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Abstract

A word w over a *nite alphabet � is said to be n-collapsing if for an arbitrary *nite automaton
A = 〈Q; �−·−〉, the inequality |Q ·w|6 |Q| − n holds provided that |Q · u|6 |Q| − n for some
word u (depending on A). We give an algorithm to test whether a word is 2-collapsing. To
this aim we associate to every word w a *nite family of *nitely generated subgroups in *nitely
generated free groups and prove that the property of being 2-collapsing re0ects in the property
that each of these subgroups has index at most 2 in the corresponding free group. We also *nd
a similar characterization for the closely related class of so-called 2-synchronizing words.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Synchronizing automata; Compressible automata; 2-Collapsing words; Free groups

∗ Corresponding author.
E-mail addresses: dmitry.ananichev@usu.ru (D.S. Ananichev), aleche@mate.polimi.it (A. Cherubini),

mikhail.volkov@usu.ru (M.V. Volkov).
1 The authors acknowledge support from Russian Education Ministry (through its Grant Center at St.

Petersburg State University, Grant E00-1.0-92), from Russian Basic Research Foundation, Grant 01-01-00258,
and from the INTAS (through Network Project 99-1224 “Combinatorial and Geometric Theory of Groups
and Semigroups and its Applications to Computer Science”).

2 The author acknowledges support from MURST Progetto Co*nanziato 1999–2000 “Strutture Geomet-
riche, Combinatorie e loro Applicazioni” and from MIUR Progetto Co*nanziato 2001–2002 “Linguaggi
formali e automi: teoria e applicazioni”.

3 The paper was started during the author’s visit to Politecnico di Milano which was supported by MURST
Progetto Co*nanziato 1999–2000 “Strutture Geometriche, Combinatorie e loro Applicazioni”.

0304-3975/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00093-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82232166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dmitry.ananichev@usu.ru
mailto:aleche@mate.polimi.it
mailto:mikhail.volkov@usu.ru


78 D.S. Ananichev et al. / Theoretical Computer Science 307 (2003) 77–92

1. Introduction

Let Q be a non-empty set. A transformation of the set Q is an arbitrary function
f whose domain is Q and whose range (denoted by Im(f)) is a non-empty subset of
Q. The rank rk(f) of the function f is the cardinality of the set Im(f). For a trans-
formation f of a *nite set Q, we denote by df(f) its de7ciency, that is, the diHerence
|Q| − rk(f). Transformations of Q form a semigroup under the usual composition of
functions; the semigroup is called the full transformation semigroup over Q and is
denoted by T (Q).
Now let � be a *nite set called an alphabet. The elements of � are called letters,

and strings of letters are called words over �. The set �+ of all non-empty words over
� constitutes a semigroup under the concatenation operation; the semigroup is called
the free semigroup over the alphabet �. The word ‘free’ in this name refers to the
following universal property of �+: for every semigroup S and every map ’ : �→ S,
there exists a unique homomorphism of �+ to S extending ’. We shall follow the
common convention to let ’ denote this extension homomorphism as well.
Both words over a *nite alphabet and transformations of a *nite set are classical

objects of combinatorics. On the other hand, their interaction is essentially the main
subject of the theory of *nite automata. For the purpose of the present paper, a 7nite
automaton A may be thought of as a triple 〈Q;�; ’〉 where Q is a *nite set (called
the state set of A), � is a *nite alphabet (called the input alphabet of A), and ’ is
a mapping which assigns a transformation of the set Q to each letter in �. As above,
’ extends to a homomorphism of the free semigroup �+ into T (Q) so one may speak
about words over � acting on the state set Q via ’. For q∈Q and w∈�+, we shall
denote the image of q under the transformation w’ by q·w—this simpli*es the notation
and should cause no confusion. For any R⊆Q, we set R · w= {q · w | q∈R}.
Let n be a positive integer. A *nite automaton A= 〈Q;�; ’〉 is said to be n-

compressible if there is a word w∈�+ such that df(w’)¿n or, in the above notation,
|Q · w|6|Q| − n. The word w is then called n-compressing with respect to A. These
notions (under varying names) have been around for some time mainly in connection
with Pin’s conjecture [9,10] which in our terminology can be formulated as follows:
for each n-compressible automaton A, there exists a word which is n-compressing
with respect to A and has length n2. Even though this particular conjecture has been
recently disproved by Kari [5] (who came up with a surprising counter example in the
case n=4), the area—in which so easy-looking problems turn out to be so diPcult
to solve—remains rather vivid and reveals some interesting connections with algebra,
language theory and combinatorics.
The notion that plays a central role in the present paper may be thought of as

a ‘black-box’ version of the notion of an n-compressing word. Namely, we say that a
word w∈�+ is n-collapsing if w is n-compressing with respect to every n-compressible
automaton whose input alphabet is �. In other terms, for w∈�+ to be an n-collapsing
word means that for each *nite automaton A= 〈Q;�; ’〉, we have df(w’)¿n whenever
A is n-compressible. Thus, such a word is a ‘universal tester’ whose action on the
state set of an arbitrary *nite automaton with a *xed input alphabet exposes whether
or not the automaton is n-compressible.
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The very *rst problem related to n-collapsing words is of course the question of
whether such words exist for every n. This question (which is by no means obvi-
ous) was solved in the positive by Sauer and Stone [11, Theorem 3.3] who arguably
were the *rst to introduce words with this property (the property 
n in the terminol-
ogy of Sauer and Stone [11]). While Sauer and Stone considered n-collapsing words
in a purely combinatorial environment, tight relations between this notion and certain
problems of automata theory (such as Pin’s conjecture, for instance) were observed
somewhat later by Margolis, Pin and the third-named author who extracted another
existence proof from their approach [8, Theorem 2] and also found some bounds on
the length of the shortest word over a given alphabet which is n-collapsing (wit-
nesses for de7ciency n in the terminology of Margolis et al. [8]), see [8, Theorems 5
and 11].
As the existence has been established, the next crucial step is to master, for each posi-

tive integer n, an algorithm that recognizes if a given word is n-collapsing.
In Section 3 of the present paper we solve this problem for the *rst non-trivial case
n=2. Our solution is based on a reduction of the initial problem to a question con-
cerning *nitely generated subgroups of *nitely generated free groups. The fact that free
groups intervene the area may appear a bit surprising, but as we intend to show, they
do provide an adequate language for our problem. Moreover, we strongly believe that
algorithms to recognize n-collapsing words for n¿2 should also be of group-theoretic
nature.
Section 4 is devoted to the closely related class of so-called 2-synchronizing words.

Recall that a *nite automaton A= 〈Q;�; ’〉 is said to be synchronizing (or directable)
if there exists a reset word w∈�+ which brings all states of A to a particular one:
|Q · w|=1. There is an extensive body of research on synchronizing automata mainly
motivated by one of the oldest open conjectures in the area—the QCernRy conjecture [2]
that for any synchronizing automaton A, there exists a reset word (clearly, depending
on the structure of A) of length (|Q|−1)2. Being, as above, interested in a ‘black-box’
version of the situation, we say that a word w∈�+ is n-synchronizing if it resets every
synchronizing automaton with n + 1 states and with the input alphabet �. Obviously,
every n-collapsing word is also n-synchronizing but the converse is not true, see [1]. We
*nd a characterization of 2-synchronizing words which is similar to our group-theoretic
description of 2-collapsing words. The reader will see that our approach makes rather
transparent what the two notions have in common and where the diHerence between
them lies.
In Section 5 we discuss some promising directions for further research.

2. A classi�cation of 2-compressible automata

As usual, �∗ denotes the free monoid over �, that is, the semigroup �+ with the
empty word � adjoined. If u; v are words over � and u= v′vv′′ for some v′; v′′ ∈�∗,
we say that v is a factor of u. It is convenient to have a name for the property of
a word w∈�∗ to have all words of length n among its factors. We shall say that such
w is n-full. The following is Theorem 5 in [8]:
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Lemma 2.1. If a word is n-synchronizing (in particular, if it is n-collapsing), then it
is n-full.

Now we look in some detail on 2-compressible automata. We say that a 2-
compressible automaton A is proper if no word of length 2 is 2-compressing with
respect to A. The following observation is obvious:

Lemma 2.2. If A= 〈Q;�; ’〉 is a proper 2-compressible automaton, then for each
letter a∈�, either Q · a=Q or |Q · a|= |Q| − 1 and Q · a=Q · a2.

In other words, either the transformation a’ is a permutation of Q (and then we
call a a permutation letter with respect to A) or df(a’)= df(a2’)= 1 so that a’ is a
permutation of Q ·a= Im(a’) (and then we say that a is a just-non-permutation letter
with respect to A). In the latter case there exists a unique state in Q\Q · a which
we call the exception state of a and denote by ea. Further, since a’ is a permutation
of Q · a, there exists a unique doubling state da ∈Q · a such that da · a= ea · a. Our
next lemma, though very easy, plays an essential role in the present paper. It slightly
generalizes [1, Lemma 6].

Lemma 2.3. Let A= 〈Q;�; ’〉 be a proper 2-compressible automaton, a; b (not nec-
essarily di<erent) just-non-permutation letters with respect to A, �= a’, �= b’,
� an arbitrary permutation of the set Q. Then df(���)¿2 if and only if ea� =∈{db; eb}.

Proof. It is clear that df(���)¿2 if and only if db; eb ∈ Im(��)= Im(�)�. Since
Q= {ea}∪ Im(�) and � is a permutation, we have Q= {ea�}∪ Im(�)�. Therefore the
condition db; eb ∈ Im(�)� is equivalent to ea� =∈{db; eb}, as required.

Given a proper 2-compressible automaton A, let

�A = {a ∈ � | a is a permutation letter with respect to A};
�A = {a ∈ � | a is a just-non-permutation letter with respect to A}:

Proposition 2.4. Let A be a proper 2-compressible automaton. Then either there
exists a state e such that ea= e for all a∈�A, or {db; eb}= {dc; ec} for all b; c∈�A.

Proof. Suppose that there exist two letters b; c∈�A such that {db; eb} 
= {dc; ec}. Then
the intersection {db; eb}∩ {dc; ec} contains at most one state. On the other hand, for
every letter a∈�A, its exception state ea must belong to this intersection—otherwise
by Lemma 2.3 (with the identity transformation in the role of �) one of the words ab
and ac would be 2-compressing with respect to A, in contradiction to the condition
that the automaton A is proper. Thus, {db; eb}∩ {dc; ec}= e, and ea= e for all a∈�A.

We call a proper 2-compressible automaton A a mono automaton whenever all
letters in �A have a common exception state and a stereo automaton if there exist
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states x; y∈Q such that {da; ea}= {x; y} for all a∈�A and there are two letters in �A

with diHerent exception states. In these terms, Proposition 2.4 means that each proper
2-compressible automaton is either mono or stereo.

As a corollary of Proposition 2.4, we have

Lemma 2.5. If A is a proper 2-compressible automaton, then �A 
= ∅.

Proof. If A is a mono automaton and e is the common exception state for all letters
in �A, then, for each w∈�+

A , we have Q · w=Q\{e}, whence no such w can be
2-compressing with respect to A. Similarly, if A is a stereo automaton and x; y∈Q
are such that {da; ea}= {x; y} for all a∈�A, then Q ·w=Q\{x} or Q ·w=Q\{y} for
each w∈�+

A , and again, none of such words can satisfy |Q · w|6|Q| − 2. Since the
automaton A is 2-compressible, we conclude that � 
= �A, that is, �A = �\�A 
= ∅.

3. A characterization of 2-collapsing words

Our criterion involves several notions which we are going to introduce now. By a
role assignment we shall mean an arbitrary partition of the alphabet � in two non-
empty subsets � and �. (These subsets will play the roles of �A and respectively,
�A, for the automata which will arise in our characterization.) We *x an arbitrary role
assignment (�;�); it will be a parameter in most of the notions we need but in order
to simplify the notation we shall avoid referring to it explicitly. This should cause no
confusion.
Given an arbitrary word w∈�+, we can uniquely represent it in the following

form:

w= u0p1u1 · · · um−1pmum; (1)

where u0; um ∈�∗, u1; : : : ; um−1 ∈�+, p1; : : : ; pm ∈�+ and m is a non-negative integer.
We say that the factor pi of the decomposition (1) is an inner segment of the word
w if both the ‘neighbors’ ui−1 and ui of pi are non-empty.
For a word v∈�∗, we denote its *rst and its last letter by h(v) and t(v), respectively.

Now for each letter a∈� , we de*ne Sa to be the set of all inner factors pi of the
word w such that h(ui)= a. We note that the sets Sa for diHerent letters a∈� need
not be disjoint as the same word from �+ may several times appear as a factor in
(1) preceding diHerent letters a∈� . Let S =

⋃
a∈� Sa be the set of all inner factors

of w.
By FG(�) we denote the free group over the alphabet �. As usual, we repre-

sent elements of FG(�) by words over the doubled alphabet {a; a−1 | a∈�}. For
B; C ⊆FG(�), we de*ne

B · C = {bc | b ∈ B; c ∈ C} and B−1 = {b−1 | b ∈ B}:
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Now we introduce a family of subgroups in FG(�). The subgroups in this family
are parametrized by arbitrary subsets of the set S. Given such a subset P⊆ S, we let
Pa= Sa\P and then we de*ne HP to be the subgroup of FG(�) generated by the set
P ∪⋃

a∈� Pa · P−1
a .

Proposition 3.1. The following conditions are equivalent for a word w∈�+:
(i) w is 2-compressing with respect to an arbitrary mono automaton;
(ii) for each role assignment (�;�) and for each subset P⊆ S, either the subgroup

HP coincides with the group FG(�) or HP has index 2 in FG(�) and Pa 
= ∅ for
all letters a∈� .

Proof. (i)⇒ (ii). Arguing by contradiction, suppose that for some role assignment
(�;�) and for some subset P of the set S of all inner segments of the word w, the
subgroup HP generated in the free group FG(�) by the set P ∪ ⋃

a∈� Pa · P−1
a ful*lls

one of the two assumptions:
(a) HP has index ¿2 in FG(�);
(b) HP has index exactly 2 and there exists a letter b∈� such that Pb= ∅.

In the case (a) it is possible that the index of HP in FG(�) is in*nite. However, HP
is generated by a *nite subset of FG(�), and therefore, by a result due to Marshall
Hall Jr. [3] HP is equal to the intersection of those subgroups of FG(�) of *nite index
that contain HP . This readily implies that HP is contained in a subgroup H whose index
in FG(�) is *nite and ¿2. Of course, the same is true if HP itself is of *nite index
as we can simply set H =HP .
Departing from the subgroup H , we build an automaton AH = 〈Q;�; ’〉. Its state

set Q is the set of all left cosets of FG(�) with respect to H . We note that Q is
*nite because the index of H is *nite, and each coset in Q can be represented as Hp
for some word p∈�∗. In order to de*ne the action ’ : �→T (Q), we *x an arbitrary
coset H ′ 
=H and, for all a∈� and all b∈� , set

Hp · a = Hpa; (2)

Hp · b = Hp if Hp 
= H; (3)

H · b = Hpi; where pi ∈ Pb if Pb 
= ∅; (4)

H · b = H ′ if Pb = ∅: (5)

The rule (4) may seem to be non-deterministic but it is easy to check that it is not the
case. Indeed, for any pi; pj∈Pb, we have pip−1

j ∈Pb ·P−1
b ⊆H whence Hpj =Hpip−1

j pj
=Hpi.
By the de*nition, all letters a∈� act on Q as permutations while all b∈� are

just-non-permutation letters whose common exception state is H . The automaton AH

is 2-compressible. Indeed, since the action of a group on its left cosets with respect to
a subgroup is transitive, for an arbitrary letter b∈� there exists a word p∈�∗ such
that Hp =∈{H;H · b}. By Lemma 2.3, we have df((bpb)’)¿2. We conclude that AH

is a mono automaton.
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Fig. 1. The automaton BH .

Next we show that df(w’)= 1. To this aim, we calculate step by step the images
of the following transformations:

u0’; (u0p1)’; (u0p1u1)’; : : : ; (u0p1u1 · · ·pmum)’ = w’: (6)

If u0 
= � then Im(u0’)=Q\{H} else Im((u0p1u1)’)=Q\{H}. Using this as the in-
duction basis, assume that Im((u0p1u1 · · · uk−1)’)=Q\{H} for some k. Then
Im((u0p1u1 · · · uk−1pk)’)=Q\{H ·pk}. By the rule (2) in the de*nition of our au-
tomaton, H ·pk =Hpk . If the word pk happens to belong to the set P⊂H , we have
Hpk =H = eh(uk ). If pk =∈P, then pk ∈Ph(uk ). By rule (4), Hpk =H · h(uk)=dh(uk ).
Thus, in any case Hpk ∈{eh(uk ); dh(uk )} whence Im((u0p1u1 · · ·pkuk)’)=Q\{H}, and
the inductive inference takes eHect. We see that the word w is not 2-compressing with
respect to the mono automaton AH—a contradiction that shows that the case (a) is
impossible.
Now consider the case (b) in which, we recall, the subgroup H =HP has index 2

and there is a letter b∈� such that Pb= ∅. Let H ′ =FG(�)\H ; then {Hw |w∈�∗}=
{H;H ′}. We de*ne an automaton BH = 〈Q;�; ’〉 whose state set Q consists of H , H ′,
and a new symbol q. The action ’ : �→T (Q) is de*ned by the following set of rules:

q · a = q for all a ∈ �; (7)

Hp · a = Hpa for all a ∈ �; (8)

H ′ · c = H ′ for all c ∈ �; (9)

H · c = H ′ for all c ∈ �\{b}; (10)

H · b = q: (11)

The graphical presentation of the automaton BH is shown in Fig. 1. Obviously, the
letters from � act as just-non-permutation letters with H as a common exception state.
The automaton BH is 2-compressible. Indeed, since H$FG(�), there exists a letter
a∈�, such that Ha=H ′. Therefore df((bab)’)¿2 by Lemma 2.3. Hence BH is a
mono automaton.
As in the case (a), we show that df(w’)= 1 inducting on the sequence (6) that

eventually reaches w’. The induction basis is the same as in (a). Now assume that
Im((u0p1u1 · · · uk−1)’)=Q\{H} for some k. Then

Im((u0p1u1 · · · uk−1pk)’) = Q\{H ·pk}:
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By rule (8) in the de*nition of our automaton, H ·pk =Hpk ∈{H;H ′}. If Hpk =H ′

then pk =∈P. By the condition of the case, Sb\P=Pb= ∅ whence Sb⊆P and pk =∈ Sb.
By the de*nition of the set Sb, this means that h(uk) 
= b and Hpk =H ′ =dh(uk ).
If Hpk =H , then Hpk = eh(uk ) because H is the exception state for all letters in � .
Thus, we always get H ·pk ∈{eh(uk ); dh(uk )} whence Im((u0p1u1 · · ·pkuk)’)=Q\{H}
completing the induction step. We again have found a mono automaton with respect
to which the word w is not 2-compressing. Therefore, the case (b) is impossible too.
(ii)⇒ (i) Take a word w∈�+ satisfying (ii) and an arbitrary mono automaton

A=(Q;�; ’). We aim to show that w is 2-compressing with respect to A.
First of all, we observe that the action of the letters in � on the state set of A

induces a role assignment (�;�) in which � =�A stands for the set of all just-non-
permutation letters (obviously, it is non-empty) and �=�A denotes the set of all
permutation letters (it is non-empty by Lemma 2.5). Let (1) be the decomposition of
the word w with respect to this particular role assignment.
Since A is a mono automaton, the letters in � share a common exception state e.

Let E= {e·p |p∈�∗} be the orbit of e under the action of the group generated by the
permutations caused by the letters in �. Clearly, this action in a natural way extends
to an action of the free group FG(�) whence we may consider the stabilizer ST (e)
of the state e in FG(�). The index of ST (e) in FG(�) is equal to |E| because for all
�; �∈FG(�), the condition e · �= e · � is equivalent to the condition �−1�∈ ST (e).

Let P be the set of all those inner factors of the word w which belong to ST (e).
Take a letter a∈� and an inner factor pi ∈Pa= Sa\P. By the de*nition of the set P,
we have e·pi 
= e. If, besides that, e·pi 
=da (we recall that da denotes the doubling
state of the letter a), then by Lemma 2.3, we have df((t(ui−1)pih(ui))’)¿2 whence
df(w’)¿2. Thus, we may assume that e·pi=da for each non-permutation letter a
and for each inner factor pi ∈Pa, and therefore, pjp−1

i ∈ ST (e) for all pi; pj ∈Pa.
We see that all generators of the subgroup HP belong to the stabilizer ST (e), that
is, HP is a subgroup of ST (e). In view of the condition (ii), this implies that either
ST (e)=FG(�) or ST (e) has index 2 in FG(�) and Pa 
= ∅ for all letters a∈� . In
the case ST (e)=FG(�), the automaton A cannot be 2-compressible, in contradiction
to the choice of A. In the second case, E= {e; f} for some state f 
= e. If the state
f is doubling for all letters a∈� , then again the automaton A is not 2-compressible.
Therefore there exists a letter b∈� whose doubling state db does not belong to E.
By condition (ii), there exists an inner factor pi ∈Pb. Since pi =∈ ST (e), we have

e·pi ∈E\{e}, that is, e·pi=f =∈{e; db}. By Lemma 2.3,

df((t(ui−1)pih(ui))’)¿ 2

whence df(w’)¿2, as required.

Now we are going to complement Proposition 3.1 by a characterization of words
which are 2-compressing with respect to stereo automata. To this aim, we need another
family of subgroups of the free group FG(�). This family arises only if the chosen
role assignment (�;�) satis*es |� |¿1 and is parametrized by certain triples of sets
(Y1; P11; P22). Here Y1 is a non-empty subset of the set � such that Y2 =�\Y1 is also
non-empty. Further, let Sk (where k ∈{1; 2}) be the set of all inner factors pi of the
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word w such that t(ui−1)∈Yk . We note that the sets S1 and S2 need not be disjoint.
Now we choose an arbitrary subset P11 ⊆ S1 and an arbitrary subset P22 ⊆ S2 and then
let P12 = S1\P11 and P21 = S2\P22. The subgroup H(Y1 ;P11 ;P22) of FG(�) corresponding
to the triple (Y1; P11; P22) is generated by the set

P11 ∪ P12 · P21 ∪ P12 · P−1
12 ∪ P12 · P22 · P−1

12 :

Proposition 3.2. The following conditions are equivalent for a word w∈�+:
(i) w is 2-compressing with respect to an arbitrary stereo automaton;
(ii) for each role assignment (�;�) and for each triple (Y1; P11; P22), either the

subgroup H(Y1 ; P11 ; P22) coincides with the group FG(�) or H(Y1 ; P11 ; P22) has index 2
in FG(�) and P12 
= ∅.

Proof. (i)⇒ (ii). Arguing by contradiction, suppose that for some role assignment
(�;�) and for some triple (Y1; P11; P22), the subgroup H(Y1 ; P11 ; P22) generated in the free
group FG(�) by the set P11 ∪P12·P21 ∪P12·P−1

12 ∪P12·P22·P−1
12 is either of index ¿2

or of index 2 provided that P12 = ∅.
As in the proof of Proposition 3.1, we substitute the subgroup H(Y1 ; P11 ; P22) by a larger

subgroup H of a *nite index. First suppose that P12 = ∅, that is, P11 = S1. We de*ne a
*nite automaton CH = 〈Q;�; ’〉 as follows. The state set Q of the automaton consists
of all left cosets of FG(�) with respect to H and of one additional state q. Since the
index of H is *nite, the set Q is *nite and each left coset can be represented as Hp
for some word p∈�∗.
The action ’ : �→T (Q) is de*ned by the following set of rules:

Hp · a = Hpa for all a ∈ �;
q · a = q for all a ∈ � ∪ Y1;
Hp · b = Hp for all Hp 
= H and all b ∈ Y1;
H · b = q for all b ∈ Y1;
Hp · c = Hp for all c ∈ Y2;
q · c = H for all c ∈ Y2:

Clearly, H and q are, respectively, the exception and the doubling state for all letters
b∈Y1 and, at the same time, they constitute, respectively, the doubling and the ex-
ception state for all letters c∈Y2. Besides that, the automaton CH is 2-compressible.
Indeed, since H 
=FG(�), there is a letter a∈� such that H · a=Ha 
=H whence
by Lemma 2.3, df((bab)’)¿2 for any letter b∈Y1. Thus, CH is a stereo automaton.
Fig. 2 represents the automaton CH in the case when the index of H in FG(�) is
equal to 2 (we denote FG(�)\H by H ′).
Next we show that df(w’)= 1. Arguing by contradiction, we *nd the *rst number

i such that df((u0p1u1 · · ·piui)’)¿2. Then

|Im((u0p1u1 · · ·pi−1ui−1)’)| = |Q| − 1:

By our de*nition of the action of the letters in � , the only state in Q which does not be-
long to Im((u0p1u1 · · ·pi−1ui−1)’) should coincide with either H or q. If this state is q,
then also Im((u0p1u1 · · ·pi−1ui−1pi)’)=Q\{q} whence df((u0p1u1 · · ·piui)’)= 1.
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Fig. 2. The automaton CH in the case |FG(�) : H |=2.

If the state in Q\Im((u0p1u1 · · ·pi−1ui−1)’) is H , then t(ui−1)∈Y1 whence pi ∈ S1
=P11 ⊆H . Then H ·pi=Hpi=H and Im((u0p1u1 · · ·pi−1ui−1pi)’)=Q\{H}. Thus,
we again get df((u0p1u1 · · ·piui)’)= 1.
Now suppose that P12 
= ∅. This means that the index of H is at least 3. We de-

*ne a *nite automaton DH = 〈Q;�; ’〉 whose state set Q is the set {Hp |p∈�∗} of
all left cosets of FG(�) with respect to H . As usual, the letters from � act on Q
in a natural way: Hp · a=Hpa for all a∈� and all cosets Hp∈Q. Take an inner
segment pn ∈P12 and denote the coset Hpn by H ′. Observe that for any pj ∈P12, we
have H ·pj =Hpj =H (pjp−1

n )pn=H ′ because pjp−1
n ∈P12 ·P−1

12 ⊆H . Further, for any
pk ∈P21, we have H ′·pk =Hpnpk =H because pnpk ∈P12 ·P21 ⊆H . Similarly, for any
p‘ ∈P22, we have H ′·p‘=H (pnp‘p−1

n )pn=H ′ because pnp‘p−1
n ∈P12·P22·P−1

12 ⊆H .
The action of the letters from � is de*ned by the following rules:

Hp · b = Hp for all Hp 
= H and for all b ∈ Y1;
H · b = H ′ for all b ∈ Y1;
Hp · c = Hp for all Hp 
= H ′ and for all c ∈ Y2;
H ′ · c = H for all c ∈ Y2:

Clearly, under these rules, H and H ′ become, respectively, the exception and the
doubling state for all letters b∈Y1 and, at the same time, the doubling and the exception
state for all letters c∈Y2. Besides that, the automaton DH is 2-compressible. Indeed,
since the index of H in FG(�) is at least 3, there is a word p∈�∗ such that Hp =∈
{H;H ′}. By Lemma 2.3, df((bpb)’)¿2 for any letter b∈�1. Hence, DH is a stereo
automaton.
Next we show that df(w’)= 1. Arguing by contradiction, we *nd the *rst number

i such that df((u0p1u1 · · ·piui)’)¿2. Then

|Im((u0p1u1 · · ·pi−1ui−1)’)| = |Q| − 1:

The action of the letters in � has been de*ned so that the only state q∈Q which
does not belong to Im((u0p1u1 · · ·pi−1ui−1)’) is either H or H ′. If q=H , then
t(ui−1)∈Y1 whence pi ∈ S1 =P11 ∪P12. Therefore H ·pi=Hpi ∈{H;H ′} as we have
shown above. Similarly, if q=H ′, then t(ui−1)∈Y2 whence pi ∈ S2 =P21 ∪P22. There-
fore H ′·pi=H ′pi ∈{H;H ′}. In any case, the image of the transformation (u0p1u1 · · ·
pi−1ui−1pi)’ cannot include both H and H ′, and since (H;H ′) is the only pair of states
which the transformation ui’ glues together, we conclude that df((u0p1u1 · · ·piui)’)= 1,
a contradiction.
(ii)⇒ (i) Take a word w∈�+ satisfying (ii) and an arbitrary stereo automaton

A=(Q;�; ’). We aim to show that w is 2-compressing with respect to A.
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As in the proof of Proposition 3.1, the action of the letters in � on the state set of A
induces a role assignment (�;�) with � =�A being the set of all just-non-permutation
letters and �=�A being the set of all permutation letters (which is non-empty by
Lemma 2.5). Let (1) be the decomposition of the word w with respect to this particular
role assignment.
Since A is a stereo automaton, there exist two states x1; x2 ∈Q such that {da; ea}=

{x1; x2} for all a∈� and the sets Y1 = {b∈� | eb= x1} and Y2 = {c∈� | ec= x2} are
both non-empty. Let Xk = {xk ·p |p∈�∗} (k =1; 2) be the orbit of xk under the action
of the group generated by the permutations caused by the letters in �. (We note that if
the sets X1 and X2 have a common state then they must coincide.) The action naturally
extends to an action of the free group FG(�), and we consider the stabilizer ST (xk) of
the state xk in FG(�). The index of ST (xk) in FG(�) is equal to |Xk | because for all
�; �∈FG(�), the condition xk · �= xk · � is equivalent to the condition �−1�∈ ST (xk).
We set Pkk = ST (xk)∩ Sk , where, we recall, Sk denotes the set of all inner factors pi
of the word w such that t(ui−1)∈Yk , k =1; 2.

Let ‘=3−k and consider an arbitrary inner factor pi ∈Pk‘= Sk\Pkk . By the de*ni-
tion of Pkk , we have xk ·pi 
= xk . If xk ·pi 
= x‘, then by Lemma 2.3, df((t(ui−1)pih(ui))’)
¿2 whence df(w’)¿2. Thus, we may assume that xk ·pi= x‘ for each inner factor
pi ∈Pl‘. This easily implies that

Pkk ∪ Pk‘ · P‘k ∪ Pk‘ · P−1
k‘ ∪ Pk‘ · P“ · P−1

k‘ ⊆ ST (xk);

whence the subgroup generated by the left-hand side of this inclusion is contained in
ST (xk) as well. This subgroup is exactly H(Yk ; Pk k ; P‘‘), thus by the condition (ii), the
index of ST (xk) in FG(�) does not exceed 2.
If ST (xk)=FG(�) for k =1; 2, then we easily deduce that the automaton A cannot

be 2-compressible. This contradicts to the choice of A. Therefore, we may assume that
the index of either ST (x1) or ST (x2) in FG(�) is equal to 2. By symmetry, it suPces to
consider the case when ST (x1) has index 2. Then |X1|=2, that is, X1 = {x1; y} for some
state y 
= x1. In view of the condition (ii), ST (x1)=H(Y1 ; P11 ; P22) and P12 
= ∅ whence, as
we have shown, there exists an inner factor pi of the word w such that x1·pi= x2.
Therefore y= x2, an we conclude that X2 =X1 = {x1; x2}. Then the automaton A cannot
be 2-compressible, a contradiction.

Combining Propositions 3.1 and 3.2 with Lemma 2.1, we immediately obtain the
following characterization of 2-collapsing words:

Theorem 3.3. A word w∈�+ is 2-collapsing if and only if w is 2-full and for each
role assignment (�;�), the following conditions hold:
(I) for each subset P⊆ S, either HP =FG(�) or the subgroup HP has index 2 in

FG(�) and Pa 
= ∅ for all letters a∈� ;
(II) for each triple (Y1; P11; P22), either H(Y1 ; P11 ; P22) =FG(�) or the subgroup

H(Y1 ; P11 ; P22) has index 2 in FG(�) and P12 
= ∅.

We note that the conditions of Theorem 3.3 can be eHectively veri*ed. Indeed, it
suPces to examine *nitely many subgroups, each generated by a *nite set of words.
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Given a *nite subset U of a free group, one can eHectively decide whether U generates
a subgroup of *nite index, moreover, if it is the case, the corresponding algorithm
returns the index, see [6, Proposition I.3.22]. As for the complexity of the resulting
decision procedure for the property of being 2-collapsing, it requires exponential time
(as the function of the length |w| of the word w under examination). Indeed, it can
be calculated that for suPciently long words w and for the pairs (�;�) with |�|¿1,
the number |S| of inner segments is of the magnitude O(|w|) whence the number of
subgroups of the form HP or H(Y1 ; P11 ; P22) to be inspected is of the magnitude O(2|w|).

Example 3.1. According to Ananichev and Volkov [1, Proposition 9], the word

w27 = abc2b2c · bca2c2a · cab2a2b · (abc)2

of length 27 is 2-collapsing. Now we show how this can be deduced from Theorem 3.3.

Obviously, the word w27 is 2-full. We have to check all possible role assignments
(�;�) of the alphabet �= {a; b; c}. First consider the assignment � = {a}, �= {b; c}.
Decomposing the word w27 with respect to this role assignment, we *nd that the set
S = Sa of its inner segments consists of the following 6 words: b, c, b2, bc, c2, bc2b2cbc.
Rather than going through all 64 subsets P⊆ S with the algorithm mentioned above,
we come up with a short ad hoc argument. Let H stand for the subgroup HP generated
by P ∪Pa · P−1

a where Pa= Sa\P= S\P.
If b; c∈P, then H =FG(b; c), and we are done. Suppose that b∈P and c∈ S\P.

If c2 ∈ S\P, then c= c2 ·c−1 ∈H , and again H =FG(b; c). Thus, we assume that c2 ∈P.
Here we consider two subcases: bc2b2cbc∈P or bc2b2cbc∈ S\P. In the latter subcase
bc2b2cb= bc2b2cbc · c−1 ∈H , and since b; c2 ∈H , we again conclude that c∈H and
H =FG(b; c). In the former subcase we obtain cbc∈H , whence also c−1bc=(c2)−1 ·
cbc∈H . Using this and the assumption that c2 ∈H , it is easy to deduce that H contains
the subgroup of index 2 consisting of all words

∏
i b
�i c2i ∈FG(b; c), �i; 2i ∈Z, with the

sum
∑

i 2i being even.
Now suppose that c∈P and b∈ S\P. Arguing as in the previous paragraph, we may

assume that b2 ∈P. If bc∈P, then b∈H and H =FG(b; c). Therefore we may also
assume that bc∈ S\P whence bcb−1 ∈H . This and the assumption that b2 ∈H imply
that H contains the subgroup of index 2 consisting of all words

∏
i b
�i c2i ∈FG(b; c),

�i; 2i ∈Z, with the sum
∑

i �i being even.
Finally, suppose that b; c∈ S\P. Then bc−1 ∈H . If c2 ∈ S\P, then c= c2 · c−1 ∈H

and b= bc−1 · c∈H whence H =FG(b; c). Thus, we may assume that c2 ∈P and, by
the same argument, b2 ∈P. Now it is easy to see that H contains the subgroup of
index 2 consisting of all words of even length.
Thus, we have veri*ed that either H =FG(b; c) or H has index 2, and the latter

situation is only possible when Pa 
= ∅. Therefore condition (I) of Theorem 3.3 holds
for the role assignment ({a}; {b; c}). The high symmetry of the word w27 ensures
that the same arguments apply to the two other role assignments with |� |=1: the
corresponding sets of inner segments diHer from the above set S only by the names
of the letters involved.
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Now consider role assignments (�;�) with |� |=2. Again, by symmetry, it suPces
to analyze one of the three possible cases, for instance, ({a; b}; {c}). Here S = Sa= Sb
= {c; c2}, and for any P⊆ S, the subgroup HP is easily seen to satisfy (I). Since |� |¿1,
we should also verify condition (II). If Y1 = {a}, Y2 = {b}, then S1 = S2 = {c; c2} and it
is easy to verify that H(Y1 ; P11 ; P22) =FG(c) for all choices of the subsets P11; P22 ⊆{c; c2}
unless P11 =P22 = {c2} in which case H(Y1 ; P11 ; P22) is generated by the word c2 and has
index 2 while P12 
= ∅. Thus, (II) is satis*ed, and the same reasoning applies when
Y1 = {b}, Y2 = {a}.

Example 3.2. Consider the word

v27 = abcb2c2 · bcac2a2 · caba2b2 · (abc)2

of length 27. In spite of its similarity to the word w27 of Example 3.1, it is not
2-collapsing.

Indeed, consider the role assignment � = {a}, �= {b; c}. The set S = Sa of inner
segments with respect to this role assignment consists of the words b, c, b2, bc, c2,
bcb2c2bc. Let P= {b; b2; c2; bcb2c2bc}. It can be easily veri*ed that the subgroup HP
(which is freely generated by the words b, c2, cb2c2bc−1) has in*nite index in FG(b; c).
Thus, condition (I) fails.

4. A characterization of 2-synchronizing words

We are going to present a group-theoretical characterization of 2-synchronizing words
in the 0avour of Theorem 3.3. We should mention that the property of being n-
synchronizing can in principle be recognized in a direct way for any n. Indeed, there
exist only *nitely many automata with n+ 1 states and with a *xed input alphabet �,
and there is an algorithm which recognizes whether or not a given *nite automaton
is synchronizing (see, for example, [13, Theorem 9.9]). Hence, given a word w∈�+,
one can straightforwardly check if w resets every synchronizing automaton over �
with n+ 1 states. Moreover, the language of all n-synchronizing words over � is reg-
ular [1, Proposition 3]. It is clear, however, that this decidability in principle does not
lead to any practical algorithm even for small values of n. Besides that, characterizing
2-synchronizing words in group-theoretic terms clari*es the relations between these
words and the 2-collapsing ones.

Theorem 4.1. A word w∈�+ is 2-synchronizing if and only if w is 2-full and for
each role assignment (�;�), the following conditions hold:
(I′) for each subset P⊆ S, the subgroup HP is not contained in any subgroup of

index 3 in FG(�) and if HP is contained in a subgroup of index 2 in FG(�)
then Pa 
= ∅ for all letters a∈� ;

(II′) for each triple (Y1; P11; P22), the subgroup H(Y1 ; P11 ; P22) is not contained in any
subgroup of index 3 in FG(�) and if H(Y1 ; P11 ; P22) is contained in a subgroup of
index 2 in FG(�) then P12 
= ∅.
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Theorem 4.1 readily follows from the above proof of Theorem 3.3. Indeed, if the
subgroup HP is contained in a subgroup H of index 3, we can construct the mono
automaton AH as in the proof of Proposition 3.1 which has 3 states, and therefore, is
synchronizing while the word w does not reset it. If HP is contained in a subgroup H
of index 2 but Pb= ∅ for some letter b∈� , the 3-state mono automaton BH does the
job. Thus, the condition (I′) is necessary. Similarly, we can use the automata CH and
DH in order to show that also the condition (II′) is necessary. Finally, the fact that w
must be 2-full follows from Lemma 2.1.
Conversely, if we start the reasoning in the proof of the implication (ii) ⇒ (i)

of Proposition 3.1 by considering an arbitrary mono automaton A=(Q;�; ’) with
|Q|=3, then the stabilizer ST (e) of the common exception state e has index at most 3
in the group FG(�A). The proof shows that either w resets A or HP ⊆ ST (e). In the
latter case, condition (I′) guarantees that either ST (e)=FG(�A) or ST (e) has index
2 in FG(�A) and Pa 
= ∅ for all letters a∈� . Thus we can complete the proof as in
Proposition 3.1. In a similar way, the proof of the implication (ii) ⇒ (i) of Proposition
3.2 can be adapted in order to show that under (II′) the word w resets an arbitrary
stereo automaton with 3 states.
Comparing Theorems 4.1 and 3.3, we see where the diHerence between the two

involved properties lies. For instance, if one of the subgroups corresponding to a word
w has index 5 then w cannot be 2-collapsing but may well happen to be 2-synchronizing
(as a subgroup of index 5 cannot be contained in a subgroup of index 2 or 3). For
concrete examples of 2-synchronizing but not 2-collapsing words the reader is referred
to [1] (where words called 2-synchronizing in the present paper have appeared under
the name ‘3-synchronizing’).
We mention that the conditions of Theorem 4.1 can be eHectively veri*ed because

every *nitely generated free group has only *nitely many subgroups of index 2 or 3
and the subgroups can be systematically enumerated. Thus, given a *nitely generated
subgroup H of a *nitely generated free group, one can check if H is contained in a
subgroup of index 2 or 3. Of course, the resulting algorithm requires exponential time
as the function of the length of the word under inspection.

5. Conclusion

We have characterized 2-collapsing words in terms of *nitely generated subgroups
of *nitely generated free groups thus yielding an algorithm that being presented with
a word recognizes whether or not the word is 2-collapsing. The algorithm however is
rather complicated and a natural direction for further research consists in investigating
its possible simpli*cations. To start with, our criterion is obtained as a combination of
conditions (I) and (II) arising, respectively, in the mono and stereo case but we do not
know if the two conditions are independent. More precisely, the following question is
open for all alphabets � with more than 2 letters:

Question 5.1. Let w∈�+ be a 2-full word which is 2-compressing with respect to
any mono automaton with the input alphabet �. Is w 2-collapsing?
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Of course, Theorem 3.3 allows to reformulate Question 5.1 as a question concern-
ing *nitely generated subgroups of free groups. Basically, it amounts to asking if the
existence of a role assignment (�;�) and a triple (Y1; P11; P22) such that the sub-
group H(Y1 ; P11 ; P22) violates condition (II) always implies the existence of another role
assignment (� ′; �′) and a subset P such that the subgroup HP violates condition (I).

More generally, it seems to be worth investigating the relations between the sub-
groups of the form HP (respectively H(Y1 ; P11 ; P22)) for a *xed initial word w and varying
role assignments and index subsets (respectively triples). No concrete example which
we have calculated so far excludes the possibility that we can restrict ourselves to role
assignments (�;�) with |� |=1 in the mono case and with |� |=2 in the stereo case.
Thus, we formulate

Question 5.2. (1) Suppose that condition (I) of Theorem 3.3 holds for every role
assignment (�;�) with |� |=1. Does the condition hold for an arbitrary role assign-
ment?
(2) Suppose that condition (II) of Theorem 3.3 holds for every role assignment

(�;�) with |� |=2. Does the condition hold for an arbitrary role assignment?

Of course, a positive answer to either part of Question 5.2 would essentially simplify
our algorithm as would do the positive answer to Question 5.1.
We conclude with an observation which resulted from a fruitful discussion with

Stuart Margolis whose valuable comments are gratefully acknowledged. Our theorems
reduce a problem that has arisen in automata theory to certain questions related to
*nitely generated subgroups of free groups. In turn, the most ePcient algorithms de-
veloped in the theory of *nitely generated subgroups in free groups use *nite automata:
given a *nite set W of group words one can easily build a *nite inverse automaton
which can be shown to depend only on the subgroup H generated by W and not the
set W itself [12,7,4]. The automaton which we denote by A(H) can be then used
to provide elegant solutions for many natural questions concerning H including those
that play a crucial role for the present paper. In particular, Theorems 3.3 and 4.1 can
be reformulated in terms of inverse automata of the form A(HP) and A(H(Y1 ; P11 ; P22)).
Rather than extracting such reformulations from the above results, it appears to be worth
looking for a ‘shortcut’ which would directly produce from a given word w a bunch
of inverse automata that controls the properties of being 2-collapsing=2-synchronizing.
Finding such a shortcut might also help in a much desirable extension of our results to
a similar characterization of n-collapsing and n-synchronizing words for an arbitrary n.
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