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A subclass of general octagonal distances defined by neighbourhood sequences 
[2] have been characterized here which have a strikingly simple closed functional 
form. These are called simple distances. Minimization of the average absolute 
(normalized) and average relative errors of these simple distances with regard to the 
euclidean norm have been carried out to identify the best approximate digital distan- 
ces in 2-D digital geometry. The direct errors have also been analyzed and the effect 
of finite domain sizes on the approximation has been highlighted. It is shown that 
the neighbourhood sequences {2}, { 1, 2}, { 1, 1,2}, and { 1, 1,2, 1, 2) have special 
significance in distance measurement in digital geometry. e 1992 Academic Press, Inc. 

1. INTR~OUCT~~N 

Integral approximations of the true euclidean distance e in the digital 
plane have long been attempted, particularly for the purpose of digital pic- 
ture processing. Though pictures seemingly exist in the continuous domain, 
their fast processing using a computer has often been envisaged in the 
quantized space in which digital computers operate. In particular, a num- 
ber of distance propagation and transformation algorithms have been 
worked out which necessarily operate with integer values. Thus the perti- 
nent question which has obtained frequent attention is the issue of close 
approximation of the true euclidean norm using integer valued metrics. The 
first obvious choices were e2, LeJ, round(e) = Le + 0.5 J, and Tel, where 
L. J and r .] are floor and ceiling functions [3], respectively. Though all 
these four are integer valued, the first three of them fail to satisfy the metric 
properties [4]. The fourth approximation Fe] is a metric and provides a 
workable solution, but unfortunately it has received little attention, 
possibly due to its limitation in the definitions of suitable point 
neighbourhoods and minimal paths. Consequently most of the research 
efforts in digital distance approximation have been diverted to the search 
of proper digital distances and the class of octagonal distances [2] have 
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emerged as a viable solution in the digital plane. In this paper we have 
analyzed the octagonal distances from the point of view of approximation 
and identified a few very simple integer metrics which can be widely used 
for the above tasks. Most importantly we prove that in the framework of 
octagonal distances we can hardly expect to achieve a better approxima- 
tion. 

The octagonal distance for digital pictures was introduced in digital 
geometry by Pfaltz and Rosenfeld in [4] when they proved that an alter- 
nating use of cityblock and chessboard motions defines a new integer- 
valued metric which can approximate the true euclidean norm better, than 
the conventional cityblock or chessboard distances. Recently Das and 
Chatterji [2] have extended their definition to allow for arbitrarily long 
cyclic sequences of cityblock and chessboard motions called neighbourhood 
sequences. This general definition has been shown to be “octagonal” still, 
since it always corresponds to constant radius “disks” which are digital 
octagons (see Fig. l(a, b)). Detailed analysis of such octagons with respect 
to the area and perimeter errors for a euclidean circle shows that in every 
such neighbourhood sequence the actual order in which the two motions 
are arranged is of little consequence in an asymptotic sense so long as the 
length of the sequence and the number of cityblock/chessboard motions 
remain constant. This fact is reflected in the characteristic o&e [2] of 
every sequence which is invariant under the reordering of motions. A 
general closed form expression for such distances has also been derived in 
[Z] and it is proved that a neighbourhood sequence defines a metric in the 
topological sense if and only if the sequence is well-behaved. 

Unfortunately the functional form of the class of octagonal distances is 
mathematically fairly complex and involves a long chain of integer func- 
tions (floor operations) in the computation. In practical use this functional 
complexity not only leads to unnecessary programming difficulty but at the 
same time hinders the physical understanding of the properties of the 
metric. So the simplification of the distance function needed special atten- 
tion for effective usage. We show in this paper that out of the class of 
neighbourhood sequences which have the same characteristic value (and 
hence identical error behaviour) there exists exactly one metric which has 
a strikingly simple functional form (involving only one ceiling function) 
and incidentally satisfies the metricity conditions too. So after a revision 
of the available results on octagonal distances in Section 2, we derive 
a characterization for such simple octagonal distances in Section 3. In 
Section 4 we introduce new error analyses involving these simple metrics. 
In these analyses the error between the octagonal and the true euclidean 
distances has been estimated in the asymptotic order by using a continuous 
(and hence asymptotic) approximation of the octagonal metric. Finally we 
have attempted to minimize the maxima of the absolute (normalized) dif- 
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ference, the relative difference, the average absolute (normalized) difference, 
and the average relative difference through the selection of the proper 
characteristic value and the corresponding neighbourhood distance. 
Interestingly most of the errors minimize for some special metrics. We have 
analyzed these in detail and recommended, in Section 5, four different 
simple metrics for practical use in digital approximation. 

2. OCTAGONAL DISTANCES-A REVISION 

For the sake of completeness we highlight in this section the relevant 
results on octagonal distances from [2]. 

Rosenfeld and Pfaltz [4] identified two types of motions in the two 
dimensional digital plane Z2, where Z is the set of integers. The first type 
of motion (cityblock motion) restricts movements to the horizontal or ver- 
tical directions, while the second kind (chessboard motion) also allows 
diagonal movements. The length of the shortest path between any two 
points restricted by a particular type of motion defines a distance function 
between two points. Thus the two types of motions in two dimensions 
determine two distances, cityblock distance and chessboard distance. 

Cityblock movement as such involves a unit change in at most one coor- 
dinate at every step, whereas chessboard motion allows a unit change in 
both coordinates. The first kind of motion will be said to involve type 
I-neighbours, while the latter will use type 2-neighbours. Any distance 
which is obtained by combining these two motions is determined by a 
Neighbourhood Sequence (N-sequence, for short) which defines the type of 
motion to be used at every step. Here a distance function between any two 
points (u,, u2) and (ol, u2) using the N-sequence B= {b(l), b(2), . . . . b(p)} 
(where b(i) is a particular type of neighbourhood, I< b(i) < 2, and p = 1 BI 
is the length of the sequence beyond which B repeats itself) is denoted by 
d((u, 7 u,), (u,, u2); B) or d(B) for short. For example, the octagonal dis- 
tance d,,, [4] is defined by an N-sequence B = { 1,2} which corresponds to 
a cycle of neighbourhood relationships { 1, 2, 1, 2, . ..}. Any N-sequence B 
defines a unique distance function d(B). However, any distance function 
may be associated with an infinite number of N-sequences; e.g., B = { 1 }, 
( I, 1 }, { 1, 1, 1 >, . . . all define the same cityblock distance. 

The functional form of the octagonal distance is given in the following 
theorem. 

THEOREM 1 [Theorem 3.1 of [2]]. Let x1 and x2 be the lengths of the 
sides of a digital rectangle. The minimal length of the diagonal d( (x, , x,); B) 
of the rectangle as determined by B is d((x,, x,); B) = max(x,, x2, 

640!68:2-4 
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xi”= 1 L((Xl +x2) + mw~P)J), where f(i) = cj=, b(j), 1~ i < p, and 
f(O)=O, g(i)=f(p)-f(i-1)-l, l<i$p. 

Clearly the distance between two arbitrary points (ur, u2) and (II,, u2) in 
thedigitalplane becomesd((u,, u,), (u,, ~~);B)=d((lu,--uIl, lu,-u*();B). 

Unfortunately not all B’s define metric (positive definite, symmetric, and 
triangular) d(B)‘s. The following theorem states the necessary and sufficient 
condition for metric d( R)‘s. 

THEOREM 2 [Theorem 4.1 of [2]]. d(B) is a metric if and only if B is 
well-behaved, that is, 

f(i) +f(j) Gf(i+j) i+j<p 

Gf(p)+f(i+j-PI i+ jap. 

Finally, these distances are octagonal in the sense that for every 
integral radius the corresponding disk H(r, B) = {(x1, x2) 1 (x,, x2) E 2*, 
4(x,, x2); 4 G r}, r z 0 is a digital octagon having vertices at ( f. r, &h(r)) 
and (*h(r), +r), where h(r) is a function of B and r as given in the next 
lemma. For example, we illustrate the first quadrants of H(6, (1, 2)) and 
H(6, (1, 1,2, 1, 2)) in Fig. l(a, b). 

LEMMA 1 [Lemma 6.2 of [2]]. For any B and r, the corner function 
h(r) is h(r) = Lr/pl(f(p) - P) +f(r mod P) - (r mod P). 

Note that in Fig. l(a), for B= (1, 2}, h(6)=L6/2J(3-2)+f(0)-0=3 
and corners occur at (6, 3) and (3, 6). Similarly for B= { 1, 1, 2, 1,2}, 
h(6)=2 in Fig. l(b). 
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FIG. 1. First quadrants of digital octagons: (a) Octagon of B= { 1,2} for radius r=6. 
Note that h(6) = 3 and corners occur at (6, 3) and (3,6). (b) Octagon of B= { 1, 1,2, 1,2} for 
radius r = 6. Note that h(6) = 2 and corners occur at (6,2) and (2,6). 
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Interestingly the asymptotic relative size of h(r) with respect to Y tends 
to a constant defined by the B: 

Lim h(r)/r=f(p)/p- 1 =mB- 1 =/r(p). 
r-m 

This constant mB =f(~)/p is termed the neighbourhood parameter. It is 
invariant under the reordering of the elements of B and plays an important 
role in the approximate analysis. Conceptually m, is the average 
neighbourhood value in the expansion of every minimal path determined 
by this B. In fact the asymptotic values of the area and perimeter errors of 
the disks are functions solely of mB [2]. Note that m, is related to the 
characteristic value A, of a B as defined in [2] via the relation m, = 
A,+ 1. 

3. SIMPLE OCTAGONAL DISTANCES 

We find from Theorem 1 that the summation part of the distance func- 
tion is a fairly complex integer function. For example if B = { 1, 1, 2, 2) 
then the sum is L(a + 1)/6 J + L(a + 3)/6 J + L(a + 4)/6 J + L(a + 5)/6 _I, for 
a=x, +x,; whereas for B = (1,2}, it is L(a + 1)/3 J + L(a + 2)/3 J = 
r2u/3]. Hence there is enough reason to expect that for some B’s the sum 
turns out to be a single ceiling function [3, p. 371. Such distances are 
obviously easy to handle and efficient to perform computations with. So we 
call them simple distances. In the following theorem we show that for every 
p= IBI and f(p), p <f(p) < 2p there exists a unique B which defines a 
simple d(B). 

THEOREM 3. d((x,, x,); B) is simple, i.e., of the form max(x,, x2, 
r(xl +Mml), iff 4i)=Lif(pYpJ-L(i- l).f(~)l~J, 1 diQp, where 
1 < m < 2, m = f (p)/p, f(p) and p are relatively prime, x, , x2 E Z, and 
x1,x2>0. In addition, for m=l, B=(l) andd((x,,x,);B)=x,+x, and 
for m=2, B= (2) and d(( x,, x,); B) = max(x,, x2) are also simple. 

Proof: First express B in terms off (i)‘s and g( i)‘s, 1 < i < p, as 

f(i) = 2 b(j) = Lif(~)/pJ, ldi<p 
j=l 

g(i)=f(p)-f(i-I)-l=f(p)-r(i-l)f(p)/pl, 2<idp-1 

=f(P)- 12 i= 1. 
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Now, 4(x,, x2); W=max(x,, x2, CPzl L((xI fG+ di))/f(p)J). Hence 
we need to show that the above g(i) satisfies the integer equation 

;f, L(a+g(j))/f(p)J=rpalf(p)l, aEZ, a>O. 

Let a = rf(p) + s, 0 <s <f(p) - 1, r z 0. So we need to prove that 

NOW clearly f(i) >f(j), i> j, and g(i) < g(j), i> j. Moreover 

1 <f(i)-f(i- 1)<2, 2<ifp, 

l<g(i)-g(i+1)<2, 1 fi<p- 1 and g(l)=f(p)- 1. 

Consider two cases now. 

Case 1. 3j, 1 <j<psuch that s=f(p)-g(j). So LHS=CiP_i I(&)- 
g(j) + g(i)h!!(p)J =.i= RHS provided r(f(p)- g(j)) p/f(p)1 =j or 
Lg(j) p/!f(p)J= p-j. 

Case 2. 3j, l<j<p, such that s=f(p)-g(j)+l=f(p)-g(j+l)-1. 
So in this case we require to prove that 

LW) - 1) P/Y(P)J = p-j> where g(j) = g( j + 1) + 2. 

It may be noted that either of the above two cases must occur. Now we 
prove that L g( j) p/‘(p) J = p - j given that 

g(j)=f(p)-r(j- W(P)/P~. 

Substituting the expression for g(j), 

LN) ~/!f(p)J = P - rr(j- l)f(~)/~l(~k-(p))l. 

So we have to establish that 

rrwlwd=j for l<x<2 

[(j- l).xl=r(j- 1)x+ ll- 1 =rjx-(x- l)l- 1 

Gjxl- 1 

<jx 
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and [(j-l)xlb(j-1)x. SO [(j-l)xl/x<j<r(j-1)x1/x+1. Hence 
rr(j- l)xl/xl =j and Lg(j) plf(p)j =p- j= RHS. Next we prove that 
LMA- 1) P/Y(P)J= p-j ifg(j)=g(j+ l)+2. We have 

LHS=LW+ I)+ 1) P/S(P)J=W(P)-rjf(p)/pl+ l)plf(p)J 

= P - rwwhi - 1) p/..(p)1 = P -j 

provided rVjf(pYpl- 1) plf(p)l=j, i.e., Wjxl- lYxl=j, 1 <x<2. 
Also 

rjxl<jx+landrjxl-l=LjxJ=L(j-1)x+(x-l)J+l 

aL(j-l)xJ+l 

> (j- 1)x. 

So (rjxl-l)/x<j~((rjxl-1)/x+1. Hence [(rjxl-l)/xl=j and 
L(g(j)- l)p/f(p)J=p-j=RHS. Finally note that m= 1 and m=2 are 
also special cases of the general form. Q.E.D. 

For example, let p = 5 and f(p) = 7. So b( 1) = L7/5J - 0 = 1, b(2) = 
L14/5J-L7/5J=2-l=l, 6(3)=L21/5J-L14/5J=4-2=2, b(4)= 
b(5) = 1, and B= (1, 1, 2, 1, 2) is simple with d((x,, x,); B)= 
max(x,, x2, r5h +xd/71). 

The d(B)% in the above form are referred to as “simple” d( B)‘s corre- 
sponding to “simple” N-sequences. It is interesting to note that given p and 
f(p) there are p!/(f(p) - p)! (2p-f(p))! = (.fC&--p) d(B)% out of which 
only one is simple. 

Simple d(B)% not only give simple, easy to handle analytical distance 
functions, but at the same time they help to avoid the metricity test. 

LEMMA 2. If B is simple then d(B) is a metric. 

Proo$ From Theorem 2 we know that d(B) is a metric if and only if B 
is well-behaved. So here we prove that every simple B is well-behaved. 
From Theorem 3, f(i) = L if(p)/pJ, 1 d i < p, So 

f(i)+f(j)=Lif(p)/~J+Ljf(~)/pJ 

~L(i+j).f(~YpJ~ since LxJ+LyJ<Lx+yJ 

<f(i+j). 
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Again 

f(i)+f(j)~L(i+j)f(P)/P~ 

6 L(i+i- P)f(PYP_l +fb), p<i+j<2p 

Gf(~)+.f(i+j-PI. 

Hence if B is simple then B is well-behaved and thus d(B) is a metric. 
The metricity of a simple d(B) can also be proved from the functional form 
of d(B) using the fact that 1 < mB G 2 and rxl + TV1 > rx + ~1. Q.E.D. 

The disks of a simple d(B) are also easy to compute. 

. 

LEMMA 3. For a simple B, h(r) = LrmBJ - r, r 2 0. 

Prooj From Lemma 1, h(r) = Lr/p _I(&)-p)+f(r mod p)- (r mod p). 
Let r=sp+t, Odt<p-1. So h(r)=s(f(p)-p)+f(t)-t=sf(p)+ 
f(r)-r=sf(p)+Ltf(p)/pJ-r=Lrf(p)/pJ-r=Lrm,J-r. Note that 
h(r) = LrmB J - r also holds for t = 0 off(p) = p or 2p. Hence the result. 

Q.E.D. 

For example, if mB= 715 then h(6) = j-4215 J -6=2 as shown in 
Fig. l(b). 

4. DIRECT AND AVERAGE ERROR ESTIMATIONS 

The estimation of the direct/average absolute or relative difference 
between a simple d(B) and the true euclidean distance e is rather difficult 
to carry out in general. However, frequently, we are interested in the 
asymptotic values of these quantities. Actually for wide applicability in 
domains (subsets of Z2) of any size, it is often preferable that we choose 
a d(B) which minimizes the asymptotic errors. So for this purpose of error 
analysis we approximate every simple d(B) by distance d,,, in the real 
domain where m = f(p)/p. Clearly d, : R2 x R2 + R+ and d,,,( (x1, x2)) = 
max( 1x11, 1x21, ( lx11 + 1x21)/m) approaches d(B) for sufficiently large values 
of x1 and x2, where R and R+ are sets of real and positive real numbers, 
respectively. 

In this section we analyze four kinds of errors for a d(B): two absolute 
and two relative. Since absolute error turns out to be a function of the 
domain size (say M x 44) over which the computation is carried out we 
normalize it to get proper bounded error functions. So for mB = m = f(p)/p 
the following four error estimates are used for approximation. 

Direct Absolute (Normalized) Error: 

et(m) = oG,?t;;GM {le((x,, ~2))-d,((xl, xZ))OIW M>O. 
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Direct Relative Error: 

163 

o(m) = O..F%M 0 (( e x1 y x2)) - M(x,, x2)W((xl, x2))) 

= max 
O<x,,.q<M 

{ll-d,(( Xl? xdM(x,, -%))I >. 

Average Absolute (Normalized) Error: 

Average Relative Error: 

R(m) = jt’h? I1 - dm(( ~1% xdM(x,, x21)1 dx2 dx, 
sr j;;’ dx, dx, ’ 

The expressions for these errors in terms of the neighbourhood 
parameter m have been derived in the next four theorems using the 
following lemma: 

LEMMA 4. The following definite integrals are true: 

0) I,(r,s)=fo~i~~~(x:+x:)dr,dx, 

=((sJ(l +s’)-rJ(l +r*)) 

+ln((s+,/(l +s*))/(r+J(l +r2))))M3/6. 
M sx, 

(ii) Z,(r, s) = s s x, dx, dx, = (s - r) M3/3. 
0 TX1 

(iii) Z3(r, s) = JoM s”’ x2 dx, dx, = (s2 - r*) M3/6. 
TX1 

(iv) I,(r,s)=J” j”’ dx, dx, = (s - r) M2/2. 
0 TX1 

(v) z5(r,s)=S,V J~‘xI/,/(x:+x:)dx2dx1 
=in((s+J(l +s’))/(r+J(l +r*)))M*/2. 

(vi) Z.Jr,s)=joMJzx2/J(x:+xi)dxzdx, 

=(J(l +s*)-J(l +r’))M*/2. 
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Proof: Follows from the following indefinite integrals: 

i ,/(x2 + a*) dx = (x/2) J(x’ + a’) + (a*/2) ln(x + ,/(x2 + a*)), 

and 

1 x/J(x’ + a’) dx = J(x’ + a2), 

1 l/,/(x’ + a’) dx = ln(x + ,/(x2 + a’)). 
4 

Q.E.D. 

THEOREM 4. 

a(m) = o<,?l;;GM {le((x~~x2))-d~((x,,x,))l)/~ 

=max(J(l +(m- 1)2)- 1,12/m-J21), 

where M>O and lGmd2. 

Proox Clearly, 

o<xy;;cM 14(x17 x2))-dm((x17 xdN/M . . . 

= O<xy;<M le((x,, xJ-4A(x~, xd)l/M . . . 

= max { max 
O<x,<M o<q<q 

IJ(xT+x:)- max(xly (x1 + x2Vm)l/W 

= max 
O<X,<M 

xl {,:yl lJ(1 +x2)--HL (1 +x)/m)l/W . . x = x2J.q 

= max &(x) wheref,(x)= IJ(l +x2)-max(1, (1 +x)/m)\. 
O<X<l 

Now 

&(x)=J(l+x*)-l,O<xXm-1 

=14(1+x2)-(l+x)/mI,m-l<x<l. 

Now let g(x)=J(l +x*)-(1 +x)/ m. 
l/m = 0, i.e., x = l/J( 

Therefore dg/dx = x/J( 1 + x2) - 
m* - 1) and d2g/dx2 = l/( 1 + x)~‘* > 0. Hence g(x) 

has a minimum at x = l/J(m’ - 1). Since l/J(m’ - 1) d 1 for J2 < m < 2, 
g(x) is decreasing in the interval [0, l/,,/(m* - l)] and increasing in the 
interval [ l/J( 
CJ(m2- I)- 

m*- l), l] for J2<m<2. Also g(x= l/,/(m’- l))= 
l)/ m 2 0 for ,/2 f m < 2. So the maximum of (g(x)( in the 

interval [m - 1, 1 ] occurs at either extreme point x = m - 1 or x = 1. Now 
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if km<J2, l/J( m2 - 1) > 1. Consequently, g(x) is monotonically 
decreasing in the interval [0, 11. So the maximum of /g(x)] in [m - 1, l] 
again occurs at either x = m - 1 or at x = 1. Finally for m = 1, g(0) = 0 and 
g(x) < 0 for x > 0 with dg/dx < 0. Again [g(x)1 maximizes at x = 1. 
Combining all cases we get 

2:f< l ‘dx)’ = max(J(l +(m-1)2)-1, 12/m--J21). 

Since J( 1 + x2) - 1 is an increasing function, we get 

max fAx)=max(J(l +(m- 1)2)- 1, m-m2;G1 I&)1). 
O<.X< I 

That is, a(m) = max(,/( 1 + (m - 1)2) - 1, 12/m - JZI). Q.E.D. 

So the maximum of the normalized absolute error a(m) minimizes at 
m opt, the solution of the equation 

J(l +(m- 1)2)- 1= 12/m-J21. 

We have solved the equations numerically (graphically in Fig. 2) to get two 

FIG. 2. Variation of direct absolute (normalized) error a(m) with no. Note the solutions of 
Jw- 1 = 12/m - $1 for minimum a(m). 
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solutions, m= 1.3555 or 1.6076. Hence mop,= 1.3555 and minimum 
absolute error cr(m,,,) = min{ cc(m) 1 1 <m < 2) = 0.0613 = 6.13%. 

THEOREM 5. 

a(m) = 
o<x?f!$M {I1 -dm(( x1, xJ)/e((x,, A)l> 

=max(l-l/J(l+(m-l)*), ll-J2/ml), 

where M>Oandl <m<2. 

ProojI First show that a(m) = max,, G x G 1 fR(x), where 

f,?(x) = 1 - l/&l +x2), O<xQm-1 

=ll-(1+x)/mJ(1+x2)1, m-l<x<l. 

Proceeding as in the previous theorem the result immediately follows. 
Q.E.D. 

In the case of relative error mopt is the solution of 

1-1/J(1+(m-1)2)=~1-~2/m~. 

That is, m = 1.3420 or 2.0. Hence mopt = 1.3420 and minimum relative 
error = o(mopt) = min{a(m) 1 1 <m < 2) = 0.0538 = 5.38% (see Fig. 3). 

0.40 

t 0.30 

? 

G 
0.20 

0.10 

0 
1.0 1.2 1.4 1.6 1.8 2.0 

rn+ 

FIG. 3. Variation of direct relative error u(m) with M. Note the solutions of 

1-l/JiqLiy=[l--\/5/1111. 
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THEOREM 6. 

A(m)=(1/3)((2-J2)-ln(J2+1)-(m*-2+4t(m)+4t2(m))/m 

+2t(m)J(1+t2(m))+21n(t(m)+J(1+t2(m))), l<m<J2 

=(1/3)((2+J2)+ln(J2+1)-(m2+4)/m), J 2<m<2, 

where t(m) = (1 - m J(2 - m’))/(m’ - 1). 

Proof TO evaluate A(m) we first derive the expression of the integral 
jt j:’ le((x,, x2)) - d,((x,, xz))I dx, dx,. Consider two cases. 

case 1. O<x,d(m-1)x,. Therefore 

dm((x,, ~2)) =x1 < &:+x:, 

G 4(x,, x2)). 

So we get, using Lemma 4, 

M (m-1)x, s s (J(x: + x:) - x1) dx, dx, = I,(O, m - 1) -I,(O, m - 1). 
0 0 

Case 2. (m-1)x1 <x2<x1. Clearly d,((xI, x2))=(x1 +x,)/m. Now 
two cases occur depending on whether d,((xI, x2)) >e((x,, x2)) or 
<e((x,, x2)). Hence 

Subcase 1. 1 <mdJ2. Now 

m2(e2((xly x2))-di((xly x2))) 
=(m2-1)x:-2x,x2+(m2-1)x: 

=(x2-~(m)x1)(x2-(l/t(m))x,)(m2- l)>,O 

implies either x2 > (l/t(m)) x, or x2 d t(m) x1, where t(m) = 
(l-m,/(2-m*))/(m*-1). Again as x2<x1 and t(m)<l, x2> 
(l/t(m)) x1 is not feasible. It is also easy to show that m - 1 < t(m) Z$ 1. 
Thus, 

4(x1, x2)) 2 dm((xlT x2)) if (m-l)x,<x,<t(m)x, 

G 4x(x, 3 ~2) if t(m)x,Qx,<x,. 
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Hence we get, using Lemma 4, 

joMj(r’::,, (J(x:+X:)-(X1+X*)lm)~x*~x, 

+ L‘ Lx, ((Xl +x*)/m - Jtx: + 4,) dx, dx, 

= Z,(m - 1, t(m)) -z,(e), 1) 

+ (Z2(@), 1) -Z,(m - 1, t(m)) 

+ Zdt(m), 1) - Z,(m - 1, W)))/m. 

Subcase 2. J2 Q m 6 2. Now 

m2(e2((x1 y -4) - 4&-, 1 x2))) 

=(m2-1)x;-2x,x,+(m2-1)x~~(x,-X2)2~0. 
Hence, 

=Z,(m-1, l)-(Z,(m-1, l)+Z,(m-1, l))/m. 

Combining both cases and substituting I,, I,, I, from Lemma 4 the result 
follows. Q.E.D. 

To estimate the minima of the normalized average absolute error we 
have plotted A(m) in Fig. 4. Solving numerically we get that A(m) mini- 
mizes for m = 1.400001 with the minimum error 0.015950 x 1.6%. Also note 
that A( 1) = 0.234804, A(,/2) = 0.017649, and A(2) = 0.098529. 

In the next theorem we estimate the average relative error R(m). 

THEOREM 7. 

R(m) = (2t(m) - 1) - (I- l/m) In(m - I+ J( 1 + (m - 1)‘)) 

+ J(l + (m - 1)*)/m + (l/m)(J2 + ln(J2 + 1)) 

- WmKln(Gm) + JC1 + t’(m))) + JC1 + t2(m))), lbmGJ2 

=1-(1-l/m)ln(m-1+J(1+(m-1)2)) 

-(l/m)(J2+ln(J2+l))+J(1+(m-1)2)/m, J2SmG2, 

where t(m) = (1 -m J(2 - m*))/(m’ - 1). 

ProoJ: Similar to the previous theorem. In this case Z,, I,, and Z6 are 
used and are substituted from Lemma 4. 
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FIG. 4. Variation of average absolute (normalized) error A(m) with m. Note that A(m) 
minimizes for m = 1.400001. 

R(m), surprisingly, minimizes for m = 1.400001, i.e., at the minimum 
point of A(m). Minimum relative error is found to be 0.021651 z 2.2%. The 
nature of R(m) has been illustrated in Fig. 5. Also R( 1) = 0.295587, 
R(,/2) = 0.024047, and R(2) = 0.118627. 

Though asymptotic analysis provides’ the necessary trend of the error, it 
is also interesting to observe the actual errors for some finite values of M 
using the actual octagonal distance d(B) in place of d,. In this case the 
average errors are computed in the digital domain as follows. For simple 
B with m =f(p)/p, 

A,(m)= 
( 

f 2 I (( 
x,=0 x2=0 

e x,, 4) -4(x, 3 x,); B,l’~fo f. 1)/M 

= W(WM + 1 NM + 2))) 

X ? 2 14(x,, xZ))-d((xl, x2); B)l and 
x,=0 x2=0 

x; gIl--d(( xl, x,); W/4(x,, xz))l. 
x,=0 x2=0 
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FIG. 5. Variation of average relative error R(m) with m. Note that R(m) minimizes for 
m = 1.400001. 

We have tabulated A,(m) and R,(m) for M=4, 16, 64, 256, and 00 in 
Tables I and II, respectively, for all simple B’s having length up to 11 and 
having distinct m,=f(p)/p. So B= { 1, 2, 1,2} has been omitted in 
preference to B = { 1,2} and so on. Note that such B’s can be easily 
generated as (f(p)/p- l)= (ms- 1) forms a Farey series [3, p. 1571 of 
order 11. Now the validity of the above asymptotic analysis can be derived 
from these tables where errors approach the limiting value with the 
increase of M. 

5. BEST SIMPLE DISTANCES 

Equipped with the results of various error analyses we are now ready to 
select the best simple distances to be used in practical applications. From 
Tables I and II, we formulate Table III, where for every p = 1, 2, . . . . 11, the 
simple d(B) having minimum average error has been shown. Since A(m) 
and R(m) have very similar natures, a d(B) which lowers A(m) also lowers 
R(m) and vice versa. In addition the direct errors have been calculated in 
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TABLE I 

Average Absolute (Normalized) Errors AD(m) for Finite Pictures 

.f(P)lP B M=4 M=16 M=64 M=256 M=co 

l/ l=l.OOO{l} 0.2210 0.2311 0.2339 0.2346 0.2348 
12/11 = 1.091 {l, 1, 1, 1, 1, 1, 1, 1, 1, 1,2} 0.2210 0.1778 0.1603 0.1557 0.1542 
11/10=1.100{1,1,1, l,l, 1, l,l, 1,2) 0.2210 0.1713 0.1532 0.1487 0.1472 
lO/ 9=1.111 {l, 1, 1, l,l, 1, 1, 1,2} 0.2210 0.1624 0.1448 0.1403 0.1388 
9/ 8 = 1.125 { 1, 1, I, 1, 1, 1, 1, 2} 0.2210 0.1515 0.1346 0.1303 0.1288 
8/ 7 = 1.143 { 1, 1, 1, 1, 1, 1, 2} 0.2043 0.1387 0.1221 0.1179 0.1165 
7/ 6 = 1.167 { 1, 1, 1, 1, 1, 2) 0.1876 0.1227 0.1065 0.1024 0.1011 

13/11=1.182{1,1,1,1,1,2,1,1,1,1,2} 0.1877 0.1151 0.0975 0.0933 0.0919 
6/ 5=1.200{1, 1, 1, 1,2} 0.1543 0.1015 0.0864 0.0827 0.0814 

ll/ 9=1.222{1,1,1,1,2,1,1,1,2} 0.1543 0.0913 0.0747 0.0709 0.0695 
5/ 4=1.250{1,1,1,2} 0.1251 0.0742 0.0603 0.0571 0.0561 

14/11 = 1.273 {l, 1, 1, 2, 1, 1, 1,2, 1, 1, 2) 0.1251 0.0664 0.0508 0.0473 0.0462 
9/7=1.286{1,1,1,2,1,1,2} 0.1251 0.0597 0.0452 0.0421 0.0411 

13/10 = 1.300 { 1, 1, 1, 2, 1, 1, 2, 1, 1,2} 0.1251 0.0540 0.0399 0.0368 0.0359 
4/ 3 = 1.333 { 1, 1, 2) 0.0805 0.0379 0.0282 0.0262 0.0256 

15/11=1.364{1,1,2,1,1,2,1,1,2,1,2} 0.0805 0.0318 0.0211 0.0194 0.0190 
ll/ 8 = 1.375 {I, 1,2, 1, 1,2, 1,2} 0.0805 0.0284 0.0189 0.0176 0.0173 
7/ 5=1.400{1,1,2,1,2} 0.0638 0.0219 0.0159 0.0158 o.0160 

lO/ 7 = 1.429 (1, 1, 2, 1, 2, 1, 2) 0.0638 0.0191 0.0185 0.0212 0.0223 
13/9=1.444{1,1,2,1,2,1,2,1,2} 0.0638 0.0200 0.023 1 0.0262 0.0273 
16/11=1.455{1,1,2,1,2,1,2,1,2,1,2} 0.0638 0.0205 0.0261 0.0292 0.0303 

,421 
{ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,2) 
{1,2, I,& 42, 1,2,2) 

1, 2, 1, 2, 1, 232) 
1, 2, 1, 2,2} 
1,2, 1,x, 2, 1, 232) 
1, 2, 1,2, 2, 1, 2, 2, 1, 2,2) 
1, 2,2) 
1,2,2,‘LZ 2, L2,2,2} 
1, 2, 1, 2, 2, 2,2} 

3/ 2 = 1.500 
17/11 = 1.545 
141 9 = 1.556 
ll/ 7 = 1.571 { 
8/ 5 = 1.600 

13/ 8 = 1.625 
lS/ll = 1.636 
51 3 = 1.667 

17/10 = 1.700 
121 7 = 1.714 
19/l 1 = 1.727 
7/ 4= 1.750 

161 9 = 1.778 
9/ 5 = 1.800 

20/11= 1.818 
ll/ 6 = 1.833 
131 7 = 1.857 
15/ 8 = 1.875 
171 9 = 1.889 
19jlO = 1.900 
21/l 1 = 1.909 

2/ 1 = 2.000 

1, 2, 2, 1, 2, 2, 2, L2, 2.2) 
1, 2, L-21 
L2,2,i1,2,2,2,2} 
1, 2, 2, 2,2} 
1, 2, 2, 2, 2, 1, 2, 292, 2,2) 
1, 2,2, 2, L-4 
42, 2, 2, 2, 2,2) 
1, 2, 2,2,2, 2,x 2, } 
1, 2, 2, 2, 2,z 2, 2, 2, ) 
L2, 2, 2,2, 2, 2, 2, 2,2} 
1, 2, 2,2, 2, 2, 2, 2, 2, 2, 2) 
21 

0.0455 0.0327 0.0400 
0.0455 0.0401 0.0503 
0.0455 0.0429 0.0527 
0.0455 0.0468 0.0562 
0.0508 0.0537 0.0622 
0.0507 0.0582 0.0667 
0.0507 0.0599 0.0687 
0.0543 0.0673 0.0741 
0.0543 0.0710 0.0786 
0.0543 0.0738 0.0805 
0.0543 0.075 1 0.0821 
0.0709 0.0795 0.0850 
0.0709 0.0824 0.0877 
0.0709 0.0853 0.0899 
0.0709 0.0869 0.0913 
0.0709 0.0885 0.0925 
0.0709 0.0906 0.0941 
0.0709 0.0926 0.0952 
0.0709 0.0934 0.0959 
0.0709 0.0938 0.0964 
0.0709 0.0943 0.0969 
0.1124 0.1022 0.0995 

0.0422 
0.0530 
0.0553 
0.0587 
0.0645 
0.0690 

0.0758 
0.0803 
0.0821 
0.0837 
0.0862 
0.0889 
0.0908 
0.0922 
0.0933 
0.0947 

0.0962 
0.0967 
0.0971 
0.0988 

0.0430 
0.0540 
0.0562 
0.0596 
0.0652 
0.0697 
0.0716 
0.0763 
0.0809 
0.0827 
0.0842 
0.0866 
0.0893 
0.0911 
0.0925 
0.0935 
0.0949 
0.0958 
0.0964 
0.0968 
0.0971 
0.0985 

Note. M + co shows the asymptotic value derived in Theorem 6. 
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TABLE II 

Average Relative Errors R,(m) for Finite Pictures 

f(P)lP B M=4 M=16 M=64 M=256 M=m 

l/ 1=1.000{1,2} 
12/11 = 1.091 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) 
11/10=1.100{1, l,l,l, l,l, l,l, 1,2} 
lo/ 9=1.111 {l, l,l, l,l, 1, 1,:,2} 
9/ 8=1.125{1, 1, 1, l,l, 1, 1,2} 
S/ 7=1.143{1,1, 1, 1, 1, 1,2} 
7/ 6 = 1.167 { 1, 1, 1, 1, 1, 2} 

13/11 = 1.182 { 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2) 
6/ 5 = 1.200 { 1, 1, 1, 1, 2) 

ll/ 9=1.222{1,1,1,1,2,1,1,1,2} 
5/ 4=1.250{1,1,1,2} 

14/11 = 1.273 { 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2) 
9/ 7 = 1.286 { 1, 1, 1, 2, 1, 1, 2) 

13/10 = 1.300 { 1, 1, 1, 2, 1, 1, 2, 1, 1,2} 
4/ 3 = 1.333 { 1, 1, 2,} 

15/11 = 1.364 {l, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2) 
ll/ 8 = 1.375 { 1, 1, 2, 1, 1, 2, 1,2} 
7/ 5=1.400{1,1,2,1,2} 

lo/ 7 = 1.429 { 1, 1,2, 1, 2, 1, 2) 
13/ 9=1.444{1,1,2,1,2,1,2,1,2} 
16/11 = 1.455 { 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 
3/ 2=1.500{1,2} 

17/11 = 1.545 { 1,2, 1,2, 1,2, 1,2, 1,2, 2) 
14/ 9 = 1.556 { 1, 2, 1, 2, 1, 2, 1, 2, 2) 
ll/ 7 = 1.571 { 1, 2, 1, 2, 1, 2, 2) 
8/ 5 = 1.600 { 1, 2, 1, 2, 2) 

13/ 8=1.625{1,2,1,2,2,1,2,2} 
18/l 1 = 1.636 { 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2) 
51 3=1.667{1,2,2} 

17/10 = 1.700 { 1, 2, 2, 1, 2, 2, 1, 2, 2, 2) 
12/ 7=1.714{1,2,2,1,2,2,2} 
19/11 = 1.727 { 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2) 
71 4=1.750{1,2,2,2} 

16/ 9 = 1.778 { 1, 2, 2, 2, 1, 2, 2, 2, 2) 
9/ 5=1.800{1,2,2,2,2} 

20/11 = 1.818 { 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 
1 l/ 6 = 1.833 { 1, 2, 2, 2, 2, 2) 
13/ 7 = 1.857 { 1, 2, 2, 2, 2, 2, 2) 
15/ 8 = 1.875 { 1, 2, 2, 2, 2, 2, 2, 2) 
17/9=1.889{1,2,2,2,2,2,2,2,2} 
19/10 = 1.900 { 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) 
21/11 = 1.909 { 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 
2/ 1=2.000{2} 

0.2403 0.2825 0.2926 0.2949 0.2956 
0.2403 0.2246 0.2013 0.1941 0.1917 
0.2403 0.2165 0.1923 0.1851 0.1827 
0.2403 0.2056 0.1815 0.1745 0.1721 
0.2403 0.1926 0.1686 0.1616 0.1593 
0.2285 0.1765 0.1527 0.1459 0.1437 
0.2152 0.1569 0.1329 0.1263 0.1242 
0.2152 0.1484 0.1219 0.1149 0.1126 
0.1846 0.1304 0.1076 0.1015 0.0995 
0.1846 0.1188 0.0933 0.0868 0.0847 
0.1539 0.0971 0.075 1 0.0698 0.0681 
0.1539 0.0886 0.0637 0.0579 0.0561 
0.1539 0.0805 0.0569 0.0515 0.0500 
0.1539 0.0743 0.0504 0.0452 0.0437 
0.1043 0.0522 0.0359 0.0326 0.03 17 
0.1043 0.0460 0.0280 0.0250 0.0243 
0.1043 0.0420 0.0255 0.0230 0.0226 
0.0910 0.0343 0.0221 0.0214 0.0217 
0.0910 0.03 11 0.0251 0.028 1 0.0297 
0.0910 0.0319 0.0302 0.0340 0.0357 
0.0910 0.0325 0.0336 0.0377 0.0394 
0.0663 0.0430 0.0501 0.0533 0.0546 
0.0663 0.0503 0.0619 0.0661 0.0676 
0.0663 0.0534 0.0647 0.0688 0.0703 
0.0663 0.0578 0.0689 0.0728 0.0742 
0.0700 0.0655 0.0760 0.0765 0.0808 
0.0700 0.0703 0.08 13 0.0848 0.0860 
0.0700 0.0721 0.0835 0.0871 0.0883 
0.0739 0.0808 0.0900 0.0928 0.0937 
0.0739 0.0844 0.0950 0.0980 0.0989 
0.0739 0.0878 0.0973 0.1001 0.1010 
0.0739 0.0890 0.0991 0.1018 0.1027 
0.0872 0.0946 0.1025 0.1047 0.1055 
0.0872 0.0974 0.1056 0.1078 0.1084 
0.0872 0.1009 0.1081 0.1099 0.1105 
0.0872 0.1024 0.1097 0.1115 0.1120 
0.0872 0.1044 0.1111 0.1127 0.1131 
0.0872 0.1066 0.1129 0.1143 0.1147 
0.0872 0.1085 0.1141 0.1153 0.1156 
0.0872 0.1093 0.1150 0.1160 0.1163 
0.0872 0.1098 0.1156 0.1165 0.1167 
0.0872 0.1103 0.1160 0.1169 0.1171 
0.1221 0.1214 0.1195 0.1188 0.1186 

Note. M + co is from Theorem 7. 



BEST OCTAGONAL DISTANCES 173 

Pm) f(P)/P 

TABLE III 

Selection of Best Simple Octagonal Distance 

B A(m) R(m) a(m) u(m) 

1 2 2.0000 {2} 0.09853 0.11863 0.41421 0.29289 
2 3 1.5000 {l, 2) 0.04297 0.05456 0.11803 0.10557 
3 4 1.3333 {l, 1,2} 0.02562 0.03 167 0.08579 0.06066 
4 6 ISOOfl (1, 2, 1, 2) 0.04297 0.05456 0.11803 0.10557 
5 7 1.4000 { 1, 1, 2, 1, 2} 0.01595 0.02165 0.07703 0.07152 
6 8 1.3333 { 1, 1, 2, 1, 1, 2) 0.02562 0.03 167 0.08579 0.06066 
7 10 1.4286 {l. l,2,1,2,1,2} 0.02234 0.02974 0.08797 0.08086 
8 11 1.3750 (1,1,2,1,1,2,1,2) 0.01734 0.02260 0.06800 0.06367 
9 12 1.3333 { 1, 1, 2, 1, 1, 2, 1, 1, 2} 0.02562 0.03 167 0.08579 0.06066 

10 14 1.4000 {1,1,2,1,2,1,1,2,1,2} 0.01595 0.02 165 0.07703 0.07152 
11 15 1.3636 {l, 1,2, 1, 1,2, 1, 1,2, 1,2} 0.01899 0.02430 0.06406 0.06021 

Table III to give some idea about the other kinds of errors. From Table III 
we make the following recommendations: 

p= 1: B= (2) with A(m)=9.9% and R(m)= 11.9%. 
p=2: B= {1,2} with A(m)=4.3% and R(m)=5.5%. 
p=3: B= (1, 1,2} with A(m) = 2.6 % and R(m) = 3.2 %. 
p=4: B=(l,2, 1,2). 1s no different from B = ( 1, 2 > and has a worse 

performance than B = ( 1, 1, 2). So no B with p = 4 is advised. 
p=5: B=(l,1,2,1,2) withA(m)=l.6%andR(m)=2.2%.Inthis 

case m, =f(p)/p = 7/5 = 1.4 which is extremely close to the minima point 
of A(m) and R(m) (at m = 1.400001). Thus this d(B) has an exellent perfor- 
mance. And from mopt = 1.400001, we can easily foresee that increasing p to 
a reasonable extent would not see any considerable improvement in the 
performance. Moreover, larger p’s offer additional processing time for the 
computation of the distance transformation and hence we always try to 
restrict p to small values. Moreover, this B also keeps the direct errors 
fairly small. In particular, a(m = 7/5) = 7.70 % (minimum possible is 
6.13 %) and a(m = 7/5) = 7.15 % (minimum possible is 5.38 Oh). 

So we recommend the use of {2}, { 1,2}, { 1, 1,2], and (1, 1,2, 1,2} for 
more and more accurate results and we do not recommend any longer B at 
all. It may be noted here from Table III that in the selection of the best 
metric we have given more importance to average errors than to direct 
errors. This is truly justified since in general large aberrations at a limited 
number of isolated points may be acceptable if the majority of the points 
in a domain get closely approximated distance values. 
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6. CONCLUSIONS 

Analyzing the class of octagonal distances in 2-D digital pictures we have 
identified best approximate distances which are simple in functional form, 
metric in nature, and easy to compute. A generalization of these results in 
n dimensions using hyperoctagonal distances [l] remains an interesting 
open problem. 
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