
DISCRETE
MAT~ ~V~ATICS

ELSEVIER Discrete Mathematics ! 63 (1997) 173-200

A (log 2 3 + ½)-competitive algorithm for the counterfeit
coin problem 1

P e n g - J u n W a n , D i n g - Z h u Du*

Department of Computer Science. University of Minnesota. Minneapolis. MN 55455. USA

Received 2 February 1995; revised 14 July 1995

Abstract

Consider a set of coins where each coin is either of the heavy type or the light type. The
problem is to identify the type of each coin with minimal number of weighings on a balanced
scale. The case that only one coin, called a counterfeit, has a different weight from others, is
a classic mathematical puzzle. Later works study the case of more than one counterfeit, but the
number of counterfeits is always assumed known. Recently, Hu and Hwang gave an algorithm
which does not depend on the knowledge of the number of counterfeits, and yet perform
uniformly good whatever that number turns out to be in the sample considered. Such an
algorithm is known as a competitive algorithm and the uniform guarantee is measured by its
competitive constant. Their algorithm has competitive ratio 21og23. In this paper, we give
a new competitive algorithm with competitive ratio log 2 3 + ½.

l . Introduction

Consider a set of n coins which contains d light coins and n - d heavy coins (the
cases, d is known or unknown are considered as two different models). We want to
sort the coins by using a balance scale and call a test every time of using the balance

scale. The problem is how to arrange the tests in order to identify the d light coins and

n - d heavy coins by using minimum number of tests.
Let MA(n:d)(MA(n,d)) denote the maximum number of tests required by an

algorithm A to sort a (n, d) problem when d is unknown (known) before testing. Let

M(n :d) -- rain MA (n:d)
A

(M(n,d) = min M a(n, d))

* Corresponding author. E-mail: dzd@cs.umn.edu.
Support in part by the National Science Foundation under grant CCR-9208913.

0012-365X/97/$17.00 CC) 1997 Elsevier Science B.V. All rights reserved
SSD! 0012-365X(95)00314-2

17, P.-J. Wan. D.-Z Du / Discrete Mathematics 163 (1997) 173-200

An algorithm A is called a c-competitive algorithm if there exits a constant b such
that for all 0 < d < n,

MA(n:d) <~ c-MA(n, d) + b

and c is called the competitive ratio.
Hu and Hwang 1'5] first proposed a bisecting algorithm with a competitive ratio

3 log2 3. Soon after, Hu et al. 1'4] discovered a doubling algorithm with competitive
ratio 2 logz 3. In this paper, we present a new doubling-backtracking algorithm with
competitive ratio log2 3 + ½.

2. Preliminaries

The analysis of competitive ratio involves both lower-bound and upper-bound
problems. In this section, we first list some results about the lower-bound for MA(n:d)

and M A(n, d).
Hu and Hwang I'5] gave a lower-bound for MA(n, d):

Lemma 2.1.

(n ~_3_) log2d 0.567 1 d
log2~ + log2 MA(n,d) l > ~ 21og23 1og23 2"

Cairns [1] discovered an optimal algorithm to find the single counterfeit in a set of
coins, when it is known before testing there is only one counterfeit.

Lemma 2.2. M(n, 1) = [-logan'].

Hu and Hwang [3] also gave the value of M(n: 1).

Lemma 2.3. M(n: 1) = [-Iog2n'].

For convenience we assume that the value of function d log2 ~ at d = 0 is 0 because
limd,o d logz fl = 0. The following lemma, given by Du and Park [3], is an important
tool for analysis [2].

Lemma 2.,1. Let d = di 4- dz and n = nl + n2 where dt >I O, de ~ O, n| > 0 and nz > O.
Then

d , nl n2 ~ dlogzd" i logz~-~(+ d2 log., d22

P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200 !75

3. Algorithms

A set of coins are called uniform if they are all of the same type, and called unique if
there is only one exception. We also use the modifier "heavy" and "light" to specify the
type of the majority of coins in a uniform or unique set. For a set of S of coins, ISI
denotes the cardinality of S and I)SI[denotes the total weight of coins in S. Let X and
Y be two nonempty sets of coins, then a comparison between X and Y means to
compare X' _ X with Y' ~_ Y such that IX'I = I Y'I and either X' = X or Y' = Y. In
other wor~s, we compare two largest equinumerious subsets of X and Y. A compari-
son can have three possible outcomes: [IX'l[= I)Y'I[, IIX'[I > [IY'II, IlX'll < IIY'[I. We
say the comparison yields equality for the first outcome, and yields inequality for the
other two inequalities. A comparison path of a procedure is the series of comparison
outcomes in the testing order.

The idea of our doubling-backtracking algorithm is as follows: The algorithm
compares two sets of size 2 i (i = 0,1, 2). If the comparison yields equality, we get
a uniform set of size 2 i+ t by merging the two sets and then we fetch a disjoint set of size
2i+ l to compare the two sets of size 2 ~+ t. If the comparison yields inequality, we can
identify the type of the previous uniform set of size 2 i. We then use a ~ g algorithm
on the other set of size 2 i to find at least one coin of different type. We then backtrack
the comparison path for the bisecting procedure to explore as much information as
possible from the comparison path. After the backtracking, we either end our algo-
rithm, or start another cycle of doubling, or continue the doubling comparison of size
2 i (not 2 i+ 1) until the next inequality yield appears, which is dealt in the same way.

We first describe some variables used in the algorithm:

S: the input set of coins
U: all the coins of unknown type (initially is S)
L: all identified light coins (initially is empty)
H: all identified heavy coins (initially is empty)
Continue: a boolean variable indicating the actions a f t ra backtracking (continue

one main loop or restart another main loop).
n: a linked list representing the comparison path for a bisecting procedure. Each

element is of form I-X~ ? XI], where ? could be > , = or < , which corresponds
to a result of comparison between X~ and X~. Two neighbouring elements, say
... [X'I ? X 1] ~ [X~ 9. X2] have the relation X ~ = X~ u X2.

We now describe some procedures that will be used by our algorithm.

3.1. UNIQUE-L and UNIQUE-H

The procedure UNIQUE-L (UNIQUE-H) takes as input a light (heavy) unique set
of coins and use the algorithm given by Cairns [1] to identify the types of all coins in
the input. We only give the code for UNIQUE-L here. The code for UNIQUE-H is
similar.

176 P.-J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

Procedure UNIQUE-L(X);
Use the algorithm of Cairns [1] on X and let x be the light coin;
L : = Lu{x};
n : = H u t X - {x});
u : = u - x ;

end-procedure

3.2. DIG-L, DIG-H

Tile procedure D I G - L (DIG-H) takes as input the set X containing at least one
light (heavy) coin and use the bisecting method to find one light (heavy) coin. Here
also we give the code only for DIG-L. The code for D I G - H is similar. Notice that in
DIG-L, when I X'I < [X"I and IIX' u {h} [I = [I X"tl, next time we test on X" rather than
on X'. This choice has great importance in our analysis.

Procedure DIG-L(X);
~ : ~ ~.;

repeat
I i i P l !

x' :--I from x ;

X" := X - I X ' ;
if IX'l < IX"l
then pick up a heavy coin h and compare X ' u {h} with X";

else compare X' to X";
if (IX'I = IX"I and IIX'll < IIX"I[) or (IX'l < IX"l and I IX'u {h}ll <]IX"II)
then X := X';

:= ~ -~ IX" > X"l;
else if (IX'l = IX"l and [IX'[[= [IX"ll) or (IX'l = IX"l and IIX'u{h}lt < I[X"ll)

then X := X",
re:= ~ - - CX' = X"];

else X := x";

n := n ~ CX' > X"];
until X is a singlton;

end-procedure

3.3. TEST-L, TEST-H

The procedure TEST-L (TEST-H) takes as input a set X of coins and compares
X with a heavy (light) unique set of coins of same size to determine whether X is heavy
(light) uniform, or heavy (light) unique, or neither. According to the comparison, it will
determine whether to continue the current cycle or not.

P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200 177

Procedure TEST-L(X): BOOLEAN;
choose Y from the identified coins, s.t. Y is heavily unique and I Y[= IX[;
Compare Y with X:

case IIXll > tlgll:
H := H w X ;

U:= U - X ;
if IOl > 0
then return TRUE;
else return FALSE;

case IIXll = II YII:
UNIQUE-L(X);
then return TRUE;
else return FALSE;

case IlXl[< II YII:
return FALSE;

end-procedure

3.4. BACKTRACK-L, BACKTRACK-H

The procedure BACKTRACK-L (BACKTRACK-H) takes as input a set X of coins
and the comparison path ~ for procedure DIG-L(X) (DIG-H(X)). It tries to explore as
much information as possible from the comparison path ~.

Procedure BACKTRACK-L(X, it): BOOLEAN
/ . Consider the number of equality yields and inequality yields in l r , /
Case 1: n contains 0 equality yield.

/ , This implies X is heavily unique , /
Suppose ~ is ... [{y'} > {y}].
H : = X u t x - {y});
L:= Lu{y};
U:= U - X ;

if IVl > 0
then return TRUE;
else return FALSE;

Case 2: ~ contains 0 inequality yield:
/ , This implies X is lightly uniform , /
L:= L u X ;

U:= U - X;
return FALSE;

Case 3: it contains 1 equality yield and 1 + inequality yields.
/ , consider the position of the equality in ~ , /
Case 3.1: The equality is in the first position in ~.

Suppose ~ is [x~ = x , l [{y'} > {y}].

178 1:,..,I. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200

/* this implies both X, and X[are heavily unique. , /
H:-- H u (X , - {y});
L : = L u { y } ;

U:= U - X ' ~ ;
UNIQUE-L(X~);
if IUI > 0
then return TRUE;
else return FALSE;

Case 3.2: The equality yield is in some middle position in ~.
Suppose n is [Xi = X ,] [{y'} > {y}]
/ , This implies both XI and X~ are heavily unique. , /
H : = H u (X , - {y});
L : = L u { y } ;
U : = U - X' , ;

UNIQUE-L(X~);
return TEST-L(X - (X, uX~));

Case 3.3: The equality yield is in the last position in ~t.
if IXI = 3
then compare the other coin, say z, with an identified coin:

if z is light
then L := L u X ;

U := U - X;

else L : = L u (X - {z});
H : = H u { z } ;

U : = U - X ;

return FALSE;
if IxI - - 4
then compare the other two coins, say z and z':

if the yield is equality
then L : = L u (X - {z, z'});

n : = nu{z,z '};
rise w.l.o4., say iiZll > IIzll:

L : ~ L u (x - {z'});
H:~- Hu {z'};

U : = U - X ;

if IUl > 0
then return TRUE;
else return FALSE;

if IXI > 4
then suppose it is [{y '} = {y}] ;

L : = L u {y,y'};
v : = u - {y, y'};
Continue:= TEST-L(X - {y, y'});

P.-J. Wan, D.-Z. Du/Discrete btalhematics 163 (1997) 173-200 179

if]XI is not a power of 2 and Continue = FALSE
then remm TEST-H(X - {y,/});
else return Continue;

Case 4: lr contains 2 + equality yields and 1 + inequality yields.
Case 4.1: x contains 2 + consecutive equality yields in the end.

Suppose ~ is [X~ > XI] ~ [. = .] [. = .], then
L:= L u X ~
U := U - X~;
return FALSE;

Case 4.2: 7r contains only 1 equality yield in the end
Suppose ~ is dots ~ [{y'} = {y}], then
L : = L u { y , y ' } ;
v : - - v - {y ,y} ;
if IXl is a power of 2
then return TRUE;
else return TEST-H(X - {3, y'});

Case 4.3: it contains 2 + consecutive inequality yields in the end
Suppose lr is [X~ = X l] ~ [- > .] [{y'} > {y}], then
H:= H~(X, - {y});
c : = c u { y } ;

U := U - X, ;
UNIQUE-L(X~);
return FALSE;

Case 4.4: lr contains only 1 inequality yield in the end
Suppose lr is [X~ = X~] ~ [{y'} > {y}]
if IX~l = 1
then X~ is light;

L:= L u X ' l u{y};
H:= H u {y'};
U:= U - (X~ u X ,) ;

if IX]l = 2

then compare the two coins in X] , say z and z'.

w.l.o.g, suppose IIz'll > Ilzll
L : f Lu{y , z } ;
H:= Hu{y' ,z '};
U:= U -(X, uX;);

if IX[is a power of 2
then return FALSE;
else return TEST-H(X - (X~ uX~));

end-procedure

180 P.-J. Wan. D.-Z Ou / Discrete Matliematics 163 (1997) 173-200

3.5. Algorithm

The Algorithm A keeps doubly comparing until an inequality yield appears.
Whenever an inequality yield appears, a pair of calls of DIG and BACKTRACK will
be used to explore as much information as possible from the previous tests. In each
while-loop, the following test will compare an unidentified set with a unique set.
Notice that in the repeat-loop in Case 2, k is incremented only when Y is uniform. So
in this repeat-loop, all other ca~es that return a TRUE value to Continue could be
regarded as the 'interludes" in the main algorithm.

Now we give the algorithm as follows.

Algorithm A.
input S;
L :=O;
H : = 0;
U : = S;
while [U[> 2 do

X := one coin from U;
U : = U - X ;
k:=O;
repeat

Y:= min {2 k, ISl} coins from U;
X ' : - [YI coins from X;
compare Y with X';

i f IIX'[i = it g[[
then X := X w Y;

U := U - Y;
k : = k + 1;

until IIX'll = t)YII or U = 0 .
Case 1: U = O:

If there is any unidentified coin
then use one more comparison to identify the type of X;

i f X is heavy
then H : = H w X ;
else L:= L u X ;

else S is uniform.
Case 2: IIX'it > tJgll:

H:= H w X ;

i f [)"~ = 1
then L := L w Y;

U : = U - Y ;

i f)UI = 0
then stop;

P.-J. Wan. D.-Z. Du / Discrete Mathematics 163 (1997) 173-200 181

else break;/* restart another while-loop , /
else ~ := DIG-L(Y);

Continue := BACKTRACK-L(Y, ~);
if Continue = TRUE
theu repeat

Y:= min{2 k, IUI} coins from U;
Continue := TEST-L(Y);
if Continue = TRUE
then 7~ := DIG-L(Y);

Continue := BACKTRACK-L(Y, ~);
else if Y is uniform
then k:= k + 1;

until Continue = FALSE;
Case 3: {IX'l{ < I[Yll-

/* similar to case 2 , /
end-while
if IUI = l
then compare U with an identified coin;

if U is heavy
then H:= H u U ;
else L:= L~JU;
U:= 0;

end-algoritkm

4. Analysis

Next, we analyze Algorithm A.
For any set X coins, we denote:

f (n , d) ~ - (1 + ½10g22)dlog2~ + 1.5d.

d& min {d, n - d } .
Lx & the light coins in X,
Hx & the heavy coins in X,
dx & the number of light coins in X.
Let S be the original input set ofcoins. From the symmetry of Algorithm A, we have

Ma(n: d) = M .4(n:n - d).

So we can denote

MA(n:J)&MA(n:d)=M~(n:n-d).

182 P.-J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

The following lemmas are fundamental to the inductive proof of our main result.

L e m m a 4.1. For any subset Y of X, the following hold:

¢1) ,/y + dx_r ~< d,,;

(2) f(lYI, ~r) + f (l X - YI, C/x-r) ~< f(lX[, dx)-

Proof. (1)W.i.o.g., suppose i lx=lLxl . Since d r ~ l L r [,
[Lr[+ ILx-r l = [Lxl,

dr + ~ x - r ~< ILrl + [Lx-r l = ILxl = Clx

(2) It follows i,~mediately from (1) and Lemma 2.4. []

dx- r <~ [Lx- rl and

L e m m a 4.2. Consider a path lr returned by DIG-L.
(1) Suppose I X > Y] is in it, then [Hxl >1 [Hr[;
(2} Suppose IX -~ Y] io ;,, ,,, :~;en ',Hx[~ IH~.[- !,]Lx[= [Lr[.

Proof. (1): If IX[= IY[, then IHxl > [Hr[.
I f lXI < IYI, then IHxl + 1 > IHrl, hence [Hxl >1 IHr[.
If [XI = [Y[, then [Hx[> IHr[+ 1 > IHrl.
{2): If IX[= IYI, then [Hx[> [Hr[and]Lxl = [Lrl.
if IXI < IYI, then IHxl + 1 = l H r l hence IHxl >i I H r l - 1. It is obvious that

[Lxl = ILr[.
If [XI > [Y[, then IHx[-- [Hrl + 1 >i [Hrl - 1. It is obvious that ILx[= [Lr[. []

The following lemma considers the "interlude' cases at the end of which Continue is
assigned with T R U E value.

L e m m a 4.3. Consider the procedure B A C K T R A C K - L (X , ~). I f Continue gets the
T R U E return value, then the following hold:

(1) All coins in X are identified and lhere are still some unidentified coins in the input
set of coins;

(2) ISl = 2k for some k > 1;
(3) X contains at most 3 light coins;
(4) The total number of tests to identify X, including the first test finding X containing

light coins, the tests in DIG-L(X) and the tests in B A C K T R A C K - L (X , ~), is not more
than f(IX[, aVx);

(5) I f X contains all the light coins in S, then the total number of tests to identify S is at
most f([SI, ILxl).

Proof. We will consider all the possible cases in B A C K T R A C K - L (X , n) that could
return a T R U E value to Continue. Since (1)-(3) are obvious in each case, here we only
give the proof for (4) and (5). Let [XI = 2 k, ISI -- n.

P.-J. IVan. D.-Z Du /Discrete Mathematics 163 (1997) 173-.200 183

In Case 1:
(4): dx = 1. The total number of tests to identify X is 1 + k ~<f(2 k, 1) by Lemma

5.4
(1).

(5): It does not apply.
In Case 3.1:
(4): dx = 2. The total number of tests to identify X is 1 + k + ['loga2 k-l"]

f (2 k, 2) by Lemma 5.5(1).
(5): ILx[= 2. The total number of tests to identify S is

1 + k + ['loga 2/-1"] + ['log2 (n - 2k) -] <<,f(n, 2)

by Lemma 5.5(5).
In Case 3.2:
(4): In T E S T - L (X - (XI uX'~)), if X - (XI wX'~), contains no light coin, then

dx = 2 and the total number of tests to identify X is

1 + k + ['log3[X~['] + 1 ~< k + 2 + ['log3 2k-2"] ~<f(2k,2)

by Lemma 5.5(2). If X - (X~ uX ' l) contains 1 light coin, then dx = 3. Suppose
IX t[= IX'l [= 2 i- t for some i ~< k - 1, then the total number of tests to identify X is

1 + k + [-loga 2 i- t -] + 1 + {-log 3 (2 k - 21) "] ~ f(2 k. 3)

by Lemma 5.6(1).
(5): If X contains 2 light coins, then the total number of tests to identify S is

1 + k + [-loga IX'~I'] 4- 1 4- ['log2(n - 2h)]

~< k 4- 2 4- ['logs 2 ~-2] + I-log2(n - 2h)'] ~<f(n, 2)

by Lemma 5.5(6). If X contains 2 light coins, then the total number of tests to identify
S is

1 + k + [-Iog3 2 ' - 1"] + 1 + [-log 3 (2 k -- 21) "] + ['log2 (n -- 2h) "] ~<f(2 ~, 3)

by Lemma 5.6(3).
In Case 3.3:
(4): If IxI = 4, then the total number of tests to identify X is 1 4- 2 + 1 = 4. If

X contains 2 light coins, then

f(4, 2) = (2 + log2 3)1og2 ~ = 5 + log2 3 > 4.

If X contains 3 light coins, then

f(4, l) = (1 + ½log2 3)!og24 + 1.5 = 3.5 Iog23 > 4.

IflXI > 4 and X - {y, y'} contains no light coin, then ILxl = 2 and the total number
of tests to identify X is

! + k 4- 1 = k + 2 ~<f(2h, 2)

184 P.-J. Wan, D.-Z Du/Discrete Mathematics 163 (1997) 173-200

by Lemma 5.4(2).
lflX] > 4 and X - {y, y'} contains 1 light coin, then ILxl = 3 and the total number

of tests to identify X is

1 + k + 1 + [-loga(2 k - 2)'] ~<f(2 k, 3)

by Lemma 5.6(1).
(5): If IXI = 4 and ILxl = 2, then the total number of tests to identify S is

4 + [-Iog2(n -- 4)-] <~f(n, 2)

by Lemma 5.7(3).
If IXI = 4 and [Lx[= 3, then the total number of tests to identify S is

4 + [-log2(n - 4)'] ~ f (n , 2) <-..f(n, 3)

by Lemma 5.7(3).
If]X[> 4 and [Lx] = 2, then the total number of tests to identify S is

k + 2 + [-Iog2(n - 2k)-[~<J'(n, 2)

by Lemma 5.5(6).
If IX] > 4 and]Lx[= 3. then the total number of tests to identify S is

k + 2 + Flog3(2 ~ - 2) 7 + rloga(n - 2k)7 ~<f(n, 3)

by Lemma 5.6{4). []

The following lemma consider the 'restarting" cases in the procedure BACK-
TRACK-L(X, 7t) at the end of which Continue is assigned with a FALSE value.

Lemma 4.4. in B A C K T R A C K - L (X , 7t), a F A L S E value ~s returned to Continue iff'one

of the fidlowinfl holds:
(1) X is identified and X is uniformly li~,lht with Igl = 2 k h~r some k;
(2) X is identified and X contains at most 3 liqht coins, hut there are no unidentified

coins in the ori~,linal input set;

(3) A subset Y c X is identified, s.t. Y contains 4 + liqht coins;

(4) A subset Y c. X is identilied, s.t. Y contains 2 li~jht coins and ¢1 x _ r >1 2.

Proof. We will consider all the possible cases in BACKTRACK-L(X, ~) that could
return a FALSE value to Continue.

In Case 1: This is (2).
In Case 2: This is (1).
In Case 3.1: This is (2).
In Case 3.2: If X contains 2 or 3 light coins, this is (2).
if X contains 4" light coins, then X - (X~ u X'~) contains 2" light coins. We show

this is (4) by showing th,~t]Hx-qx,,,x,d/> 2. Suppose n contains 3 + inequality yields,
then we could prove IHx-~x,,:x0l >/2 by using Lemma 4.2 bottom-up. Now we

P..J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200 185

assume ~ contains 2 inequality yields. Then 7t is of the form

[x ~ > x 2] - - rx'~ = x ,] --, r{y,} > {y}],

where X = X'~wX2 and X2 = X'l wXl , thus X'2 = X - (X ' l w X l) .

If IX'd -- IX,I -- 2, then IHx,I = IHx,I = 1 and IHx~l = 2. So IHx21 >1 [[Hx:!l -- 2 by
Lemma 4.2(1).

If IX'll -- 1, then JHx, J = 0 and IHx~l = IHx,[= 1.
If IX'_,l/> IXzl = 3, then IHx~l > IHx:l -- 1 and thus IHxhl >>- 2.
If IX~l<lX21--3 , then IX~l--2 and IHx,~l=l. Thus ILx21=l and

ILx[= ILx~l + [Lx~l = 1 + 2 = 3, which contradicts to the condition that X contains
4 + light coins.

in Case 3.3:
If [XI ~< 4, this is (2).
If IXI > 4 and X contains 2 or 3 light coins, this is (2).
lflXJ = 2 k for some k > 2 and X contains 4 + light coins, then JLx-b,.y}J/> 2. Also

JHx-ly.~,'l }J I> 2 since 7t contains 2 + inequality yields. So it is (4).
if IX[> 4 but JXI is not a power of 2 and X contains 4 + light coins and 0 or I heavy

coins, then it is (2).
IflXJ > 4 but [XI is not a power of 2 and X contains 4 + light coins and 2 ÷ heavy

coins, then it is (4).
In Case 4.1: This is (3).
in Case 4.2:
If [XI is a power of 2, then it is (2).
If IXI is not a power of 2 and X contains at most 1 heavy coin, then it is (4).
If IX[is not a power of 2 and X contains at most 2 + heavy coins, then it is (3).
in Case 4.3: This is (4) which follows from Lcmma 4.2(2).
In Case 4.4:
If IXl is a power of 2, then it is (3).
It iX[is not a power of 2 and X contains at most 2 heavy coins, then it is (4).
if IX[is not a power of 2 and X contains at most 3 + heavy coins, then it is (3). []

Lemma 4.5. MA(n :0) = ['log, n.].

Proof. Since the coin set is uniform, Algorithm A simply compares [-logzn.]
times. []

Lemma 4.6. M~.(n:T) ~< 21og2n.

Proof. W.l.o.g., assume the unique coin is light. There are only 3 possible cases:
(1): The light coin is identified in the first test.
In this case the total number of tests is:

1 + 1 + [' l og2 (n - 2)'] ~< 2 log2n

by Lemma 5.7(1).

186 P.-J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

(2): The light coin is identified in DIG-L on some 2 k coins for 1 ~< k ~< Llog2 n_~
In this case the total number of tests is

1 + k + Flog2(n - 2~) 1 ~< 21o$2n

by Lemma 5.7(1).
~31, The light coin is identified in DIG-L on the last n - 2 L~°g~"j coins.
In this ~.ase the total number of tests is

1 + L log2 n J + [" log2 (n - 2 tl°a~"j)'] ~< 2 log2 n

by Lemma 5.7(1). []

Lemma 4.7. M,dn:~) ~< 2 log2 n.

Proof. W.l.o.g., assume there are exactly 2 light coins in the n (n/> 4) coins.
If the first test identifies one light coin, then the total number of tests is at most

1 + MA(n -- 2 :]) ~ 1 + 21og2(n - 2) <.f(n, 2)

by Lemmas 4.6 and 5.7(2).
Next we examine each case in the first call of BACKTRACK. If the first call of

BACKTRACK is BACKTRACK-H, then it could happen only in case 2 in BACK-
TRACK-H. In the case, the total number of tests is at most

3 + I + [-Iog2(n - 4)-] = 4 + Flog2(n - 4).] ...<f(n, 2)

by Lemma 5.7(3).
So now we suppose the first call of BACKTRACK is BACKTRACK-I . We

examine each case in the following discussion.
In Case 1:
Only one light coin is identified. Then the other light coin will be identified by a call

of UNIQUE-L(Y) on some set Y. Let IYI = m, then the total number of tests is at
most

I + [Iog3m'l + MA(n - - m : i) ~< 1 + ['logam.] + 21og2(n - m) ...<f(n, 2)

by Lemmas 4.6 and 5.7(2).
In Case 2:
If n = 4 then the total number of tests is 3 and

f(4, 2) = 5 + log2 3/> 3

If n = 4 then the total number of tests is

4 + ['log2(n - 4) 7 ~f(n, 2)

by Lemma 5.7(3).
in Case 3.1:
If a TRUE value is returned to Continue, then it follows from Lemma 4,3.

P.-J. Wan. D.-Z Du / Discrete Mathematics 163 (!.°97) 173-200 187

If a FALSE value is returned to Continue, then all coins are identified. Let IXI = m,
then n -- 2 k + m for some k with m ~ 2 h. The total number of tests is

1 + k + [' log2ml + [-log3[.½mJ'] ~ f (n , 2)

k,, Lemma 5.5(8). v j

In Case 3.2:
If a TRUE value is returned to Continue, then it follows from Lemma 4.3.
If a FALSE value is returned to Continue, then all coins are identified. Let IXD -- m

and IXll + IX'~l = I, then n = 2 ~ + rn for some k with m ~ 2 ~. The total number oftests
is

1 + k + [' logem 1 + 1 + [-log3L½m.]'] ~<f(n, 2)

by Lemma 5.5(8).
In Case 3.3:
If a TRUE value is returned to Continue, ~.~en it follows from Lemma 4.3.
I r a FALSE value is returned to Continue, then all coins are identified. Let IXI = m,

then n = 2 k + m for some k with m ~< 2 ~. Consider the value of m as follows:
If m = 3, then n = 2 h + 3 and the total number of tests is

l + k + 3 = k + 4 ~ f (2 . + 3, 2) -- f (n , 2)

by Lemma 5.4(3).
If m = 4, then n -- 2 h + 4 and the total number of tests is

1 + k + 3 = k + 4 ~ f (2 h + 4, 2) = f (n , 2)

by Lemma 5.4(3).
If m > 4, then the total n u m ~ r of tests is

1 + k + r l o g , m] + 1 ~ f (n , 2)

by Lemma 5.5(8).
In Case 4:
This case cannot happen. I-I

[,emma 4.8. M , (n : a T) <~f(n, il).

Proof. We prove by induction on 4. If ~ = 2, this is exactly Lemma 4.7. Now we
assume aT >/3.

If the first comparison is an inequality yield, let the two coins be x and x'. Then
a~s_lx.x, 1 = d - I t> 2. By induction, the total number of tests is at most

1 + MA(n -- 2, g - - 1) -..<f(2, 1) + f (n -- 2, Ta -- 1) ~<f(n, ~ .

Next we suppose the first comparison is equality yield. We consider the two cases in
which the number of while-loops is one or greater than one.

(1) There is only one while-loop.

188 P.-.I. Wan. D.-Z. Du / Discrete Mathematics 163 (I 997) 173-200

W.l.o.g., suppose the first inequality i s ' > '. If there exists a call of UNIQUE-L(Y)
with I YI/> 2 in the main algorithm, then S - Y contains at least I YI heavy coins and at
least d - 1 ligh: c•ins. Fhus

i[s_ y >i min {I YI, ~ - ! } >I min {2, 3 - 1 } = 2.

Since Y is just an "interlade' and its existence does not affect the identificatiort of other
coins. So the total number of tests is at most

1 + Vlogs IYl'l + M a (I S - Y l : d s - v)

~<f(IYI, 1) + f (IS - YI, ds-r) (by induction and Lemma 5.4(1))

= f (I Y I , dr) +f (IS - YI, ds-v) ~<f(ISI, aTs) (by Lemma 4.1).

We further suppose that there are no calls of U N I Q U E - L in the main algorithm. If
the first pair of calls of DIG-L(Y) and BACKTRACK(Y, n) in the main algorithm
finds only one light coin, then I YI = 2 ~ for some k > 0 and only case 1 in BACK-
TRACK(Y, n) happens. Since there are no calls of UNIQUE-L, whether Y exists or
does r.o: affect all the following tests, that is, Y is also an "interlude'. By the same
argument as above, aTs- r >/2 and the total number of tests is at most

1 + I-log2 IYI-I + MA(IS -- Yl:Tas-r)

~<f(IYI, 1)+f (IS - YI, ds-r) (by induction and Lemma 5.4(1))

= f (I Y l , d v) + f t l S - YI, ~s-v) ~<f(ISI, d~) (by Lemma 4.1).

Next we can assume there are no calls of U N I Q U E - L and the first pail of calls of
DIG-L and BACKTRACK-L finds 2 + light coins. Suppose there are more than one
such pair, then each pair of DIG-L and BACKTRACK-L will find 2 + light coins and
can be regarded as independent. Let the first pair of calls be DIG-L(Y) and BACK-
TRACK(Y, n). Then ds--r/> 2 since S - Y contains at least IYI I> 2 heavy coins and
2 ÷ light coins. By Lemma 4.3, the total number of tests to identify Y is at most
f (I Y l , dv). By induction, the number of tests to identify S - Y is at most
f (I S - YI, J s - v). So the total number of tests to identify S is at most f(ISI, aTs) by
Lemma 4.1.

Next. we suppose there are no calls of U N I Q U E - L and there is only one pair of calls
of DIG-L and BACKTRACK. If this pair is in the middle of the main algorithm, then
by Lemma 4.3, the total number of tests is also at most f(ISI, ds). So we only need to
consider the case in which the pair of calls happen last in the main algorithm. We
examine all the possible cases in BACKTRACK(X, n).

In Case 2:
Suppose IXI = 2 ~ and ISI = 2k+ 2 z with 2 ~< I ~< k. Then ds = 2 t and the total

number of tests to indentify S is at most

! + k + l ~ < 2 k + l ~<f(2 k + 2 , 2) (by Lemma 5.4(3))

~< f (2 k + 2 s, 2) (by Lemma 5.1)

P.-J. Wan. D.-Z. Du / Discrete Mathematics 163 (!997) 173-200 189

~<f(2 k + 2 t, 2 z) (by Lemma 5.1)

= f (ISi, ds)

In Case 3.2:
X must conta ins 3 light coins and thus 3"s = 3. Let IX] = m, then ISl = n = 2 ~ + m

for some k with 2 k >I m. Suppose IX't uX~[= I, then the total n u m b e r of tests to

identify S is at most

l + k + rlog3.~l + [qog3/½t/7 + [-log3(m - t)7 ~<f{,,, 3)

by Lemma 5.6(4).

In Case 3.3:
X must conta in all ds >/3 light coins. Let IXI = m, then [SI = n = 2 k + m for some

;. with ~k >/m.
If m = 3, then n = 2 k + 3 and the total number of tests is

~1 + k + 3 = k + 4 ~<f(2 k + 3, 2) = f (n , 2) <~f(n, 3)

by Lemma 5.4(31.
if m = 4, then n = 2 ~ + 4 and the total n u m b e r of tests is

l+k+3=k+4~<f (2 ~+4,2)=f(n,2)<<.f(n,3)

by Lemma 5.4(3).
I fm > 4 and X conta ins 3 light coins, then the total n u m b e r of tests to identify S is

at most
1 + k + [' log, m'] + 1 + [' l o g 3 (m - 2)'} ~<f(n, 3)

by Lemma 5.6(5).
If m > 4 and X conta ins no heavy coins, then the total n u m b e r of tests to identify

S is at most

1 + k + [' log, m'] + 1 + 1 = k + 3 + I-log2 m-] ~<f(2 h + re, m)

by Lemma 5.6(6).
If m > 4 and X conta ins only one heavy coin, then the total n u m b e r of tests to

identify S is a;. most

l + k + I - log , m'] + l + [' log3(m - 2)-]

= k + 2 + I-log2 m-] + ['log3(m - 2)'} ~<f(2 k + m , m - 1)

by Lemma 5.6(71.
In Case 4.2:
}XI cannot be a power of 2. Let IXl = m, then m ~< 5 and IS] = n = 2 ~ + m for ~ome

k with 2 k >/m.

190 P.-J. Wan. D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

If X conta ins no heavy coins, then ds = m. The total n u m b e r of tests to identify S is
at most

! + k + [-Iog~ m] + I ~< 2k + 2 ~<f(2 h + 2, 2) (by Lemma 5.4(3))

~<f(2 k + m, 2) (by Lemma 5.1)

~<f(2 h + m,m) (by Lemma 5.1).

If X conta ins 1 heavy coin, then us ~ :- m - _l _>~ 4. The total n u m b e r of tests to
identify S is at most

1 + k + I-log2 m'] + 1 + [-log3(m - 2}-] ~< 2k + 2 + [-log3(m - 2)']

~ < f (2 ~ + 2, 2) +f(m - 2, 1) (by Lemma 5.4(1) and (3))

<<.f(2 h + m. 3) (by Lemma 2.3)

~<f(2 k + m, m) (by Lemma 5.1).

In Case 4.4:

tSl canno t be a power of 2. Let tX{ = m. then m ~< 5 and IS[= n = 2 k + m for some
k with 2 k t> m.

If IX'I[= 1 and X conta ins 1 heavy coin then ds = m - 1 and the total n u m b e r of
tests to identify S is at most

1 + k + [' log2m'] + 1 ,<.< 2k + 2 ~<f(2 k + re, m - 1)

by the same a rgument as in Case 4.2.
If [X'll = 1 and X conta ins 2 heavy coins then ds = m - 2 and the total n u m b e r of

tests to identify S is at most

1 + k + [-log2m'] + 1 + [-Iog3(m - 3)'] ~< 2k + 2 + [-log3(m - 3)']

~<f(2 k + 2, 2) + f (m - 3, 1)

~<f(2 k + m - l , 3) ~ < f (2 k + m , m - 2)

by the same a rgument as in Case 4.2.

If IX'll -- I and X conta ins 2 heavy coins then ~s = m - 2 and the total number of
tests to identify S is at most

I + k + rlog2m'] + 1 + Flogs(m - 3)]

~< 2k -t- 2 + ['log3(m - 3)]

<~]'(2 k + 2, 2) ÷ f (m - 3, 1) ~<f(2 k + m - 1, 3) ~<f(2 ~ + m, m - 2)

by the same argument as in Case 4.2.

If IX'il = 2 and X conta ins 1 heavy coin then ds = m - 1 and the total n u m b e r of
tests to identify S is at most

I + k + rlog2 m-] + ! + 1 ~< 2k + 3 ~<f(2 k + 2,2) <~f(2 h + m,2)

~<j'12 ~ + m, m - 1)

by the same argument as in Case 4.2.

P.-3. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200 191

If]X'~J = 2 and X contains 2 heavy coins then ds = m - 2 and the total number of
tests to identify S is at most

1 -I- k + I-log2 m-] + 1 + 1 + [-Iogs(m - 4)'] ~< 2k + 3 + ['loga(m - 4)']

~<f(2 k + 2, 2) + f (m - 4, 1) ~<f(2 h + m - 2, 3) ~<f(2 s + m, m - 2)

by the same argument as in Case 4.2.
(2) The algerithm contains more than one while-loop.
Consider the first while-loop. W.l.o.g., assume the first inequality comparison yield

is ' > '. By the same argument as in (1), we can assume that there are no calls of
U N I Q U E - L in the main algorithm. Also by Lemmas 4.1 and 4.3, we can assume that
there are no "interlude" cases. We consider each case in BACKTRACK-L(X, g) that
could return a FALSE value to Continue and yet at the end of which there are still
some unidentified coins. Let Z be the set of coins idenuhed in the first while-loop and
suppose that before testing X we already have identified 2 ~ heavy coins for some
k~>l.

in Case 2:
In this case, X is lightly uniform and [XI = 2 ~.
Ifds -z i> 2, then by induction the total number of tests to identify S - Z is at most

f (IS - ZI, ds-z). The *.otal number of tests to identiiy Z is at most

2k + 1 ~<f(2 h + 2, 2) ~ f (2 k+ ~, 2) ~ f (2 ~+ 1, 2 h) =f(lZI , dz).

So by Lemma 4.1, the total number of tests to identify S is at mostf(IS[, as).
If ds -z = I and k ~< 2, then the total number of tests to identify S is at most

2k + 1 + MArlS -- Z [: i) ~< 2k + 1 + 21og(n - 2 ~+t)

~<f(2 h + 2 + n - 2~+1,4) (by Lemma 5.4(5))

~<f(n, 4) <~f(n, 2 ~ + 1) =f(ISI, c/s).

If ds -z = I and k = 1, then the total number of tests to identify S is at most

3 + MAin -- 4 : i) ~< 3 + 21og(n -- 4) <~f(n, 2) (by Lemma 5.7(2))

<~f(n, 2) <~f(n, 3) =f(ISI, ds).

If ds- z = 0, then k < 2 and the total number of tests to identify S is at most

2k + 1 + [l o g , (n - 2k+~) "] + 1 .~<f(2 ~ + 2 + n - 2~+t, 3) (by Lemma 5.4(4))

<~f(n, 3) <~f(n, 2 k) =f(ISl , C/s).

In Case 3.2:
In this case X must contain 4 + light coins and by l.emma 4(4) dx -(x,,~xO ~ 2, hence

ds -z 1> 2. Suppose [XI = m and IX, u X ' d = l, then the total number of tests to

192 P.-J. Wan. D.-Z Du/Discrete Mathematics 163 (1997) 173-200

identify Z is at most

I + k + r log2m] + [-logs L½,'J] + 1 ~ f (2 ~ + 1,2) (by Lemma 5.5(8))

= f (IZl, dz).

So by Lemma 4.1, the total number of tests to identify S is at mostf(IS[, ds).
In Case 3.3:
In this case X must contain 4 + light coins and 2 + heavy coins. By Lemma 4(4)

dx-:,.,, : ~ 2, hence ds -z /> 2. Suppose IXI = m, then the total number of tests to
identify Z is at most

1 + k + Flog2m 7 + 2 ~< 2k + 3 ~<f(2 k + 2, 2) (by Lemma 5.4(3))

=f(IZI, de).

So by Lemma 4.1, the total number of tests to identify S is at most f(lSl, ds).
In Case 4.1:
In this ease, IX1 u X ' d = 21 for some !/> 2. The proof is similar to the proof in

Case 2.
In Case 4.2:
In this case X must contain 4 + light coins. The proof is similar to the proof in

Case 3.2.
In Case 4.3:
In this case X must contain 3 + heavy coins by Lemma 4(4) dx-~x,vx ,} t> 2, hence

tls-z/> 2. Suppose IXI = m.
if IX'd = 1, then the total number of tests to identify Z is at most

1 + k + [-log21n'] + 1 ~ 2k + 2 ~<f(2 k + 2, 2) (by Lemma 5.4(3))

~<./(2 ~ + 3, 2) =f(IZI, dz).

So by Lemma 4.1, the total number of tests to identify S is at most f(ISI, ds).
If IX%I = 2, then the total number ol tests to identify Z is at most

1 + k + Flog2 m-] + 2 ~ 2k + 3 <~J'(2 k + 2, 2) (by Lemma 5.4(3))

~<./(2 k + 4, 2) =f(IZl, rID.

So by Lemma 4.1, the total number of tests to identify $ is at most f(I$1, ds).
Thus in either case, the total number of tests to identify S is at mostf(I$1, ds). []

Now we can prove our main result:

Theorem 4.9. For 0 < d < n,

Ma(n :iT) ~< (log2 3 + ½)M(n:d) + 4.

P..J. Wan, D. -Z. Du / Discrete Mathematics 163 (! 997) 173-200

Proof. By Lemma 2.3, M(n: 1)= ['log2 n'].
By Lemma 4.6, MA(n: 1") ~< 2 log2 n ~< (iog23 + ½) log2 n. So

MA(n:1") ~< (log23 + ½) M(n: 1).

For d >/2, by Lemm 2.1 we have

(log23 + ½)M(n :d) I> (log23 + ½)M(n, d) >.f(n, d) + h(d),

where

f(n,d) = (1 + ½1og32)dlog2[+ 1.5d,

h(d) =(l + ~log32)l_\log2 "~ 1 + ½log3
/

1
- ~ log2 3]. log2 d - 0.567 1

Since h'(d) = 0 iff d = 7.6

h(d) >1 min{h(7), h(8}} = - 3.8 --- I> - 4.

Thus by Lemmas 4.8 and 5.2,

(log2 3 + ½)M(n:d) >~f(n,d) - 4 >~f(n:a ~) - 4 t> M,dn:t/) - 4.

So M A(n:cT) <~ (log2 3 + ½)M(n:d) + 4. []

193

Appendix

In this section, we present some properties and inequalities used by our algorithm
analysis.

1 n
Letf(n,d) = (1 + ~logs2)dlog2~ + 1.5d.

Lemma 1. f is an increasmg funczion o fn ,nd d for d <~ ~.

Proof. It is obvious that f is an increasing function of n.
Since row d <~ ½ n,

1 n 1
f'a(n, d) = (1 + ~ log.~ 2) loga ~ - (1 + ~ log32) log2 e + 1.5

1 n +
= (1 + ~logs 2) 1 o g 2 ~ . e 1.5

1 2
~>(I + ~logs2)logze + 1.51>0.

f is also an increasing function of d for d ~< ½ n. l"l

194 P.-J. IVan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

Lemma 2. For d <<. ½ n,

f(n, d) <~ f(n, n - d).

Proof. Let g(d) = f(n, d) - f (n , n - d), then

g ' (d)= 1+~1og32 l o g 2 ~ . e + 1 . 5 + 1+~1og32 i o g z ~ + l . 5

= 1+~1og32 lOg2d(n_d).e 2 + 3

(1 /
= 1 + ~1og32 log2[(d d)/212.e 2 + 3

[(,) i = 2 1 +-gloga2 logz_2+l.5 >0 .
g. _l

So g is strictly increasing. Since O(½ n) = 0, for d <~ ½ n, o(d) <~ O(½ n) = O. This means
for d <<. ½n, f (n ,d) <<.f(n,n-d). []

Lemma 3. Let o(k, m) = f (2 k + m, d) for any f ixed d ~ 2.
(I) I f m >1 2 h, then O's(k, m) > I/(m In 2). This implies that g increases faster than

log2 m as m increases.
(2) I f m <<. 2 k, then g'k(k, m) > 1. This implies that O increases faster than k as

k increases.

Proof. (1) For d ~- 2 and m 1> 2 k,

(,) , , (,) , ,
g'm(k,m)= I +~Iog32 d 2k+m In2 ~> I +~Iog32 2 m+m In2

I

> mln2"

(2) Ford~>2andm~<2 k,

1 (1 + ~ 1 o g 3 2) 2 . 2 ~ 2 ~ > I. [] g ' k (k ,m)=(l + ~log3 2) d . 2 k ~ m ~>

Lemma 4.
(1) ['log~ml + I <~f(m, 1).

(2) 21og2m <~f(m, 2).

(3) 2k + 3 ~<f(2 k + 2, 2).

(4) 2k + [" log2 ml + 2 ~<f(2 k + 2 + m, 3).

(5) 2k + 21og2m + 1 ~<f(2 ~ + 2 + m, 4).

(6) 2k + 2 + [- log3 L½1J 1 ~< f(2k + l, 2).

P.-J. Wan. D.-Z. Du / Discrete Mathematics 163 (1997) 173-200 195

Proof. (1): If m = 1, then

f (m , l) - (r l o g 2 m "] + 1) = 1 . 5 - 1 > 0 .

If m = 2, then

f(m, 1) - ([- log2 m'] + 1) = ½log3 2 + 2.5 - 2 > 0.

Fo r m/> 3,

f(m, 1) - ([- log2 m'] + 1) >.f(m, 1) - l o g 2 m - 2

= (1 + ½ log 3 2) log2 m - log2 m - 0.5 = ½ log3 m - 1 / > 0.

Thus ['log2 m'] + 1 <~f(m, 1).
(2): It follows that

f(m, 2) - 2 log2 m = (2 + log3 2) log2 ½m + 3 - 2 log2 m

= log3 m - log3 2 + 1 > 0.

(3): Let g(k) = f (2 h + 2, 2) - (2k + 3). Then

g(k) = (2 + log3 2) log2 ½ (2 k + 2) - 2k = (2 + logs 2) log2 2 *- ~ + 1 - 2k

and

So

2 k - 1
g'(k) = (2 + l o g 3 2)~,_-c:-~--~.. - 2.

g'(k) t>O ¢~ 2 h - z / > l o g 2 3 ¢:" k>13.

Since

g(3) = (2 + log32)1og25 - 6 .~ 0.10 > 0

g(2) -- (2 + log32) log23 -- ~ -: 2 log23 - 3 --- log29 - k~g2 b > 0

g (l) = 2 + ! o g 3 2 - 2 --- 1og32 > 0.

We have g(k) > 0 for all k > 0. Thus 2k + 3 ~<f(2 ~ + 2, 2).
(4) and (5) follow immediately from 0)- (3) .
(6): Let g(l) = f (2 h + I, 2) - (2 k + 3 + log3 ½), then

g(l) = (2 + log3 2)Iog2 ½(2 k + /) - - 2k - log31 + log3 2

= (2 + log3 2) log2 2 h + l - 2k - logs I - 2

and

2 + log3 2 1
g'(I) -- (2 k + l) in 2 l l n 3"

196 P.-J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

So

g'(I) >~ 0 ~ (2 + Iog32) log23"! /> 2 k + I ~ , (21og23 + 1) ' / /> 2 k + l

I >t 2 k- t ioga 2.

Since

.q(2 k- t log 32) = (2 + log32) log 2 (2 k + 2 k- 1 log32) - 2k - log3 (2 k - t Ioga 2) - 2

= (2 + loga 2) [k + h-,g2 (1 + ½1oga 2)] - 2k - (k - l) log32

- log3 Iog32 - 2

= (2 + log3 2) log2(l + ½ Ioga 2) + log32 - loga loga 2 - 2

0.09 > O,

for all l,

g(l) >t g(k, 2 ~= t loga 2) > 0.

This implies

2k + 2 + F loga L½1J -] <~f(2k + l, 2). []

Lemma 5. (1) K + I + [' log32 k- t -1 ~ f(2 ~, 2), for all k >t 1.

(2) K + 2 + F log32~'-2] ~<f(2k, 2), for all k >1 2.

(3) 2K + 2 + [" log32 k- t -] ~<f(2k+ l, 2), for all k >1 1.

(4) 2K + 3 + ~- log 32 k- 2-] ~<f(2k+ t, 2), for all k >1 2.

(5) K + 1 + [- 1og32 k- l -] + [- log2m] <~ f (2 k + m, 2), for all k >1 1 and m >1 2 k.

(6) K + 2 + V l °g32k-2] + F log2 m] <~ f (2 k + m, 2), for all k >t 2 and m >1 2 ~.

(7) K + l + f log2 m-] + F loga L½1J] ~<f(2k + l, 2), Jot all m ~ 2 k and I <~ F½nl].

(8) K + 2 + F log2 m.] + F log3 L½1J] (f (2 k + m, 2), for all m <~ 2 k and 1 ~ F½m-].

Proof. (l): For k/> l,

f (2 k. 2) - (K + 1 + ['loga 2 k - ! -])/> (2 + log32)(k - 1) + 3

- (k + 2 + k l o g 3 2 - 1 o g 3 2) = k - 1.>-0.

Hence for k/> I,

k + l + Floga2 k-~] 6f(2k, 2).

(2): For k/> 2,

f(2 k. 2} - (K + 2 + ~-log32 ~- 2]) >I (2 + log32)(k - 1) + 3

- (k + 3 + k Ioga2 - 2 log32)

= k - 2 + ! o g 3 2 > 0.

P.-J. Wan. D.-Z. Du / Discrete Ma!hematics 163 (1997) 173-200 197

Hence for k i> 2,

k + 2 + Vloga2 k-2] ~<f(2k, 2).

(3): For k/> 1,

j.(2 k + i 2) - (2k + 2 + [" log32 k- ~ -1)/> (2 + log32) k + 3

- (2k + 3 + k log32 - log32) = l o g 3 2 / > 0.

Hence for k 1> 1,

2 k + 2 + [' l o g 3 2 A ~7 ~<.f(2k*L2) •

(4): For k/> 2,

f(2 k÷ ~, 2) - (2K + 3 + [' log32k-2])/> (2 + log32)k + 3

- (2k + 4 + k log32 - 2 log32)

= 2 1 o g 3 2 - 1 > 0 .

Hence for k >/2,

2k + 3 + [-1og32 k-2] ~f(2k+ !, 2).

(5) and (6): By Lemma 5.3(1), for m >i 2k,f(2 ~ + m, 2) increases faster than log2 m as
in increases. So (5) and (6) hold for m >/2 ~ iffthey hold for m = 2 k, which are (3) and (4),
respectively.

(7): By Lemma 5.3(2), for k > log2 m, ./'{2 k + m, 2) increases faster than k as k in-
creases. So we only need to prove that (7) holds for k = [log , m].

./'(2 k + I, 2) - (K + I + Flog2m] + ['log3L½/J-I)

1> (2 + log32)log2½(2 k + I) + 3 - (k + 1 + k + 1 +log3½/)

=(2 + log32)[k + iog2(~ + 2J-~)]- (2k + kiog32 + log32J-~) + l

(,) l
=12 + log32)log2 1 + ~ - 7 - i o g 3 ~ 7 + ! > 0 .

(81: By Lemma 5.312), for k > Iog~ m, f(2 k + m, 21 increases faster than k as k in-
creases. So we only need to prove (8) holds for k -- [log_, m].

f(2 ~ + I, 2) - (r + 2 + I-log, m] +]-logaL½/J])

I> (2 + ioga 2)iog2½(2 ~ + m) + 3 - (k + 2 + k + I + log3½O

= (2 -~ !og32)iog2 ~ + ~ - > O. []

198 P.-J. Wan, D.-Z. Du / Discrete Mathematics 163 (1997) 173-200

Lemma 6. (1) K + 2 + [-1og32 ~ - j] + ['1og3(2 k - 2i) -] ~<f(2 k, 3), for all k >i 3 and

i < ~ k - 1 .
(2) 2K + 3 + [-loga2~-~-] + [-ioga(2 k - 21)-] ~<f(2k+ t, 3), for all k >~ 2 and i

k - 1 .
(3) K + 2 + [-log2 m-] + ['log3 2 ' - ~ -] + ['1og3(2 k - 2~) "] ~<f(2 ~ + m, 3),for all k >t 3,

i <~ k - l and m >~ 2 ~.

(4) K + 2 + [-log2 m'] + [" log3 [.½ l.J -1 + ['log3 (m - !)-1 ~< f(2 k + l, 3), for all k >i 3,
m >I 2 k and I ~ r½m].

(5) k + 2 + I-log2 m-] + [' loga(m - 2)" I ~<f(2 k + m, 3),fo~ 4 < m <~ 2 ~.
(6) k + 3 + [-log2 m-1 ~<f(2 k + m,m) , for 4 < m <~ 2 ~.

(7) k + 3 + Flog2m-] + [-logs(m - 2)'1 <-g. f(2 k + m , m - l) , for 4 < m ~ 2 k.

ProoL (l): For k >i 3 and i ~< k - 1,

f(2 k, 3) - (K + 2 +]-log3 2 ' - 17 + [-!og3(2 k - 2')-])

2 ~
I> (! + ½ l o g 3 2) 3 log2 ~ "4" 4.5 -- (k + 4 + ioga 2; + log3 (2 k - 2 i) - l o g 3 2)

= (3 + ~log32) k - (3 log23 + 1.5) + 4.5 - {k + 4 + log3 [-2" (2 k - 21)]

+ 4 - l o g 3 2 }

>~ (3 + 3 l o g 3 2) k - [~k + log3 (2 k- I. 2 k- l) + 4 - l o g 3 2]

- (3 l o g 2 3 + 1 - l o g 3 2)

= (3 + ~ i o g 3 2) k - (k + 21og32"k - 2 1 o g 3 2) - (31og23 + 1 - Iog32)

= (2 - ½ log32) k - (3 log23 + 1 - 3 log32)

1> (2 - ½ log32) 3 - (3 log23 + 1 - 3 log32) ~ 1.19 ... > 0.

(2): F o r k t > 2 a n d i ~ < k - 1 ,

2K + 3 + [- iog32'- 1-1 + [-Iog3(2 k - 2i)-]

= (2K + 2 + [-log3 2 ' - ' 7) + (1 + [-Iog3(2 k - 2')-])

<.g.f(2 k + 2 i, 2) + f (2 k - 2', l) (by Lemmas 5.4(1) and 5.5(3))

~ f (2 k÷ 1 3).

(3): Holds by Lemma 5.3(1) iffit holds for m = 2 k, which is exactly (2).
(4): Holds by Lemma 5.3(2) iff it holds for k = [-log, m']. When k = [-log2 m-],

g + 2 + k + L [-log3[.½1J-] + [- i o g 3 (m - !)-]

= (2K + 2 + [-loa3L~tJ-]) + (l + I-iog3(m - 1)-])

<~f(2 k + I, 2) + f (m - l, l) (by Lemmas 5.4(1) and 5.5(8))

~<f(2 ~ + m, 3).

P.-J. Wan. D.-Z Du / Discrele Mathematics 163 (1997) 173-200 199

(5): Holds by L e m m a 5.3(2) iff it holds for k = ['log2 m,]. When k = rlog2ml,

k + 2 + r l og2m "] + r loga (/ - 2)-] = (2k + 3) + logs(m - 2)

~<f(2 k + 2, 2) + f (m - 2,1) (By L e m m a 5A(1) and 5.4(3))

~<f(2 k + m, 3).

(6): Holds by L e m m a 5.3(2) iff it holds for k = [-log2 m']. When k = [-log2m'],

k + 3 + ['log2m-] = 2k + 3 ~<f(2 ~ + 2,2) (By L e m m a 5.4(3))

~<f(2 h + m, 2) ~<f(2 ~ + re, m).

(7): Holds by L e m m a 5.3(2) iff i t holds for k = [' log2m'[. When k = [' log~m-],

k + 3 + I-log2 m'] + [' logs (m - 2)-] = (2k + 3) + (1 + logs(m - 2))

~<f(2 ~ + 2, 2) + f (m - 2,1) (By L e m m a s 5.4(1) and 5.4(3))

<~ f (2 ~ + m, 3) <~ f (2 h + m , m - 1). []

L e m m a 7. (1) 1 + K + [' log2(n - 2k),] ~< 21og2n.

(2) 1 + [' logsc,] + 21og2(n - c) ~<f(n, 2).

(3) 4 + r log2(n - 4) -] ~ f (n , 2) fo r f (n > 4.

Proof . (1):

1 + K + ['log2 (n - 2k)-] ~ 2 + k + log2(n - 2 k) --- 2 + |og2 [2~ ' (n - 2k) "]

~<2+Iog2 • =210g2n.

(2): Let g(c) = f (n , 2) - [2 + iog2c + 21og2(n - c)'l. Then

g{c) = (2 + logs 2) log2 n - log s c - 2 log2 (n - c) - (1 q- logs 2)

and

So

1 2

O'(c) cln3 (n-2)In2"

n
O'(c) = 0 ~ c

1 + 21og23"

Hence

g l c) / > g ---- logs(½ + log2 31 + log2(l + ½logs 21 - 1 ~ 0.05 > 0.

200 P.-J. Wan, D.-Z. Du/Discrete Mathematics 163 (1997) 173-200

T h u s

l + ~ l o g a c] + 21og2(n - c) ~<f(n, 2).

(3): I f 4 < n < 8, t he i nequa l i t y c a n be ver i f ied d i rec t ly . F o r n / > 8,

f (n , 2) - (4 + [-log2(n - 4)]) / > (2 + log32)1og2 ½ n + 3 - (5 + log2 (n - 4))

= (2 + loga 2) log2 n - (2 + loga 2) - (2 + log2 (n - 4))

= 2 log2 n + l o g a n - log2 (n - 4) - 4 - loga 2

= (log 2 n - log2 (n - 4)) + (log2 n - 3) + (i o g a n - loga 2 - 1)

> 0 + 0 + 0 = 0 .

T h u s for all n > 4,

4 + F log2In - 4).] ~<f(n, 2). []

References

[1] S.S. Cairns, Balance scale sorting, Amer. Math. Monthly 70 11963) 136 148.
[2] D.-Z. Du and F.K. Hwang, Combinatoria' Group Testing and its Applications (World Scientific,

Singapore, 1993).
[3] D.-Z. Du and H. Park, On Competitive Group Testing, SIAM J. Comput. 2315~ 0994) 10!9 1025.
[4] X.-D. Hu, P.-D. Chen and F.K. Hwang, A new competitive algorithm for lhe counterfeit coin problem,

Inform. Process Lett. 51 0994)213-218.
[5] X.-D. Hu and F.K. Hwang, A competitive aigorithm for the counterfeit coin problem, in: D.-Z. Du and

P.M. Pardalos. eds., Minimax and Applications ~Kluwer Academic Publishers, 1995) 241-250.

