DISCRETE
MAT; EMATICS

Discrete Mathematics 163 (1997) 173-200

A (log, 3 + 3)-competitive algorithm for the counterfeit
coin problem!

Peng-Jun Wan, Ding-Zhu Du*
Department of Comp Science, University of Mi Minneapolis. MN 55455, USA

Received 2 February 1995; revised 14 July 1995

Abstract

Consider a set of coins where each coin is either of the heavy type or the light type. The
problem is to identify the type of each coin with minimal number of weighings on a balanced
scale. The case that only one coin, called a counterfeit, has a different weight from others, is
a classic mathematical puzzle. Later works study the case of more than one counterfeit, but the
number of counterfeits is always assumed known. Recently, Hu and Hwang gave an algorithm
which does not depend on the knowledge of the number of counterfeits, and yet perform
uniformly good whatever that number turns out to be in the sample considered. Such an
algorithm is known as a competitive algorithm and the uniform guarantee is measured by its
competitive constant. Their algorithm has competitive ratio 2log, 3. In this paper, we give
a new competitive algorithm with competitive ratio log, 3 + 3.

1. Introduction

Consider a set of n coins which contains d light coins and n — d heavy coins (the
cases, d is known or unknown are considered as two different models). We want to
sort the coins by using a balance scale and call a test every time of using the balance
scale. The problem is how to arrange the tests in order to identify the d light coins and
n — d heavy coins by using minimum number of tests.

Let M, (n:d){(M 4(n,d)) denote the maximum number of tests required by an
algorithm A to sort a (n, d) problem when d is unknown (known) before testing. Let

M(n:d)= mAin M4(n:d)
(M(n,d) = min M 4(n,d))
* Corresponding author. E-mail: dzd@cs.umn.edu.

! Support in part by the National Science Foundation under grant CCR-9208913.

0012-365X/97/$17.00 «> 1997 Elsevier Science B.V. All rights reserved
SSDI 0012-365X(95)00314-2

17« P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

An algorithm A is called a c-competitive algorithm if there exits a constant b such
that forall 0 <d <n,

Myn:d)<c-Mynd)y+b

and c is called the competitive ratio.

Hu and Hwang [5] first proposed a bisecting algorithm with a competitive ratio
3log, 3. Soon after, Hu et al. [4] discovered a doubling algorithm with competitive
ratio 2 log, 3. In this paper, we present a new doubling—backtracking algorithm with
competitive ratio log, 3 + 3.

2. Preliminaries
The analysis of competitive ratio involves both lower-bound and upper-bound
problems. In this section, we first list some results about the lower-bound for M 4(n:d)

and M 4(n, d).
Hu and Hwang [5] gave a lower-bound for M 4(n, d):

Lemma 2.1.

d e/3\ logd 0567 1
Matn.d) > 3('°g-d + log ==) T 2log;3 loga3 2

Cairns [1] discovered an optimal algorithm to find the single counterfeit in a set of
coins, when it is known before testing there is only one counterfeit.

Lemma 2.2. M(n, 1) =[logyn7.
Hu and Hwang [3] also gave the value of M(n:1).

Lemma 2.3. M(n:1)=[log,nT7.

For convenience we assume that the value of function dlog, j at d = 0 is 0 because
limy_od log; = 0. The following lemma, given by Du and Park [3], is an important
tool for analysis [2].

Lemma2d. Letd=d, +d,andn=n, + ny whered, 20,d, 20,n, >0andn, > 0.
Then

dy log;d +d2|og; <dlog2d

d,

P.~J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200 175
3. Algorithms

A set of coins are called uniform if they are all of the same type, and called unique if
there is only one exception. We also use the modifier ‘heavy’ and “light’ to specify the
type of the majority of coins in a uniform or unique set. For a set of S of coins, |5]
denotes the cardinality of S and ||S|| denotes the total weight of coins in S. Let X and
Y be two nonempty sets of coins, then a comparison between X and Y means to
compare X’ = X with Y’ < Y such that |X’| = |Y’| and either X' =X or Y'=Y.In
other words, we compare twe largest equinumerious subsets of X and Y. A compari-
son can have three possible outcomes: | X'|| = | Y’[l, | X'} > | Y’}, IX'} < Y’]l. We
say the comparison yields equality for the first outcome, and yields inequality for the
other two inequalities. A comparison path of a procedure is the series of comparison
outcomes in the testing order.

The idea of our doubling-backtracking algorithm is as follows: The algorithm
compares two sets of size 2/ (i =0, 1, 2, ...). If the comparison yields equality, we get
a uniform set of size 2* ! by merging the two sets and then we fetch a disjoint set of size
2i*1 to compare the two sets of size 2* . If the comparison yields inequality, we can
identify the type of the previous uniform set of size 2°. We then use a bisecting algorithm
on the other set of size 2 to find at least one coin of different type. We then backtrack
the comparison path for the bisecting procedure to explore as much information as
possible from the comparison path. After the backtracking, we either end our algo-
rithm, or start another cycle of doubling, or continue the doubling comparison of size
2! (not 2'*!) until the next inequality yield appears, which is dealt in the same way.

We first describe some variables used in the algorithm:

S: the input set of coins

U: all the coins of unknown type (initially is S)

L: all identified light coins (initially is empty)

H: all identified heavy coins (initially is empty)

Continue: a boolean variable indicating the actions aftr a backtracking (continue

one main loop or restart another main loop).

n: a linked list representing the comparison path for a bisecting procedure. Each
element is of form [X} ? X], where ?could be >, = or <, which corresponds
to a result of comparison between X} and X ;. Two neighbouring elements, say

... [X17X,] - [X3?X,] ..., have the relation X, = X5UX,.
We now describe some procedures that will be used by our algorithm.

3.1. UNIQUE-L and UNIQUE-H

The procedure UNIQUE-L (UNIQUE-H) takes as input a light (heavy) unique set
of coins and use the algorithm given by Cairns [1] to identify the types of all coins in
the input. We only give the code for UNIQUE-L here. The code for UNIQUE-H is
similar.

176 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

Procedure UNIQUE-L(X);
Use the algorithm of Cairns [1] on X and let x be the light coin;

L:=Lu{x};

H:=Hu(X - {x})

U=U-X;
end-precedure

3.2. DIG-L, DIG-H

The procedure DIG-L (DIG-H) takes as input the set X containing at least one
liglit (heavy) coin and use the bisecting method to find one light (heavy) coin. Here
also we give the code only for DIG-L. The code for DIG-H is similar. Notice that in
DIG-L, when | X'| <|X"|and | X" U {h}|| = | X", next time we test on X" rather than
on X'. This choice has great importance in our analysis.

Procedure DIG-L(X);
=0
repeat
X = L%(—‘J coins from X;

X=X —|X’;
if | X' < 1X"
then pick up a heavy coin h and compare X' U {h} with X”;
else compare X’ to X”;
if (1X] = |X"] and | X" < |X"]) or (X'| <|X"} and | X"L {h}| < 1X"})
then X := X";
m=n-[X">X}
else if (|X'| = 1X" and [X" = [X"1) or (1X'| = |X"| and | X" U {h}| < }X"Il)

then X := X";
m=n-[X"=X"}
else X:= X";

m=n-[X >X"];
until X is a singlton;
end-procedure

3.3. TEST-1, TEST-H

The procedure TEST-L (TEST-H) takes as input a set X of coins and compares
X with a heavy (light) unique set of coins of same size to determine whether X is heavy
(light) uniform, or heavy (light) unique, or neither. According to the comparison, it will
determine whether to continue the current cycle or not.

P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

Procedure TEST-L(X): BOOLEAN;
choose Y from the identified coins, s.t. Y is heavily unique and [Y| = |X];
Compare Y with X:

case | X|| > || Y|
H:=HuX;
U=U-X,
iflU|>0
then return TRUE;
else return FALSE;

case | X|| = Y|
UNIQUE-L(X);
then return TRUE;
else return FALSE;

case | X|| < [| Y]
return FALSE;

end-procedure

3.4. BACKTRACK-L, BACKTRACK-H

177

The procedure BACKTRACK-L (BACKTRACK-H) takes as input a set X of coins
and the comparison path = for procedure DIG-L(X) (DIG-H(X)). It tries to explore as

much information as possible from the comparison path 7.

Procedure BACKTRACK-L(X, n): BOOLEAN
/= Consider the number of equality yields and inequalisy yields in 7 »/
Case 1: 7 contains 0 equality yield.
/= This implies X is heavily unique =/
Suppose is ... [{y'} > {y}].
H:=Hu(X - {y});
L:=Lu{y};
U:=U-X;
if U] >0
then return TRUE;
else return FALSE;
Case 2: contains 0 inequality yield:
/= This implies X is lightly uniform =/
L:=LulX;
U=U-X;
return FALSE;
Case 3: = contains 1 equality yield and 1* inequality yields.
/% consider the position of the equality in 7 =/
Case 3.1: The equality is in the first position in 7.
Suppose 7w is [X; = Xi]- - ~[{y'} > {)}]

178 P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997} 173-200

/+ this implies both X, and X} are heavily unique. »/
H:=Hu(X, - {3}

L:=Lu{y};

U:=U-X};

UNIQUE-L(X});

ifjU|>0

then return TRUE;

else return FALSE;

Case 3.2: The equality yield is in some middle position in 7.
Suppose mis - —»[Xi=X]~ - >[{y}>{y}]
/= This implies both X; and X are heavily unique. */
H:= Hu(X, — {y})

L:=Lu{y};
U:=U-Xj;
UNIQUE-L(X});

return TEST-L(X — (X; UX}))
Case 3.3: The equality yield is in the last position in 7.
ifiX|=3
then compare the other coin, say z, with an identified coin:
if z is light
then L:=LUX,
Ui=U-X;
else L:=Lu(X — {z});
H:=Hu{z};
U=U~X;
return FALSE;
if | X|=4
then compare the other two coins, say z and 2":
if the yield is equality
then L:= Lu(X — {z,2'});
H:=Hu{z,z'});
else w.log., say 2| > |z|:
L Lu(X —{z'})
H:= Hu{z'};
U=U-X;
ifiuj>0
then return TRUE;
else return FALSE;
if |1X1>4
then suppose wis --- - [{y'} = {y}}
L:=Lu{y.y}h
U:=U~{ny}
Continue:= TEST-L(X — {y, y'});

P.-J. Wan, D.-Z. Du/ Discrete Mathemaiics 163 (1997) 173-200

if |X| is not a power of 2 and Continue = FALSE
then retura TEST-H(X — {y, y'});
else return Continue;
Case 4: © contains 2* equality yields and 1" inequality yields.
Case 4.1: = contains 2* consecutive equality yields in the end.
Suppose #is - = [X1> X,][=] - [=] then

L:=LuX,
Ui=U-X;;
return FALSE;

Case 4.2: 7 contains only 1 equality yield in the end
Suppose = is dots — [{y'} = {y}], then
L:i=Lu{yy}
U=U-{yy}
if | X] is a power of 2
then return TRUE;
else return TEST-H(X — {y, ¥'});
Case 4.3: 7 contains 2* consecutive inequality yields in the end

Suppose zis - > [Xi=X1-[>]— - =[{y'} > {y}], then

H:=Hu(X, - {y})
L:=Lu{y}
U=U-Xy
UNIQUE-L(X});
return FALSE;

Case 4.4: 7 contains only 1 inequality yield in the end
Suppose mis - —[Xi = X,1~[{y} > }]
iflxil=1
then X is light;

L:=LuXu{y}

H:=Hou{y');
U:=U—-(XjuX,)
ifixy]=2

then compare the two coins in X1, say z and z'.
w.l.o.g. suppose ||z'|| > |z
L:=Lu{y,z};
H:=Hu{y,z'};
U:=U—(X,uX})
if | X| is a power of 2
then return FALSE;
else return TEST-H(X — (X, u X))
end-procedure

179

180 P.-J. Wan, D.-Z Du/ Discrete Matiematics 163 (1997) 173-200

3.5. Algorithm

The Algorithm A keeps doubly comparing until an inequality yield appears.
Whenever an inequality yield appears, a pair of calls of DIG and BACKTRACK will
be used to explore as much information as possible from the previous tests. In each
while-loop, the following test will compare an unidentified set with a unique set.
Notice that in the repeat-loop in Case 2, & is incremented only when Y is uniform. So
in this repeat-loop, all other cases that return a TRUE value to Continue could be
regarded as the ‘interludes’ in the main algorithm.

Now we give the algorithm as follows.

Algorithm A.
input S;
L:=0;
H:=0;
U:=§;
while |U| > 2 do
X := one coin from U;
U:=U-X;
k:=0;
repeat
Y := min {2 S|} coins from U;
X':=|Y| coins from X;
compare Y with X';
if | X' =1iY]
then X:= XUY;
U=U-Y;
ki=k+1;
until | X'| = Y| or U =0.
Case .U =0
If there is any unidentified coin
then use one more comparison to identify the type of X;
if X is heavy
then H:=HuX;
else L:=LuX;
else S is uniform.
Case 2: | X' > {Y]:
H:=HuX;
iflri=1
then L:=LuY;
U=U-Y;
if U] =0
then stop;

P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

else break; /= restart another while-loop #/
else 7:= DIG-L(Y);
Continue:= BACKTRACK-L(Y, n);
if Continue = TRUE
then repeat
Y := min{2% |U|} coins from U;
Continue:= TEST-L(Y);
if Continue = TRUE
then n:= DIG-L(Y);
Continue:= BACKTRACK-L(Y, n);
else if Y is uniform
thenk:=k + 1;
until Continue = FALSE;
Case 3: |X'|| < [Y].
/* similar to case 2 «/

end-while

iflUl=1

then compare U with an identified coin;
if U is heavy
then H:= HUU;
else L:=LuU;
U:=0;

end-algorithm

4. Analysis

Next, we analyze Algorithm A.
For any set X coins, we denote:

find)& (1 +1 logzz)dlogzﬁ + 1.5d.
d2 min{d,n—d}.

Ly 2 the light coins in X,

Hy £ the heavy coins in X,

dy £ the number of light coins in X.

Let S be the original input set of coins. From the symmetry of Algorithm A, we have

M (n:d) = M (n:n — d).
So we can denote

M (n:d) & M (n:d) = M 4(n:n — d).

181

182 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200
The following lemmas are fundamental to the inductive proof of our main result.

Lemma 4.1. For any subset Y of X, the following hold:
(1) dy + dy-y < dy;
@ FAYLdy) + £(X — Y, dx-v) < f(X], dy)-

Proof. (1) W.lo.g, suppose dy=]|Lyl. Since dy<|Ly, dy-v<|Lx_y] and
Lyl + |Lx -yl = |Lxl,

dy + dy_y <Lyl + |Ly_yl = |Lyl = dy
(2) 1t follows immediately from (1) and Lemma 24. [J

Lemma 4.2. Consider a path n returned by DIG-L.
(1) Suppose [X > Y] is in n, then |Hx| 2 |Hyl;
(2) Suppose [X = Y3 05 in i, thow \Hyl 2 \H ~ 1, ILy| = |Lyl.

Proof. (1): If |X| = |Y|, then |Hy| > [Hy|.

If |X| <|Y], then [Hx| + 1 > |Hyl, hence [Hy| > |Hy|.

If |X] = |Y), then |Hx| > |Hy| + 1 > |Hyl.

(2): f|X| =Y), then |Hy| > [Hy| and |Lx| = [Lyl|.

If |X|<Y|, then |Hxj+ 1 =|Hy| hence |Hyx|>|Hy| — 1. It is obvious that
ILx| = |Lyl.

If X]| > |Y], then |Hy| = |Hy| + 1 2 [Hy| — 1. It is obvious that |Ly| = |[Ly|. [

The following lemma considers the ‘interlude’ cases at the end of which Continue is
assigned with TRUE value.

Lemma 4.3. Consider the procedure BACKTRACK-L(X, n). If Continue gets the
TRUE return value, then the following hold:

(1) All coins in X are identified and there are still some unidentified coins in the input
set of coins;

(2) |X| = 2* for some k > 1;

(3) X contains at most 3 light coins,

(4) The total number of tests to identify X, including the first test finding X containing
light coins, the tests in DIG-L(X) and the tests in BACKTRACK-L(X, rn), is not more
than (X, dx);

(5} If X contains all the light coins in S, then the total number of tests to identify S is at
most f(IS], |Lx|).

Proof. We will consider all the possible cases in BACKTRACK-L(X, =) that could
return a TRUE value to Continue. Since (1)—(3) are obvious in each case, here we only
give the proof for (4) and (5). Let |X| = 2% |S| = n.

P.-J. Wan, D.-Z. Du[Discrete Mathematics 163 (1997) 173--200 183

In Case 1:

(4 dy = 1. The total number of tests to identify X is 1 + k <f(2% 1) by Lemma
54
.

(5): It does not apply.

In Case 3.1:

(4): dy = 2. The total number of tests to identify X is 1 + k +[logs2*~ '] <
f(2%,2) by Lemma 5.5(1).

(5): |Lx| = 2. The total number of tests to identify S is

1+k+[loga2t '+ [log;(n —2%)7<f(n,2)

by Lemma 5.5(5).

In Case 3.2:

(4 In TEST-L(X — (X, uX))), if X —(X,uUX)), contains no light coin, then
dy = 2 and the total number of tests to identify X is

1+k+[logs|X1T+1<k+2+[logs2*" 2] <f(24,2)

by Lemma 5.5(2). If X —(X,uX}) contains 1 light coin, then dy = 3. Suppose
1X | =Xl = 2"~ ! for some i < k — 1, then the total number of tests to identify X is

1 +k+[logs2 '] + 1 +[logs (2* — 2)]< (2% 3)

by Lemma 5.6(1).
(5): If X contains 2 light coins, then the total number of tests to identify S is

1+k+[logs X117+ 1 +[logz (n — 247
<k+2+[logs2¢ 2] + [loga(n — 25)] < f(n, 2)
by Lemma 5.5(6). If X contains 2 light coins, then the total number of tests to identify
Sis
I+k+[loga2™ ']+ 1+ [logs(2* — 297+ [loga(n — 297 <f(24 3)

by Lemma 5.6(3).

In Case 3.3:

(4): If |X] =4, then the total number of tests to identify X is 1 + 2+ 1=4. If
X contains 2 light coins, then

f(4,2) = (2 +log;3)log,$ =5 +log,3>4.

If X contains 3 light coins, then
f@, 1) =(1 +4log,3)log,4 + 1.5=351log,3 > 4.

If|X| > 4and X — {y, ¥’} contains no light coin, then [Lx| = 2 and the total number
of tests to identify X is

1+k+1=k+2<f(22)

184 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

by Lemma 5.4(2).
If|X] > 4 and X — {y. y'} contains 1 light coin, then |Lx| = 3 and the total number
of tests to idemify X is

1+k+1+[logs(2* =2 <f(243)

by Lemma 5.6(1).
(5): If |X| = 4 and |Ly| = 2, then the total number of tests to identify S is

4 +[logy(n—4)] <f(n,2)

by Lemma 5.7(3).
If |X| = 4 and |Ly| = 3, then the total number of tests to identify S is

4+ [logy(n—4)] <f(n,2)<f(n,3)

by Lemma 5.7(3).
If |X| > 4 and |Ly| = 2, then the total number of tests to identify S is

k+2+4logytn —24)7<f(n,2)

by Lemma 5.5(6).
I |X| > 4 and |Ly| = 3. then the total number of tests to identify § is

k+2+[logs(2—2)7 + [log,(n — 247 <f(n,3)
by Lemma 5.6(4). O

The foliowing lemma consider the ‘restarting’ cases in the procedure BACK-
TRACK-L(X, n) at the end of which Continue is assigned with a FALSE value.

Lemma 4.4. In BACKTRACK-L(X, n), a FALSE value is returned to Continue iff one
of the following holds:

(1) X is identified and X is uniformly light with |X| = 2 for some k;

(2) X is identified and X contains at most 3 light coins, but there are no unidentified
coins in the original input set;

(3) A subset Y < X is identified, s.1. Y contains 4* light coins;

(4) A subset Y < X is identified, s.t. Y contains 2 light coins and dy -y = 2.

Proof. We will consider all the possible cases in BACKTRACK-L(X, n) that could
return a FALSE value to Continue.

In Case I: This is (2).

In Case 2: This is (1).

In Case 3.1: This is (2).

In Case 3.2; If X contains 2 or 3 light coins, this is (2).

If X contains 47 light coins, then X — (X, U X}) contains 2 light coins. We show
this is (4) by showing that |[Hy _ 5, x| = 2. Suppose = contains 3" inequality yields,
then we could prove |Hy_(x,.x,| =2 by using Lemma 4.2 bottom-up. Now we

P.-J. Wan, D.-Z. Du | Discrete Mathematics 163 (1997) 173-200 i85

assume 7 contains 2 inequality yields. Then = is of the form
[X2 > X,1-[Xi = X,]-[{y} > {y}].
where X = X350 X, and X; = X1uX,, thus X3 =X — (X uX,.

If|X1} = |1X,| = 2, then |Hx,| = |Hx,| = 1 and |Hy,| = 2. So |Hy | > [Hy,]| = 2 by
Lemma 4.2(1).

If |X) = 1, then [Hy,| =0 and |Hy,| = |Hy,| = 1.

If [X3] 2 |X,| = 3, then |Hy,| > |Hy,| = 1 and thus |Hy,| > 2.

If |X3 <|X;|=3, then |X3=2 and |Hyx|=1 Thus ILx,l=1 and
|Lyl = |Lx,| + |Lx,| = 1 + 2 = 3, which contradicts to the condition that X contains
4* light coins.

In Case 3.3

If 1 X} < 4, this is (2).

If |X| > 4 and X contains 2 or 3 light coins, this is (2).

If |X| = 2* for some k > 2 and X contains 4* light coins, then |Ly -tyy}l = 2. Also
|[Hx -1} = 2 since = contains 2* inequality yields. So it is (4).

If1X| > 4 but | X| is not a power of 2 and X contains 4* light coins and 0 or | heavy
coins, then it is (2).

If |X] > 4 but | X] is not 2 power of 2 and X contains 4" light coins and 2* heavy
coins, then it is (4).

In Case 4.1: This is (3).

In Case 4.2:

If |X| is a power of 2, then it is (2).

If 1X| is not a power of 2 and X contains at most 1 heavy coin, then it is (4).

If | X is not a power of 2 and X contains at most 2* heavy coins, then it is (3).

In Case 4.3: This is (4) which follows from Lemma 4.2(2).

In Case 4.4:

If |X| is a power of 2, then it is (3).

Ir jX} is not a power of 2 and X contains at most 2 heavy coins, then it is {4).

If | X| is not a power of 2 and X contains at most 3* heavy coins, then it is (3). []

Lemma 4.5. M ((n:0) =[log,n.

Proof. Since the coin set is uniform, Algorithm A simply compares [log,n]
times. [J

Lemma 4.6. M ,(n:1) < 2log, n.

Proof. W.Lo.g.,, assume the unique coin is light. There are only 3 possible cases:
(1): The light coin is identified in the first test.
In this case the total number of tests is:
1+1+[logy(n—2)] <2log,n

by Lemma 5.7(1).

186 P.-J. Wan, D.-Z. Du [Discrete Mathematics 163 (1997) 173-200

(2): The light coin is identified in DIG-L on some 2* coins for 1 < k <|log,n]
In this case the total number of tests is
1+k+[log,(n— 257 <2logan

by Lemma 5.7(1).
(3 The light coin is identified in DIG-L on the last n — 2'°8:") coins.
In this case the total number of tests is

1+ logan| + [log,(n — 21'":n)] < 2log, n
by Lemma 5.7(1). [

Lemma 4.7. M4(n:2) < 2log,n.

Proof. W.l.o.g., assume there are exactly 2 light coins in the n (n > 4) coins.
If the first test identifies one light coin, then the total number of tests is at most

1+ Mun—-2T1)<1+2log,(n—2)<f(n,2)

by Lemmas 4.6 and 5.7(2).

Next we examine each case in the first call of BACKTRACK. If the first call of
BACKTRACK is BACKTRACK-H, then it could happen only in case 2 in BACK-
TRACK-H. In the case, the total number of tests is at most

3+1+[logy(n—4)] =4+ [log,(n—4)7] <f(n,2)

by Lemma 5.7(3).

So now we suppose the first call of BACKTRACK is BACKTRACK-1. We
examine each case in the following discussion.

In Case 1:

Only one light coin is identified. Then the other light coin will be identified by a call
of UNIQUE-L(Y) on some set Y. Let |Y| = m, then the total number of tests is at
most

1+[logam] + Main—m:T) <1 +[logam] + 2log,(n — m) <f(n,2)

by Lemmas 4.6 and 5.7(2).
In Case 2:
If n = 4 then the total number of tests is 3 and

f(4,2)=5+log, 323
If n = 4 then the total number of tests is
4 +[log,(n—4)] <f(n,2)

by Lemma 5.7(3).
In Case 3.1:
If a TRUE value is returned to Continue, then it follows from Lemma 4.3.

P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200 187

If a FALSE value is returned to Continue, then all coins are identified. Let | X| = m,
then n = 2* + m for some k with m < 2*. The total number of tests is

1+k+[logam] +[logs|im}] <f(n,2)
by Lemma 5.5(8).
In Case 3.2:
If a TRUE value is returned to Continue, then it follows from Lemma 4.3.
If a FALSE value is returned to Continue, then all coins are identified. Let |[X| =m

and |X,| + |X1| = |, then n = 2* + mfor some k with m < 2%, The total number of tests
is

1+k+[log,m]+1+[logslim]]<f(n,2)

by Lemma 5.5(8).

In Case 3.3:

If a TRUE value is returned to Continue, :aen it follows from Lemma 4.3.

If a FALSE value is returned to Continue, then all coins are identified. Let | X] = m,
then n = 2* + m for some k with m < 2*. Consider the value of m as follows:

If m = 3, then n = 2* + 3 and the total number of tests is

1+k+3=k+4<f(*+3,2)=1(n2)

by Lemma 5.4(3).
If m = 4, then n = 2* + 4 and the total number of tests is

1+k+3=k+4<f*+4,2)=f(n,2)

by Lemma 5.4(3).
If m > 4, then the total number of tests is

1+k+[logam]+1<f(n2)

by Lemma 5.5(8).
In Case 4:
This case cannot happen. [

Lemma 48. M (n:d) <f(n,d).

Proof. We prove by induction on d. If d = 2, this is cxactly Lemma 4.7. Now we
assume d > 3.
If the first comparison is an inequality yield, let the two coins be x and x". Then
ds-(x.xy =d — 1 > 2. By induction, the total number of tests is at most
L+ M -2,d-)<fQ)+f(r—2d—1)<f(nd).
Next we suppose the first comparison is equality yield. We consider the two cases in
which the number of while-loops is one or greater than one.

(1) There is only one while-loop.

188 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

W.lo.g., suppose the first inequality is * > . If there exists a call of UNIQUE-L(Y)
with | Y| > 2 in the main algorithm, then S — Y contains at least | Y| heavy coins and at
least d — 1 light coins. Thus

ds.yzmin{lY,d—1}>2min{2,3 -1} =2

Since Y is just an ‘interlude’ and its existence does not affect the identification of other
coins. So the total number of tests is at most .

1+ [logs|Y]] + M,(IS — Y:ds-y)
<f(Y, 1) +f(S — Y|, ds-y) (by induction and Lemma 5.4(1))
=f(Yldy) +£(S — Y|, ds-y) <S(S.ds) (by Lemma 4.1).

We further suppose that there are no calls of UNIQUE-L in the main algorithm. If
the first pair of calls of DIG-L(Y) and BACKTRACK(Y,) in the main algorithm
finds only one light coin, then |Y| = 2* for some k > 0 and only case 1 in BACK-
TRACK(Y, n) happens. Since there are no calls of UNIQUE-L, whether Y exists or
does ot affect all the following tests, that is, Y is also an ‘interlude’. By the same
argument as above, ds_y > 2 and the total number of tests is at most

1+ [log, Y]] + M4(IS — Y|:ds-y)
<fQY, 1) +£(S — Y|, ds-y) (by induction and Lemma 5.4(1))
=f(Y|.dy) +1(S - Y, ds-y) <f(SI,d,) (by Lemma 4.1).

Next we can assume there are no cails of UNIQUE-L and the first pair of calls of
DIG-L and BACKTRACK-L finds 2" light coins. Suppose there are more than one
such pair, then each pair of DIG-L and BACKTRACK-L will find 2* light coins and
can be regarded as independent. Let the first pair of calls be DIG-L(Y) and BACK-
TRACK(Y, n). Then ds..y 2 2 since S — Y contains at least | Y| > 2 heavy coins and
2* light coins. By Lemma 4.3, the total number of tests to identify Y is at most
f(Yl, dy). By induction, the number of tests to identify S— Y is at most
f(IS — Yl ds_y). So the total number of tests to identify S is at most f(|S|, ds) by
Lemma 4.1.

Next we suppose there are no calls of UNIQUE-L and there is only one pair of calls
of DIG-L and BACKTRACK. If this pair is in the middle of the main algorithm, then
by Lemma 4.3, ili¢ total number of tests is also at most f(|S], ds). So we only need to
consider the case in which the pair of calls happen last in the main algorithm. We
examine all the possible cases in BACKTRACK(X, 7).

In Case 2:

Suppose |X| =2' and |S] = 2* + 2! with 2 <! <k. Then ds=2' and the total
number of tests to indentify S is at most

14+k+1<2%k+1<f(2*+2,2) (by Lemma 54(3))
<f(2*+2.2) (by Lemma 5.1)

P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200 189
<f(2*+2,2") (by Lemma 5.1)

=18} ds)

in Case 3.2

X must contains 3 light coins and thus ds = 3. Let |Xj =m, then |S| =n=2* + m
for some k with 2* > m. Suppose |X;U X ;| =/, then the total number of tests to
identify S is at most ~

1+k +[logs] +[logs| 31]7 +[logstm —] <f(n,3)
by Lemma 5.6(4).
In Case 3.3:
X must contain all ds > 3 light coins. Let |X| = m, then |S| = n = 2% + m for some
L with 2 > m.
if m =3, then n = 2 + 3 and the total number of tests is

d+k+3=k+4<f*+3.)=f(n,)<f(n3)

by Lemma 5.4(3).
If m = 4, then n = 2* + 4 and the total number of tests is

1+k+3=k+4<f*+4.)=fn,2)<f(n,3)

by Lemma 5.4(3).

If m > 4 and X contains 3 light coins, then the total number of tests to identify S is
at most

1+k+[logam] +1+[logs(m—2)] <f(n3)

by Lemma 5.6(5).

If m > 4 and X contains no heavy coins, then the total number of tests to identify
S is at most

1+k+[logam]+1+1=k+3+[logm] <f(2* + m,m)

by Lemma 5.6(6).
If m > 4 and X contains only one heavy coin, then the total number of tests to
identify S is at most

1 +k+[log;m] +1+[logs(m—2)]
=k+2+[logam] +[logs(m -2} <fQ*+mm—1)

by Lemma 5.6(7).

In Case 4.2:

|X| cannot be a power of 2. Let | X] = m, then m < 5 ard |S] = n = 2* + m for some
k with 2* > m.

190 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

If X contains no heavy coins, then ds = m. The total number of tests to identify S is
at most
t+k+logam]+1<2k+2<f(2*+2,2) (by Lemma 54(3)
<f(@*+m,2) (byLemma 5.1)
<f(2* 4+ m,m) (by Lemma 5.1).

If X contains 1 heavy coin, then ds = m — | > 4. The total number of tests to
identify S is at most

P+ k+[logam] + 1+ [logsim—2Y] <2k + 2+ [logs(m—2)]
<f(2*+2,2)+f(m—2,1) (by Lemma 5.4(1) and (3))
<f(2*+m,3) (by Lemma 2.3)
<f(@*+m,m) (by Lemma 5.1).

In Case 4.4:

|1X| cannot be a power of 2. Let |X| = m. then m < 5 and |S| = n = 2* + m for some
k with 2 > m.

If X} = 1 and X contains 1 heavy coin then ds = m — 1 and the total number of
tests to identify S is at most

1+k+[logam] +1<2k+2<fQ*+mm—1)

by the same argument as in Case 4.2.
If|X] = 1 and X contains 2 heavy coins then ds = m — 2 and the total number of
tests to identify S is at most

1+k+[logam] +1+[logs(m—3)] <2k+2+[logs(m—3)]
<fR*+2,2)+f(m-3,1)
S +m—-L3)<f+mm—2)
by the same argument as in Case 4.2.

If |X}| = 1 and X contains 2 heavy coins then ds = m — 2 and the total number of
tests to identify S is at most

1+ k+Tlogam] +1+[logs(m—3)]
<2k + 2+ [logs(m—3)7
<A +20+fm -3)<f+m—1L,)<fQ* +mm—-2)

by the same argument as in Case 4.2.

If |X3} = 2 and X contains 1 heavy coin then ds = m — 1 and the total number of
tests to identify S is at most

L +k+[logam] +1+1<2k+3<f(2*+2,2)<f(2"+m2)
<f@*+mm-—1)

by the same argument as in Case 4.2.

P.-J. Wan, D.-Z. Du | Discrete Mathematics 163 (1997) 173-200 191

If|1X}] = 2 and X contains 2 heavy coins then ds = m — 2 and the total number of
tests to identify S is at most

t+k+[logam] +1+1+[logs(m—4)] <2k+3+[logs(m—4)]
AR +2D+fim -4 D<K +m =2)< +mm—2)

by the same argument as in Case 4.2.

(2) The algerithm contains more than one while-ioop.

Consider the first while-loop. W.L.o.g., assume the first inequality comparison yield
is ‘> ". By the same argument as in (1), we can assume that there are no calis of
UNIQUE-L in the main algorithm. Also by Lemmas 4.1 and 4.3, we can assume that
there are no ‘interlude’ cases. We consider each case in BACKTRACK-L(X, =) that
could return a FALSE value to Continue and yet at the end of which there are still
some unidentified coins. Let Z be the set of coins identified in the first while-loop and
‘suppose that before testing X we already have identified 2* heavy coins for some
k>1

In Case 2:

In this case, X is lightly uniform and |X| = 2~

If ds -z = 2, then by induction the total number of tests to identify S — Z is at most
(S — Z),ds_). The total number of tests to identiiy Z is at most

2k +1< Q2 +2,2) <L) <2 =121 dp).

So by Lemma 4.1, the total number of tests to identify S is at most (IS}, ds).
Ifds_z =1 and & < 2, then the total number of tests to identify S is at most

2%+ 1+ My S —Z1:T) <2k + 1 + 2log(n — 2*)
<f(2*+2+n—2¢"'4) (by Lemma 54(5)
<J () <f(n, 2* + 1) =7(S|, ds).
Ifds_z =1 and k = 1, then the total number of tests to identify S is at most
3+ Mun—4:1)<3 4+ 2log(n—4)<f(n,2) (by Lemma 5.7(2)
<f(n2) <f(n,3) = (S, ds).
Ifds_, =0, then k < 2 and the total number of tests to identify S is at most
2k +1+[loga(n—2*Y] +1<f(2*+2+n—2**",3) (by Lemma 54(4))
<fn,3) <f(n,2*) =£(8S), ds).

In Case 3.2:
In this case X must contain 4* light coins and by Lemma 4(4) dx - x,x,) = 2, hence
ds-z > 2. Suppose |[X]=m and |X,uX}| =1 then the total number of tests to

192 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

identify Z is at most
t+k+[logam] +[logal $117+1<fQ*+1,2) (by Lemma 5.5(8))
=JU2Z), dz).

So by Lemma 4.1, the total number of tests to identify S is at most f(|S], ds).

In Case 3.3

In this case X must contain 4* light coins and 2* heavy coins. By Lemma 4(4)
dx_i,,1 2 2, hence ds_z > 2. Suppose [X| = m, then the total number of tests to

}

identify Z is at most
1+k+[logam] +2<2k+3<f(2*+2,2) (by Lemma 54(3))
=fZ\, d7).

So by Lemma 4.1, the total number of tests to identify S is at most f(|S|, ds).

In Case 4.1:

In this case, |X,uX)| =2’ for some ! > 2. The proof is similar to the proof in
Case 2.

In Case 4.2:

In this case X must contain 47 light coins. The proof is similar to the proof in
Case 3.2.

In Case 4.3:

In this case X must contain 3* heavy coins by Lemma 4(4) dy _, x,ux) = 2, hence
ds_z = 2. Suppose | X| = m.

If |X}] = 1, then the total number of tests to identify Z is at most

1+k+[logam}+1<2k+2<f(2"+2,2) (by Lemma 5.4(3)
<f*+3,2) =1(2).dy).

So by Lemma 4.1, the total number of tests to identify S is at most f(|S|, d).
If | X} = 2, then the total number of tests to identify Z is at most

1+k+[logam]+2<2k+3<f(2+2,2) (by Lemma 54(3)
ST +4,2) =/(Zl.dy).

So by Lemma 4.1, the total number of tests to identify S is at most f(|S), ds).
Thus in either case, the total number of tests to idertify S is at most f(|S|.ds). [J

Now we can prove our main result:

Theorem 4.9. For 0 <d <n,
M 4n:d) < (log, 3 + HM(n:d) + 4.

P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200 193
Proof. By Lemma 2.3, M(n:1) =[log,n.
By Lemma 4.6, M ,(n:T) < 2log, n < (log, 3 + $)log, n. So
M4(n:T) < (log, 3 + $) M(n:1).
For d > 2, by Lemm 2.1 we have
(log, 3 + 3)M(n:d) > (log, 3 + Y M(n, d) = f(n, d) + h(d),
where
fn,d)=(1 + }log; 2)dlog,§ + 1.5d,

3 1.5
hd)=(1 + %logg2)[(l°gze“2\/_— - ﬁm)d

- %logz d —0.567 — %logz 3].
Since ’'(d)=0iffd=76 ...,
h(d) > min{h(7), h@®)} = — 38 - > —4.
Thus by Lemmas 4.8 and 5.2,
(logz3 + YMn:d) = f(n,d) — 4 > f(n:d) — 4 = M 4(n:d) — 4.
So M (n:d) < (logx 3 + PM(n:d)+4. [

Appendix

In this section, we present some properties and inequalities used by our algorithm
analysis.

Let fin.d) = (1 + %log, 2)dlogzs + 1.5d.
Lemma 1. fis an increasing funciion of n und d for d < §.

Proof. It is obvious that f'is an increasing function of n.
Since for d < in,

Fund)y=(1 + %log_‘Z)logzs —(+ %log;Z)logze +15

1 n
= (1 + Eloga Z)logzﬂ + 15

2 (l +%Iog,2)logz§ +1520.

f is also an increasing function of dford < in. [

194 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

Lemma 2. Ford <in,
fin,d) < fin,n — d).

Proof. Let g(d) = fin,d) — f(n,n — d), then

, 1 n 1 n

g)= (1 +510g32)1052d—." +15+ (1 +§!0g32)|0g2m +15
—(1+L1ogs 2)ogso—"— +3
=\ F3loss s flok g

nZ

1
= (1 + Elog3 >log2————[(d+ Y Y +
= 2[(1 + %log; 2)log2: + 1.5_| >0.
2 e i

So g is strictly increasing. Since g(3n) = 0, for d < ¥n, g(d) < g(3n) = 0. This means
ford <in, f(nd)<fa,n—d). O

Lemma 3. Let g(k, m}) = f(2* + m, d) for any fixed d > 2.
(1) If m= 2% then gk, m) > 1/(min2). This implies that g increases faster than
log, m as m increases.

Q) If m< 2%, then gi(k,m)> 1. This implies that g increases faster than k as
k increases.

Proof. (1) Ford > 2and m > 2%,

1 1 1 1 1
’ = - —_ > - . .
Gl m) (] +2'°g’2>d 75 1::2/(l +2l°g’2)2 miming
S
min2’
(2) Ford =2 and m < 2%
13

, 1 2k 1 2
g,,(k,m):(l +§|0832) '2,, Tm ?(1 +510332)2'm >1. O

Lemma 4.
() [logam] + 1 < f(m, 1).
(2) 2log,m < f(m, 2).
(3) 2k +3<f(2"+2,2).
(4) 2k + [logom} +2<f(2*+2 +m,3)
(5) 2k + 2logam + 1 < f(2* + 2+ m,4).
(6) 2k +2 + [logs [3117 < f2* +1.2).

P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200 195

Proof. (1): If m = 1, then
fim,1)—(log,m] +)=15—-1>0.
If m = 2, then
fim, 1) — ([logam] + 1) = }logs2 +2.5-2>0.
Form >3,
fm, 1) — ([logam] + 1) = f(m, 1) — log,m — 2
={l + }logs2)log,m — log;m — 0.5 = }log;m — 1 > 0.

Thus [log, m] + 1 < f(m, 1).
(2): It follows that

fm,2) — 2logam = (2 + logz 2)log, 3m + 3 — 2log, m
=logsm —logs2 +1>0.
(3): Let g(k) = f(2* + 2,2) — (zk + 3). Then
g(k) = (2 + logy 2)log, 3 (2* + 2) — 2k = (2 + logs 2)log, 2™ + 1 — 2k
and

LS

g'(k)=(2 +logs2)

So
gk =0 <> 222 >1lo0g,3 <> k=3
Since
g(3)=(2 +logz2)log, 5 —6>~010>0
9(2) = (2 +logs 2)log, 3 -- 4 =2log,3 — 3 =1log,9 — kg, 8 >0
g()=2+1og32 —2=1log;2>0.

We have g(k) > O for all k > 0. Thus 2k + 3 <f(2* + 2,2).
(4) and (5) foliow immediaicly from (1)-(3).
(6): Let g(!) =f(2* + 1,2) — (2k + 3 + logs $), then

g(l) = (2 + logz 2)log, $(2* + I) — 2k — logs I + log; 2
=(2+log;2)log, 2% + 1 — 2k — logs 1 — 2
and

2 +logs2 1

90 =FDin2 T3’

196 P.-J. Wan, D.-Z. Du/ Discrete Mathematics 163 (1997) 173-200

So
g =0 < (2+log:2)log,3- 122 +1 < (Qlog,3+ 1)-1=2"+1
< 1>2¢"Hogy2.
Since
92" 'logy 2) = (2 + log; 2)log, (2 + 2" logs 2) ~ 2k — logs (2* ' logy 2) — 2
= (2 +logs 2) [k + 'ug2 (1 + §logs 2)] — 2k — (k — 1)log; 2
—logzlogs2 - 2
= (2 + log; 2)logy(1 + }logs 2) + logs 2 — logs logs 2 — 2
= 0.09 >0,
for all I,
a(l) = glk, 2" log; 2) > 0.
This implies

%+2+[logs 41 </ +142. O

Lemma 5. (1) K + 1 +[loga2*™ '] < f(2,2), forall k > 1.
() K + 2+ logs 227 <24 2), for all k > 2.
(3) 2K + 2+ [logs 211 < f(2** 4, 2), for all k > 1.
(4) 2K + 3 +[logy 2¢727) < f(2**1,2), forall k = 2.
(5) K+ 1+[logy2 ' +[logam] <f(2* +m,2), for all k > 1 and m = 2%
6) K+2+[logs2¢727 + [logam] <f(2* +m,2), for all k > 2 and m > 2,

(1) K +1+Tlogam] + logs [4111 <@ + 1.2), for all m < 2* and 1 < [4m].
8) K+2+[log,m] +[logs| 3117 <f2* +m,2), forallm < 2*and 1 <[3m].

Proof. (1): Fork > 1,
S5 2)— (K +1+Tlogs 2" ') > (2 + logs 2)(k — 1) + 3
—k+2 +klogy2 ~logs)=k ~ 1 2 0.
Hence for k > 1,
k+1+logs2" ' < f(242).
(2): Fork=2,
F2R 2 — (K +2+Tlogs 2 2N = (2 + logs 2tk — D + 3
—(k + 3 + klogs2 - 2log,2)

=k—2+1log;2>0.

P.-J. Wan, D.-Z. Du/ Discreie Mathematics 163 (1997) 173-200 197

Hence for k > 2,
k+2+[logs2 %] < f(242).
Q3 Fork=1,
SO~k + 2+ Tlogs 227 ') > 2 + loga 0k + 3
—(2k + 3 + klog;2 — log32) = log;2 > 0.
Hence for k > 1,
2k +2 +[logz2* '] < f(2¢4 1, 2).
@) Fork>=2,
SN2~ (2K +3 +[logs2* 2 = (2 + log; 2k + 3
—(2k + 4 + klog32 — 2log; 2)
=2log;2 -1>0.
Hence for k > 2,
2k +3 +[logs 2¢7 2] < /241, 2)

(5)and (6): By Lemma 5.3(1), for m > 2%, f(2* + m, 2) increases faster than log, m as
m increases. So (5) and (6) hold for m > 2*iff they hold for m = 2%, which are (3) and (4),
respectively.

(7: By Lemma 5.3(2). for k > log, m, f(2* + m, 2) increases faster than k as k in-
creases. So we only need to prove that (7) helds for k =[log, m].

S+ 1,2) — (K +1+[log,m] +[logal 3]
>(2+logy2log, 32X+) +3—(k+ 1 +k+1+logy3l)
)
=(2 + log, 2)[k + log, G + z*_l'ﬂ - (Zk + klogs2 + IogsF—,) +1
J
1 ! 1
={(2 + logs 2)log, 5 +W - log;z,‘—ﬁ +1>0.
(8): By Lemma 5.3(2), for k > logy m, f(2* + m, 2) increases faster than k as k in-
creases. So we only need to prove (8) holds for k = [log,m7.
2+ L2~ (K +2+[logamT +[logs 3117
>(2+log;2log, 32 +m)+3 —(k+2+k+ 1 +logs3)

=2 + log, 2)[k + log; (% + %)] - (Zk +klogs2 + logai.l,—,)

1 m i
=(24 log, 2)log2(5 + im) - log,z—,‘,—l >0. 0

198 P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200

Lemma 6. (1) K +2 + [logs2' "7 + [logs(2* — 2))T <f(2%, 3), for all k>3 and
i<k-1

(@) 2K +3 + [logs 217 + [loga (2* — 2)] <f(2**,3), for all k> 2 and i<
k—1.

(3) K +2+[logam7] +[logs2 '] +[logs(2* — 2] <f2* + m,3), for all k > 3,
i<k—1and m>2"

4) K+2+[logam] +[logs| 31]7 +logalm — 1)} < f* +1,3), forall k 2 3,
m=2and 1<[im.

(5) k+2+[logzm7] +[logs(m —2)] <f(2* + m,3), for 4 <m <2

6) k+3+logam] <f(2* + m,m), for 4 <m < 2%

(7 k+3+[logym] + [loga(m —2)]1 <fQ*+mm—1), for 4 <m< 2
Proof. (1) Fork>3andi<k-—1,

J243) = (K +2 +Tlogs 27" + [loga(2* — 2])

k
=(1+ %Iog32)3log22§ +4.5 —~(k +4 + log; 2 + log; (2* —~ 2') — logs 2)

=3+ 3logs)k — (3log;3 + 1.5) + 4.5 — {k + 4 + log, [2'-(2* — 27)]
+4 —logs 2}

>(3+3logy)k — [k + logs (2 1-27Y) + 4 — log, 2]
—(3log23+1—1log32)

=(3 +3logs2)k — (k + 2logy 2 k — 2log; 2} — (3log, 3 + 1 — log; 2)

=(2—4log32)k —(3log,3 + 1 —3log;2)

>(2—4logs2)3 — (3logs3 + 1 — logs) 119 ... >0.

(2: Forkz2andi<k-—1,
2K + 3+ [logs 217 + [logs (2* — 2)]

=K +2 +[logs 2 ') + (1 + [ogs(2* — 2))7)

<f(2*+2,2)+ f(2* - 2, 1) (by Lemmas 5.4(1) and 5.5(3))

<f@L3).

(3): Holds by Lemma 5.3(1) iff it holds for m = 2*, which is exactly (2).
(4): Holds by Lemma 5.3(2) iff it holds for k = [log, m7]. When k = [log,m7],

K+2+k+|[[logs 3] +logs(m—1)7
= (2K +2 +[logs| 41| T) + (1 + [loga(m — 1))
<f*+1L,2)+f(m—1,1) (by Lemmas 5.4(1) and 5.5(8))
<f(2" + m3).

P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200 199

(5 Holds by Lemma 5.3(2) iff it holds for k = [log, m. When k = [logm],
k+2+[logam] + [logs (m — 2)7] = (2k + 3) + logs(m — 2)
<f2*+2,2)+f(m—2,1) (By Lemma 5.4(1) and 54(3))
<f2*+m,3).
(6): Holds by Lemma 5.3(2) iff it holds for k =[log;m7]. When k = [log,m7,
k+3+[logam] =2k +3<f(2*+2.2) (ByLemma 5.4(3)
<SR+ m2) < f2* + m,m).
(7): Holds by Lemma 5.3(2) iff it holds for k = [log, m]. When k = [log,m],
k+3+[log;m] + [logs(m —2)] =(2k + 3) + (1 + logz(m — 2))
<f(2*+2,2)+f(m—2,1) (By Lemmas 5.4(1) and 5.4(3))
<f*+m)<+ mm—1). 0O

Lemma 7. (1) 1+ K +[log,(n — 247 < 2log; n.
(2 1+ [logsc] + 2log,(n — o) < f(n,2).
(3) 4 +[logz (n — 4)] < f(n, 2) for f(n > 4.

Proof. (1):

1+ K +logs(n— 247 <2 + k + loga (n — 2) = 2 + log, [2*-(n — 2%)]

<2+ logz(g‘g) =2log,n.

(2): Let g(c) =f(n, 2) — [2 + logz ¢ + 2log, (n — c)]. Then
g{c) = (2 + logs 2)logz n — logs ¢ — 2log, (n — ¢) — (1 + log;2)

and
) 1 2
9O= 3" w 2w
So
‘(c) = - "
gEO=0 = c=rn3
Hence

n
glc) = y(m) =logs(} + log;3) + logz(1 + 4logs2) — 1 = 0.05> 0.

200 P.-J. Wan, D.-Z. Du[Discrete Mathematics 163 (1997) 173-200

Thus
1 +{logscT + 2loga(n —¢) < f(n,2).
(3): If 4 < n < 8, the inequality can be verified directly. For n > 8,
f(n,2) — (4 +log,(n — 4)7) = (2 + logs Dlog, 3n + 3 — (5 + log (n — 4))
=(2 + logz 2)logyn — (2 + logsz 2) — (2 + log; (n — 4))
=2log,n + logzn — loga(n — 4) — 4 — log; 2
= (log,n — log,(n — 4)) + (logzn — 3) + (logsn — log;2 — 1)
>0+0+40=0.
Thus for all n > 4,
4 + [log,(n — 4)] < f(n,2). O

References

[1] S.S. Cairns, Balance scale sorting, Amer. Math. Monthly 70 (1963) 136--148.

[2] D-Z. Du and F.K. Hwang, Combinatoria’ Group Testing and its Applications (World Scientific,
Singapore, 1993).

[3] D.-Z. Du and H. Park, On Competitive Group Testing, SIAM J. Comput. 23(5) (1994) 10191625,

[4] X.-D.Hu, P.-D. Chen and F.K. Hwang. A new competitive algorithm for the counterfeit coin problem,
Inform. Process Lett. 51 (1994) 213-218.

[5] X.-D. Hu and F.K. Hwang, A competitive aigorithm for the counterlfeit coin problem, in: D.-Z. Du and
P.M. Pardalos. eds., Minmimax and Applications (Kluwer Academic Publish 1995) 241-250.

