
Computers and Mathematics with Applications 55 (2008) 1094–1101
www.elsevier.com/locate/camwa

Parallel implementation of 3D global MHD simulations for Earth’s
magnetosphereI

Zhaohui Huanga,∗, Chi Wanga, Youqiu Hub, Xiaocheng Guob

a State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080,
People’s Republic of China

b School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, People’s Republic of China

Received 20 October 2005; received in revised form 22 March 2007; accepted 21 June 2007

Abstract

This paper presents a dynamic domain decomposition (D3) technique for implementing the parallelization of the piecewise
parabolic method (PPM) for solving the ideal magnetohydrodynamics (MHD) equations. The key point of D3 is distributing the
work dynamically among processes during the execution of the PPM algorithm. This parallel code utilizes D3 with a message
passing interface (MPI) in order to permit efficient implementation on clusters of distributed memory machines and may also
simultaneously exploit threading for multiprocessing shared address space architectures. 3D global MHD simulation results for
the Earth’s magnetosphere on the massively parallel supercomputers Deepcomp 1800 and 6800 demonstrate the scalability and
efficiency of our parallelization strategy.
c© 2008 Published by Elsevier Ltd
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1. Introduction

Numerical simulation becomes more and more popular in experimenting with physical models, and computing
plays an important role in investigating the interaction with experiments and analytical theory. Advances in high
performance computing make detailed and accurate calculations of hydrodynamics and magnetohydrodynamics
(MHD) feasible [1–8]. Specifically, 3D global MHD simulations can obtain the magnetospheric configuration and
examine the response of the magnetosphere–ionosphere system to changing solar wind conditions. The MHD model
combines fluid equations and Maxwell’s equations, and the intrinsic complexity of the MHD equations requires high
resolution numerical methods [9–11]. Finite volume methods are among several different techniques available for
solving the MHD equations since they are simple to implement, easily adaptable to complex geometries, and well
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suited to handling non-linear terms. The Godunov approach is a finite volume method in which non-linearity is
introduced into the difference scheme via solution of the Riemann problem, which leads to an accurate and very well-
behaved treatment of shock discontinuities [12–14]. An important Godunov-type approach is the piecewise parabolic
method (PPM) given by Colella and Woodward in 1984 [15], which introduces a number of changes to achieve high
order resolution in a Godunov method to ensure at least second-order up to fourth-order accuracy in space and second-
order accuracy in time. An essential ingredient of PPM is a spatial reconstruction step to compute time-advanced
estimates of the conserved variables at the grid face. It was originally developed to study the dynamics of supernova
explosions and as such includes a Riemann solver which is capable of treating non-gamma law gases [16–18]. For
relatively recent works refer to [19–22].

In recent years a variety of numerical algorithms and codes for multidimensional MHD based on the PPM
employing the Lagrangian remap implementation have been developed and used extensively in astrophysics
simulations. Massively parallel computers have a large effect on the quality of solution obtained with relatively short
calculation times. Many PPM parallelization versions, e.g. EVH-1 based on VH-1 due to Blondin and colleagues [23],
etc. are presented, and they have their own advantages when applied to the corresponding physical problems.

Here our objective is to propose a dynamic domain decomposition (D3) technique after analyzing the concrete
characteristics of the PPM algorithm and its computational steps applied to simulate the 3D global Earth’s
magnetosphere and develop a new PPM parallelization software bag including the MPI version and the OpenMP
version based on two main parallel architectures.

This paper is divided into six parts. First we give the MHD equations and PPM scheme in Section 2; then the
parallel strategy for PPM is presented in Section 3. Section 4 introduces two architectures of supercomputers applied,
for which the simulation results are analyzed and discussed in Section 5. Finally, we draw some conclusions in
Section 6.

2. The MHD equations and PPM scheme

The ideal MHD equations can be written in differential conservative Eulerian form as
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Here, ρ is the plasma density, p is the pressure, v is the velocity. E =
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density of the plasma. I and g are the unit matrix and the acceleration due to gravity, respectively. We take γ = 5/3
for the ratio of specific heats.

The MHD equations represent coupling of the fluid dynamic equations with Maxwell’s equations of
electrodynamics, and describe the conservation of mass, momentum, magnetic flux, and energy.

We uses the finite difference method with the piecewise parabolic method (PPM) and a Riemann solver to solve
the aforementioned equations [15–18]. PPM consists of three steps:

1. In Lagrangian coordinates, we implement the piecewise parabolic interpolations, compute the effective left and
right states and solve the Riemann problems at each zone interface in order to determine the new zone averages on the
Lagrangian grid.

2. Calculate the updated zone averages by differencing the Lagrangian fluxes, get new piecewise parabolic
interpolations and integrate those of each variable over regions of overlap between the Lagrangian and Eulerian grids.

3. Map quantities from the Lagrangian grid back to the Eulerian grid, and difference them to obtain the final zone
averages on the Eulerian grid.

In the Lagrangian evolution step, by introducing
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1
ρ

,
d
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≡
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we will obtain the following Lagrangian conservative form of MHD equations from the Eulerian conservative form:
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3. Dynamic domain decomposition (D3) technique

Multilevel Schwarz methods include multigrid methods [24–28], overlapping domain decomposition and iterative
substructuring algorithms, which base the subspace splitting on the decomposition of the computational domain as
the union of smaller subregions. Dynamic domain decomposition (D3) combines domain decomposition with co-
adaptation [29] of parallelization and solvers for the subproblems.

3.1. D3 algorithm

Domain decomposition (D2) methods decompose the given domain into subdomains and treat the subproblems —
the given problem restricted to the subdomains, and the interface problems which represent the connection between
the subproblems. In this respect, D2 seems a natural concept for the parallelization of large scale computation for
the solution of MHD equations. Usually, the partitioning, even recursive divide-and-conquer methods employed
for decomposing the computational domain are not flexible and scalable since their principles guiding the design
of decomposition for subdomains are less concerned with the joint adaptation of partitioning, communication,
mapping and the efficient solution of subproblems and interface problems, which will have a serious effect on the
implementation of parallelization and thus the whole efficiency. D3 is characterized by its dynamic hierarchical
structure which typically leads to parallelization. PPM possesses such an important characteristic that it is intrinsically
one-dimensional, the extension to more directions being obtained by a direction splitting procedure [30,31]. If we
indicate with Lk the operator in the kth direction, the update value for the MHD variable u is

un+1
= L z L y Lx un, (3.1)

and another alternate form is

un+2
= Lx L y L zun+1, (3.2)

where the index n represents the time tn+1
= tn

+ 1t .
Let Ωd be a shape-regular and quasiuniform decomposition of the domain Ω , with mesh width d, consisting of

Ωm
i=1, where m is the number of elements. Ω̄ M

i=1 with M the number of subregions is an open covering ΩD of Ω such
that each subregion Ω̄i is the union of elements of Ωd .

The D3 algorithm has the following basic principles. First, choose a suitable open covering Ω̄x for the operator
Lx , in order that the subproblem can be solved efficiently. Then, we have to transfer the data in Ω̄x so that they
can be directly used by L y , and another open covering Ω̄y can be obtained by the treatment of data communication
between the subproblems is crucial to D3, which is satisfied by substructuring the interface problem, that is, creating
an auxiliary problem for the unknowns associated with the interface. Finally, compute L y in Ω̄y , do the same in the
z-direction, and map the three direction data back to the whole region.
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3.2. D3 implementation

In MHD computations, the solution domain is subdivided into some subdomains which are then partitioned into
grids. Grid points contain inner points, boundary points and imaginary points—“ghost” points, which are required
since the PPM method is a finite volume technique with each grid point using the information at four nearest grid
points along each spatial dimension to update the values of its variables. The boundary conditions are handled using
the ghost zones. As expressed in (3.1) and (3.2), we always employ a one-dimensional sweep in one spatial direction,
that is to say PPM applied a one-dimensional operator multiple times to compute three-dimensional MHD problems,
so the kernel operates on one-dimensional arrays. It also tells us that the computational processes applied to all
dimensions have some similar property; therefore the algorithm can be given as follows.

Step 1. Choose the kth direction (k = x, y, and z) as the basic partitioning direction and decompose the domain
into subdomains, on which all variables and arrays are defined.

After determining the basic direction (e.g. z), we can apply the operator Lx and L y smoothly. But for L z , we
convert into Step 2.

Step 2. From the remainder we select x or y as the auxiliary partitioning direction, along which L z is employed.
Here we need several interim arrays to transfer the data from the basic to auxiliary partitioning direction. How do

we do this? See Step 3.
Step 3. If any two in the number of subdomain or grid points for three directions are equal, we only perform 1D

striped or 2D checkerboard partitioning for matrix transposition [23]; otherwise another two global data transfers
have to be applied in the main program in order to make three sweep subroutines in three directions retain their
structures.

Obviously, the latter need communications twice as much as the former, but the extra load can usually be avoided
since it is very easy to adjust the subdomain partition in a direction and increase less computations.

4. Architectures of parallel computers

Here we introduce architectures of two popular parallel computers used in our investigation:
Lenovo Deepcomp 1800 cluster at LSEC, CAS, consists of 256 computing nodes, with dual Intel Xeon 2 GHz

processors and 1 GB main memory. The combined theoretical peak of this system is about 2 Tflops. Both fast ethernet
(Intel pro 100, MPICH-1.2.4-p4mpd) and Myrinet 2000 (LANai 9, gm-1.5.2.1, MPICH-GM-1.2.1.7b) are equipped.

Lenovo Cluster Server Deepcomp 6800 at Supercomputing Center, CAS, is a four-node system, each node with
four Intel Itanium 2 1.3 GHz processors running Oracle Database 10g with real application clusters and the Linux
operating system. These 1024 processors are connected by QsNet and can reach a peak computing speed of 5 Tflops,
an actual computing speed of 4 Tflops, and an overall efficiency of 78.5%. Deepcomp 6800 ranked 14th among the
world’s top 500 supercomputers in the ranking announced in mid-November, 2003. That was the highest ranking that
a Chinese supercomputer had ever attained.

5. Performance results and discussions

We solve the MHD equations in the 3D computational domain x ∈ (−300, 30)Re, y, z ∈ (0, 150)Re, where
Re is the radius of Earth, with the regular grid 160 × 802, using our parallel code on Deepcomp 1800 and 6800
supercomputers.

Before giving the computational results, we first introduce two indices which will be used in the following tables
and text [32–35].

We introduce the speedup factor — a measure of relative performance of a multiprocessor system and a single-
processor system, defined as

s(n) =
ts
tp

=
Execution time using one processor

Exection time using a multiprocessor with n processors

where ts is the execution time on a single processor and tp is the execution time on a multiprocessor. s(n) gives the
increase in speed in using a multiprocessor.
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Table 1
Computational results on Deepcomp 1800 and 6800

Num. of
processors

Time steps/min
of 1800

Speedup factor
of 1800

Efficiency of
1800 (%)

Time steps/min
of 6800

Speedup factor
of 6800

Efficiency of 6800 (%)

1 5 1.0 100.0 9 1.0 100.0
2 10 2.0 100.0 16 1.8 90.0
4 18 3.6 90.0 31 3.4 85.0
8 35 7.0 87.5 57 6.4 80.0

10 40 8.0 80.0 68 7.5 75.0
16 60 12.0 75.0 108 12.0 75.0
20 70 14.0 70.0 114 12.7 63.5
40 110 22.0 55.0 180 20.0 50.0

Fig. 1. Computing time steps per minute on Deepcomp 1800 and 6800.

Then the system efficiency E is defined as

E =
ts

tp × n
=

Execution time using one processor
Execution time using a multiprocessor × number of processors

which leads to

E =
s(n)

n
× 100%,

when E is given to a percentage. Efficiency gives the fraction of the time that the processors are being used on the
computation.

Application performance is then studied in terms of the number of time step per minute, speedup and efficiency for
our parallel code as Table 1 shows.

First we compare the computational speed of parallel code on the different parallel systems. From Fig. 1, we know
that Deepcomp 6800 is approximately twice as fast as Deepcomp 1800 as fewer processors are used. When the number
of processors is over 16, the efficiency of Deepcomp 6800 degrades faster than that of Deepcomp 1800.

For when using fewer than 20 processors, Fig. 2 tells us that the speedup factors do not differ substantially between
Deepcomp 1800 and 6800; Deepcomp 6800’s speedup factor for up to 20 processors becomes smaller than that for
Deepcomp 1800 because Deepcomp 1800 has run normally and the whole performance of the system is relatively
stable, but Deepcomp 6800 is still at the stage of testing and its performance will further be improved.

When this problem is run on up to 40 processors, the total performance degradation is instead observed as indicated
by Fig. 3, since the granularity of the problem decomposition in the main partitioning direction is not large enough
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Fig. 2. Speedup factors on Deepcomp 1800 and 6800.

Fig. 3. Efficiency on Deepcomp 1800 and 6800.

and then the communication among blocks and processors increases; on the other hand, if we use fewer processors to
enlarge the granularity, our main aim of massively parallel computations will not be realizable.

Therefore, due to the stable efficiency obtained when using 16 processors we think that 16 or 20 processors will
be suitable for the problem we would like to solve, which can not only take the efficiency into account, but also save
supercomputing resources.

In general, the performance of our code tested on the different parallel systems tells us that an efficiency of 70%
can easily be attained for test examples, which shows that the D3 algorithm is a computationally intensive technique
that benefits from the use of massively parallel computers.

Performance has been evaluated on SGI Oringin 3800, and results similar to those obtained with Deepcomp 1800
are obtained.

6. Conclusions

In this paper we have analyzed and compared the performance of parallel code on two modern parallel architectures.
Simulation results show that D3 is a promising technique for parallelism since computation and then communication
in each subdomain are local, and a relatively good load balance can be verified by the fact that performance does
not degrade sharply with increasing number of processors. Although we propose D3 based on the specific MHD
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simulations, the algorithm kernels can be applied to more extensive application areas. The dynamic load balance and
better scalability should be investigated to exploit further the D3 technique.
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