Volume 15, number 4

July 1971

INHIBITION OF PIGEON LIVER NAD KINASE BY A NON-PHOSPHORYLATIBLE ANALOGUE OF NAD

FEBS LETTERS

David K. APPS Department of Biochemistry, Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland

Received 19 April 1971

1. Introduction

Nicotinamide-2'-deoxy-adenosine dinucleotide (NdAD) has previously been prepared enzymatically [1] and chemically [2], and its interactions with dehydrogenases were studied. Since this analogue of NAD differs from the natural coenzyme in lacking the 2'-hydroxyl on the adenosine ribose, it cannot be phosphorylated by NAD kinase (ATP:NAD 2'-phosphotransferase, EC 2.7.1.23). In the present work, both NdAD⁺ and NdADH have been found to inhibit NAD kinase; the modes of inhibition suggest that the K_m for NAD⁺ equals K_s , the dissociation constant of the enzyme-NAD⁺ complex; that equilibrium binding of ATP.Mg²-also occurs; and that the 2'-hydroxyl is unimportant in the binding of NAD⁺ and NADH to NAD kinase. A method for the preparation of NMN in high yield, by the cleavage of NAD⁺ with crude rattlesnake venom, is also described.

2. Materials and methods

NAD⁺, ATP, glucose-6-phosphate, yeast alcohol dehydrogenase and glucose-6-phosphate dehydrogenase (specific activity 350 units/mg) were obtained from Boehringer. AMP and deoxy AMP (free acids) and *Crotalus adamanteus* venom were supplied by Sigma. Dicyclohexyl carbodiimide was from BDH.

2.1. Preparation and assay of NAD kinase

NAD kinase was purified from fresh pigeon livers to a specific activity of 0.3 units/mg, essentially as described previously [3]. Reaction rates were measured in a medium containing 0.1 M triethanolamine-Cl buffer, pH 7.4; 5 mM glucose-6-phosphate; 3.5 units of glucose-6-phosphate dehydrogenase; 0.03 units of NAD kinase, and various concentrations of substrates and inhibitors, in a total volume of 1.0 ml. NADP⁺ formed by the NAD kinase reaction was reduced by the dehydrogenase to NADPH, the overall reaction being followed at 340 nm in a Unicam SP800 spectrophotometer, equipped with scale expander and a cell compartment water-jacketed at 30°. With this high concentration of glucose-6-phosphate, inhibition of glucose-6-phosphate dehydrogenase by ATP [4] was negligible. The ratio of Mg²⁺ to ATP was 3:1 [3].

2.2. Preparation of NMN⁺

Previously published [5, 6] methods for the preparation of NMN⁺ have involved the separation of nucleotide pyrophosphatase from contaminating enzymes, notably 5'-nucleotidase. In the present work, the latter enzyme was inhibited by Zn^{2+} [7], and degradation of NMN⁺ to nicotinamide riboside was further reduced by inclusion of 5'-AMP in the reaction mixture. Under these conditions, near-theoretical yields of NMN⁺ from NAD⁺ were obtained, using crude snake venom.

400 mg NAD⁺ and 200 mg AMP were dissolved in 10 ml 2 mM ZnSO₄, and the pH adjusted to 9.5 with 3 M ammonium hydroxide. 15 mg *Crotalus adamanteus* venom was then added, and the mixture stirred at 30°. The pH was maintained at 9.5 by further addition of ammonia during the reaction, and 10 μ l samples of the mixture were taken for assay of NAD⁺ with alcohol dehydrogenase [8]. After 80 min over 90% of the NAD⁺ had been destroyed, and the mixture was applied to a 30 cm \times 12.5 cm² column of Whatman DE32, equilibrated with 10 mM ammonium bicarbonate, pH 7.5. Elution was performed with a 1 litre linear gradient of 10–80 mM NH₄HCO₃. The peak of NMN⁺ (140 ml) emerged after those of nicotinamide riboside and adenosine, and before residual NAD⁺ and AMP. The NMN⁺ was lyophilised; the yield was 450 μ moles, as judged by the absorbance of the nucleotide and its cyanide complex at 265 and 325 nm respectively [9]. The ammonium NMN⁺ was then converted to the pyridinium salt, by passage through a column of pyridinium Dowex 50.

2.3. Preparation of NdAD⁺

This was as described by Hughes et al. [10]. 500 μ moles NMN⁺ and 800 moles dAMP were dissolved in 7.5 ml water, and 30 ml redistilled pyridine added. 10 g of dicyclohexyl carbodiimide were added over 5 days. The worked-up product was applied to a 30 cm \times 12.5 cm² DE32 column in 20 mM NH₄HCO₃, pH 7.5, and eluted with a linear 1 litre gradient of this buffer, 20-150 mM. 80 μ moles NdAD⁺ were eluted following peaks of pyridine, nicotinamide and NMN⁺, and were lyophilised.

2.4. Preparation of NdADH

25 μ moles NdAD⁺ were reduced with yeast alcohol dehydrogenase in an ethanol/pyrophosphate/semicarbazide medium [8]. The equilibrium mixture was applied to a 25 cm \times 3.5 cm². DE32 column equilibrated with 0.2 M NH₄HCO₃ pH 7.5, and eluted with the same buffer. NdADH emerged after passage of 3 column volumes, and was lyophilised, with a yield of 22 μ moles.

The coenzyme analogues were assayed in the same way as the natural coenzymes [8]. Neither NdAD⁺ nor NdADH gave any NADP⁺ when substituted for NAD⁺ in the NAD kinase assay system.

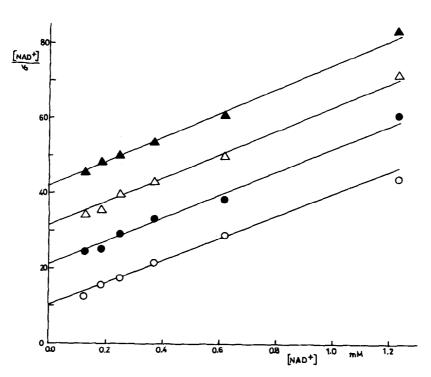
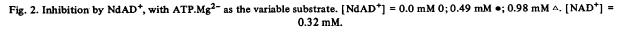


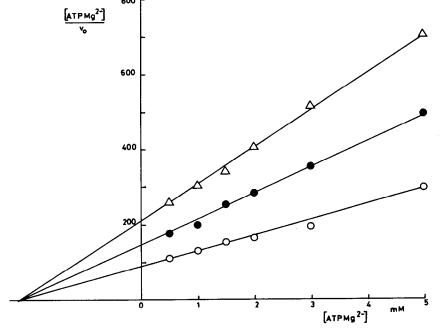
Fig. 1. Inhibition by NdAD⁺, with NAD⁺ as the variable substrate. [NdAD⁺] = 0.0 mM 0; 0.48 mM •; 0.96 mM \triangle ; 1.44 mM •. [ATP.Mg²⁻] = 5.0 mM. Initial velocities (V_0) in μ moles NADP⁺ min⁻¹.

3. Results and discussion

Kinetic plots were of $[S]/v_0$ versus [S], where [S] is the substrate concentration and v_0 the initial velocity of the reaction; such plots have slope $1/V_{max}$ and abscissa intercept $-K_m$ [11].

Inhibition of NAD kinase by NdAD⁺ was competitive with NAD⁺ (fig. 1) and noncompetitive with ATP.Mg²⁻ (fig. 2). The mean value of K_i , calculated from both plots, was 0.39 mM.


Inhibition by NdADH was again competitive with NAD⁺ and noncompetitive with ATP.Mg²⁻, and plots were qualitatively similar to figs. 1 and 2. The K_i was 0.105 mM.


Kinetic studies of NAD kinase [3, 12] suggested a mechanism of action in which the substrates bound in random order to the enzyme, the rate-limiting step of the reaction being interconversion of ternary complexes; binding of one substrate to the enzyme did not affect its affinity for the other. In such a mechanism, the K_m for each substrate should equal K_s , the dissociation constant of the appropriate binary complex. As pointed out previously [3], the finding of noncom-

petitive inhibition toward a given substrate indicates equilibrium binding of this substrate, since V_{max} , related to the catalytic rate constant, is reduced without affecting K_m , which must therefore be a simple dissociation constant, rather than a kinetic quantity. The noncompetitive inhibitions by NdAD⁺ and NdADH with respect to ATP.Mg²⁻ thus confirm equilibrium binding of this substrate.

The similarity of the K_i for NdAD⁺ to the K_m for NAD⁺, which is 0.30 mM [3], suggests that NAD⁺ is also bound in equilibrium, since K_i is the dissociation constant of the enzyme-inhibitor complex; however it is possible that lack of the 2'-hydroxyl in NdAD⁺ makes its K_i coincidentally similar to the K_m for NAD⁺, for which $K_m \neq K_s$. This is rendered less likely by the close similarity of K_i for NdADH to that for NADH, which is 0.090 mM [3]; this suggests that the alteration in structure has little effect on the binding of the coenzyme to NAD kinase, and therefore that the 2'-hydroxyl is unimportant in this respect.

Although the dissociation constants for the 2'-deoxy coenzymes are slightly higher than for the natural forms, the differences are probably within experimen-

tal error. In this context, NdADH is apparently bound more weakly to horse liver alcohol dehydrogenase than is NADH [2].

Acknowledgement

This work was supported by a grant from the Science Research Council.

References

[1] H. Klenow and B. Andersen, Biochim. Biophys. Acta 23 (1956) 92.

- [2] C.V. Fawcett and N.O. Kaplan, J. Biol. Chem. 237 (1962) 1709.
- [3] D.K. Apps, European J. Biochem. 5 (1968) 444.
- [4] G. Avigad, Proc. Natl. Acad. Sci. U.S. 56 (1966) 1543.
- [5] S. Takei, Agr. Biol. Chem. (Tokyo) 34 (1970) 23.
- [6] N.O. Kaplan and F.E. Stolzenbach, in: Methods in Enzymology, Vol. 3, eds. S.P. Colowick and N.O. Kaplan (Academic Press, London, 1957) p. 899.
- [7] M.A.G. Kaye, Biochim. Biophys. Acta 18 (1955) 456.
- [8] H.U. Bergmeyer, Methods of Enzymatic Analysis (Academic Press, London, 1965).
- [9] Pabst Laboratories Circular OR-18.
- [10] N.A. Hughes, G.W. Kenner and A. Todd, J. Chem. Soc. 735 (1957) 3783.
- [11] C.S. Hanes, Biochem. J. 26 (1932) 1406.
- [12] D.K. Apps, European, J. Biochim. 7 (1969) 260.