~<f(2 k + 2, 2) + f ( m  - 2,1) (By L e m m a  5A(1) and  5.4(3)) 

~<f(2 k + m, 3). 

(6): Holds  by L e m m a  5.3(2) iff it holds for k = [-log2 m']. When  k = [-log2m'],  

k + 3 + [ 'log2m-] = 2k + 3 ~<f(2 ~ + 2,2) (By L e m m a  5.4(3)) 

~<f(2 h + m, 2) ~<f(2 ~ + re, m). 

(7): Holds  by L e m m a  5.3(2) iff i t  holds for k = [ ' log2m'[ .  When  k = [ ' log~m-], 

k + 3 + I-log2 m'] + [ ' logs (m - 2)-] = (2k + 3) + (1 + logs(m - 2)) 

~<f(2 ~ + 2, 2) + f ( m  - 2,1) (By L e m m a s  5.4(1) and  5.4(3)) 

<~ f ( 2  ~ + m, 3) <~ f ( 2  h + m , m  - 1). [ ]  

L e m m a  7. (1) 1 + K + [ ' log2(n - 2k),] ~< 21og2n. 

(2) 1 + [ ' logsc,]  + 21og2(n - c) ~<f(n, 2). 

(3) 4 + r log2(n  - 4 ) - ]  ~ f ( n ,  2) fo r f (n  > 4. 

Proof .  (1): 

1 + K + ['log2 (n - 2k)-] ~ 2 + k + log2(n  - 2 k) --- 2 + |og2 [2~ ' (n  - 2k) "] 

~<2+Iog2 • =210g2n. 

(2): Let g(c)  = f ( n ,  2) - [2 + iog2c + 21og2(n - c)'l. Then  

g{c) = (2 + logs 2) log2 n - log s c - 2 log2 (n - c) - (1 q- logs 2) 

and  

So 

1 2 

O'(c) cln3 (n-2)In2" 

n 
O'(c) = 0 ~ c 

1 + 21og23" 

Hence 

g l c ) / >  g ---- logs(½ + log2 31 + log2(l + ½logs 21 - 1 ~ 0.05 > 0. 
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T h u s  

l + ~ l o g a c ]  + 21og2(n  - c) ~<f(n, 2). 

(3): I f  4 < n < 8, t he  i nequa l i t y  c a n  be  ver i f ied d i rec t ly .  F o r  n / >  8, 

f ( n ,  2) - (4 + [-log2(n - 4 ) ] ) / >  (2 + log32)1og2 ½ n + 3 - (5 + log2 (n - 4)) 

= (2 + loga 2) log2 n - (2 + loga 2) - (2 + log2 (n - 4)) 

= 2 log2 n + l o g a n  - log2 (n - 4) - 4 - loga 2 

= ( log 2 n - log2 (n - 4)) + (log2 n - 3) + ( i o g a n  - loga 2 - 1) 

> 0 + 0 + 0 = 0 .  

T h u s  for  all n > 4, 

4 + F log2In  - 4).] ~<f(n, 2). [ ]  
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