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ABSTRACT

In response to the need to further explore and understand the technical needs and challenges presented by
implementing a multi–pollutant, risk–based approach to air quality management, a case study was performed for
the urban area of Detroit. As part of this case study, two contrasting air quality control strategies were assessed and
compared. One strategy mimicked the “status quo”, where controls were selected separately to address ozone (O3)
and fine particulate matter (PM2.5) nonattainment at monitor locations, while the other strategy reflected a “multi–
pollutant, risk–based” approach aimed at further reducing population risk from exposure to ozone, PM2.5 and
selected air toxics while still addressing ozone and PM2.5 nonattainment. This paper describes the technical
framework used to apply and evaluate the two contrasting air quality control strategies and describes the relative
benefits of each. Based on this case study, we found that the “multi–pollutant, risk–based” approach was able to: (1)
achieve the same or greater reductions of PM2.5 and O3 at monitors; (2) improve air quality regionally and across the
Detroit urban core for multiple pollutants; (3) produce approximately two times greater monetized benefits for PM2.5

and O3; (4) reduce non–cancer risk; and (5) result in greater net benefits and be more cost effective.

Keywords:
Multi–pollutant
Control strategy

Risk
Benefits

Air quality management

Article History:
Received: 22 April 2010
Revised: 01 July 2010

Accepted: 06 July 2010

Corresponding Author:
Karen Wesson

Tel: +1 919 541 3515
Fax: +1 919 541 0044

E–mail: wesson.karen@epa.gov

© Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. doi: 10.5094/APR.2010.037

1. Introduction

In 2004, the National Research Council (NRC) report Air
Quality Management in the United States recommended that the
U.S. Environmental Protection Agency (EPA) transition from a
“pollutant–by–pollutant approach to air quality management to a
multi–pollutant, risk–based approach”. Since there had not been a
complete technical demonstration of the application and evalu
ation of a multi–pollutant, risk based approach, we decided to
undertake a case study focused in one urban area. For this case
study, the area of Detroit was chosen due to the multi–pollutant
nature of the air quality problems there and the wealth of data
available (U.S. EPA, 2008a). The overall goal was to: (1) demon
strate a framework with the available technical tools, methods and
data that can be used to apply and evaluate multi–pollutant, risk–
based control strategies; and (2) determine the relative benefits of
implementing such a framework as compared to a single–pollut
ant, State Implementation Program (SIP)–based approach to air
quality management. To do this, we worked through a process to
use our technical tools, methods and data to evaluate the local and
regional impacts of changes in criteria and toxic pollutant emis
sions on air quality from two contrasting air quality management
strategies. One strategy reflected a single–pollutant approach,
where controls are selected separately to address ozone (O3) and
fine particulate matter (PM2.5) nonattainment at monitor locations.
We refer to this strategy as the “Status Quo” control strategy. The
second strategy, a “Multi–pollutant, Risk–based” control strategy,
is aimed at further reducing population risk from exposure to O3,
PM2.5 and selected air toxics while still addressing O3 and PM2.5
nonattainment. The results of this assessment are discussed below.

2. Study Design: Technical Framework

As part of this case study, we established a technical frame
work, as shown in Figure 1, in which our two contrasting strategies
could be formulated, modelled and evaluated. In this framework, a
control strategy is developed and then modelled using a multi–
pollutant emissions inventory, control measures database, and air
quality modelling system. Data output from the modelling platform
is then used to calculate the resultant change in air quality, for
both criteria (O3 and PM2.5) and hazardous air pollutants (CAPs and
HAPs), and to inform tools that assess the impact of the control
strategy on changes in human health risk and exposure. The results
of this assessment could then be used to make changes to the
control strategy, if needed. The details on the components of this
framework as used for this study are discussed in the following
sections.

2.1. Emissions inventory and emissions modeling

To allow for analysis of the air quality impacts of both CAPS
and HAPS in this project, we used the 2002 NEI v3.0, with
integrated data (U.S. EPA, 2008b). This base year inventory was
then projected to create a 2020 future year emissions inventory,
taking into account any national rules or “on the books” controls
and any growth or decline of an emissions source group. The
resulting emissions inventory was then processed with SMOKE
(Sparse Matrix Operator Kernel Emissions) for input into the
Community Multiscale Air Quality Modeling System (CMAQ) and
American Meteorological Society/Environmental Protection
Agency Regulatory Model (AERMOD).
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Figure 1.Multi–pollutant Framework for Technical Assessment.

Because we modeled local air quality impacts for PM2.5 and air
toxics using AERMOD, we utilized an emissions inventory that had
been updated to be more reflective of the Detroit urban area
(Tooly and Wesson, 2009). These updates included: incorporation
of the EPA solvent study for eleven solvent utilization categories;
activity updates for construction and agriculture equipment and
recreational marine vessels; better spatial allocation of county–
level recreational marine vessel emissions; and updates to the
commercial marine vessel and railroad emissions data. In addition,
the Surrogate Tool v3.6 (U.S. EPA, 2009) was used to provide
spatial surrogate ratio files that were input to SMOKE for a 1 km x
1 km grid–based allocation of the non–point and non–road emis
sions for AERMOD modeling of the Detroit urban area.

For the mobile emissions, the most recent version of the
Consolidated Community Emissions Processing Tool (CONCEPT)
was used to produce link–based mobile emissions for PM and
toxics for the seven counties in the Detroit area: Livingston,
Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne
counties. These counties are part of the Southeast Michigan
Council of Governments (SEMCOG), which provides predicted
diurnal variability in vehicle miles traveled from the SEMCOG
Travel Demand Model (TDM) to CONCEPT. These link–based
mobile emissions provide a more refined allocation of mobile
emissions for this project and improve the ability to analyze the
local–scale impact of mobile emissions on the urban air quality
(Strum et al., 2008).

2.2. Multi–pollutant control measures

For this project, we implemented and modeled multi–
pollutant control information for control measures in both of our
control strategies. We did this so we could represent the true
multi–pollutant nature of the selected control measures in both
strategies and enable comparison across relevant population
exposures to CAPs and HAPs. While there are databases, such as
AirControlNet1), that can supply control efficiency information for
the primarily reduced pollutant(s), it can be difficult to find this
same information for other pollutants affected. However, to do
true multi–pollutant assessments, this information is critical and so
we sought to complete this information for all the control
measures in the two strategies. We accomplished this through
literature searches, in discussions with EPA source–specific engi
neers, and by sometimes making simple assumptions about the
relationships between directly emitted particles or gaseous species
reduced. Table 1 lists the control measures in each of the two
strategies and the multi–pollutant control measure efficiencies
modeled for each.

1) Available at: http://www.epa.gov/ttnecas1/AirControlNET.htm.

2.3. Air quality modeling analyses

The air quality modeling is an integral part of the project. It
takes inputs from the multi–pollutant emissions inventory and
control measures databases and produces information on the
change in air quality for input into tools that analyze exposure, risk,
and benefits. For this project, we applied EPA’s CMAQ photo
chemical model and AERMOD dispersion model, and combined the
concentrations within a grid cell to provide subgrid cell texture via
the Multiplicative Hybrid Approach (MHA), as described below. The
models were run for the months of January, April, July and
October, 2002. More information on the modeling and a model
performance evaluation can be found at Wesson et al. (2009).

CMAQ modeling. CMAQ v4.6.1i (Byun and Schere, 2006) offers a
multi–pollutant (i.e., ozone, particulates, toxics, acid deposition,
and nitrogen loading) capability via a generalized chemistry
mechanism, general numerical solver, and comprehensive de
scription of gaseous and aqueous chemistry and modal aerosol
dynamics. CMAQ was run as part of the 2002 Modeling Platform
(US EPA, 2008c) with a 12 km x 12 km horizontal grid resolution for
the “Midwest Domain” centered on Detroit, Michigan, as shown in
Figure 2. The meteorological inputs for CMAQ were derived from
MM5 data that were processed to create model–ready inputs
using the Meteorology–Chemistry Interface Processor (MCIP),
version 3.4. Initial Condition and Boundary Conditions were
supplied for the Midwest Domain from a complementary CMAQ
model run, which was run at a 36 km x 36 km horizontal grid
resolution.

Figure 2. CMAQ and AERMOD Modeling Domains.

AERMOD modeling. The AERMOD model (U.S. EPA, 2004a; U.S.
EPA, 2004b; U.S. EPA, 2004c) is EPA’s preferred air quality disper
sion model for regulatory air quality impact assessments of inert
pollutants that are directly emitted from a variety of sources for
transport distances of up to 50 km. For this study, AERMOD version
0430011 was run for the Detroit urban area. A receptor grid
domain was placed at the core of the Detroit urban area, with
receptors placed at 1 km spacing across the rectangular grid (e.g.,
36 by 48 km) as shown in Figure 2. Since AERMOD predicts concen
trations at each of these receptor locations, this dense network of
receptors allows for the prediction of the urban gradient for pri
mary pollutants.
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A selected number of pollutants were modeled with AERMOD
and include: primary organic carbon, elemental carbon, benzene,
cadmium, 1,3–butadiene, nickel, naphthalene, manganese,
acetaldehyde, diesel particulate matter (DPM), formaldehyde,
methylene chloride, and 1,4–dichlorobenzene. The toxics were
chosen based on their relative high risk (inhalation; cancer and
non–cancer) as measured by the Detroit Air Toxics Initiative (DATI)
Study (Simon et al., 2005).

Meteorological data were extracted from the 2002 12 km2

MM5 data and processed for AERMOD using AERMET. The
meteorological data were extracted from the grid cell that included
the Detroit Metropolitan Airport (DTW: latitude = 42.22, longitude
= –83.35) based on the determination that the meteorology in this
grid cell was most representative of the meteorology in the Detroit
urban area we are modeling. To account for the dispersive nature
of the “convective–like” boundary layer that forms during night
time conditions due to the urban heat island effect, the “urban
option” was used.

Multiplicative Hybrid Approach. The Multiplicative Hybrid
Approach (MHA) involves combining concentrations from CMAQ
and AERMOD within a grid cell to provide subgrid cell texture, as
shown in Equation (1).

C = CMAQ_primary * (AERMOD_rec/AERMOD_gridavg)
+ CMAQ_secondary

(1)

where CMAQ_primary and CMAQ_secondary are the primary and
secondary CMAQ concentrations of a pollutant within the relevant
CMAQ grid cell; AERMOD_rec is the concentration of a pollutant at
an AERMOD receptor; and AERMOD_gridavg is the average con
centration of a pollutant for all the AERMOD receptors located
within the relevant CMAQ grid cell.

The MHA was applied to PM2.5 and all toxic pollutants
modeled by AERMOD. For all of the toxic species except for
formaldehyde and acetaldehyde, there were no secondarily
formed components and Equation (1) was applied with CMAQ_
secondary equal to zero. For formaldehyde and acetaldehyde,
CMAQ was used to predict the primarily emitted component
(CMAQ_primary) and secondarily formed component (CMAQ_
secondary) and these concentrations were combined with
AERMOD predicted values using Equation (1).

To calculate the total PM2.5 subgrid concentrations, the use of
Equation (1) proved a little more difficult because CMAQ did not
split sulfate (SO4

=), nitrate (NO3
–), ammonium (NH4

+) into primarily
emitted and secondarily formed components, and AERMOD was
not used to model all PM species. Therefore, we made the
following assumptions: (1) that SO4

=, NO3
–, and NH4

+ were all or
mostly secondarily formed such that they could be represented by
CMAQ at the 12 km2 grid2); (2) that elemental carbon (EC) and
primary anthropogenic organic carbon (OC_PA) would not have a
secondary formed component such that CMAQ_secondary would
equal zero; and (3) that sodium particulate matter (ANAJ), chloride
particulate matter (ACLJ), and PM2.5 accumulation mode unspe
cified anthropogenic mass (A25J) could be represented at the
12 km2 grid by CMAQ. Using these assumptions and Equation (1) as
appropriate, each of the PM2.5 species was calculated and the
following equation was used to compute total subgrid PM2.5:

PM2.5 = SO4+NO3+NH4+ORG_A+1.2*(ORG_PA)+ORG_B+EC
+A25J+ACLJ+ANAJ

(2)

2) In these cases, it was assumed that the concentration of this pollutant
would be the same each AERMOD receptor with the corresponding CMAQ
grid cell. This allowed the final predicted value of PM2.5 to be calculated at
a 1 km resolution.

where ORG_A and ORG_B are the secondarily formed anthro
pogenic organic carbon and biogenic organic carbon, respectively,
as predicted by CMAQ.

2.4. Control strategy development

This section describes the “Status Quo” control strategy and
our approach used to develop the “Multi–pollutant, Risk–based”
control strategy. The controls used in the two scenarios are shown
in Table 1 and were applied to the 2020 baseline. The costs for
these scenarios are shown in Table 1 by emissions sectors. Overall,
the cost of the “Status Quo” control strategy was approximately
$56 million while the “Multi–pollutant, Risk–based” control strat
egy was approximately $66 million.

“Status Quo” control strategy. The “Status Quo” control strategy
was meant to mimic how a state might approach selecting control
measures for an O3 and PM2.5 SIP, where controls would be devel
oped separately with a focus on either O3 or PM2.5 attainment, and
with a typical least cost approach. To reflect this, we utilized the
controls specified for the Detroit area by EPA in its Regulatory
Impact Analysis (RIA) of the revised National Ambient Air Quality
Standard (NAAQS) for PM2.5 for the annual standard of 15 g/m3

and the daily standard of 35 g/m3 (U.S. EPA, 2006)3). These
control measures were designed to bring the Detroit area into
attainment for these standards. For O3 control measures, we
included all of the controls listed as “Selected Control Measures”
and “Contingency Measures,” as well as some of the “Voluntary
Measures” provided in the “Ozone Attainment Strategy for
Southeast Michigan” (SEMCOG, 2005) submitted to EPA in June
2005 by Michigan Department of Environmental Quality (MDEQ).
As discussed above, though it is not typically part of the SIP
process, we included multi–pollutant information for these control
measures so that in the air quality assessment the major
pollutant(s) as well as any additional criteria or toxic pollutants
controlled or created were included.

Multi–pollutant, risk–based control strategy. Before we began to
select controls for the “Multi–pollutant, Risk–based” control
strategy, we felt that it was important to have a good under
standing of the air quality issues in Detroit. To do this, we put
together a conceptual model for the Detroit area (U.S. EPA, 2008a).
The main points are summarized here.

For PM2.5, the Detroit area was classified as nonattainment
with the 2001–2003 derived design values being 19.5 μg/m3 (rela
tive to the 15 μg/m3 1997 annual standard). Measurements show
there are sharp concentration gradients across the area, with some
of the highest measured values being at sites close to the city’s
industrial center. Population data from the 2000 Census shows
that there are large numbers of people living near these sites,
especially those in and near the city center. Speciation studies at
some of these measurement sites (e.g. Dearborn and Allen Park)
indicate there is a rather high direct PM component contribution
suggesting a benefit of controlling local PM sources. Speciation
data and measurement studies suggest that some of this direct PM
component is composed of toxic metals such as manganese and
nickel, which the DATI report (Simon et al., 2005) indicated as
being important pollutants to reduce in concentration in the
Detroit area. The emission inventory showed important sources of
PM2.5 in Detroit to include metal processing, commercial cooking,
residential wood burning, and cement manufacturing.

3) We could not use the controls from the MDEQ SIP for PM2.5 when we
developed the “Status Quo” control strategy since it had not yet been
submitted.
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Table 1. Control measure information for the “Status Quo” (SQ) and “Multi pollutant, Risk based” (MPRB) control strategies a

Control Measure Process Type Source
Type

Control
Strategy

Approximate Costs
(Thousands $)

Control Efficiency (%)

SQ MPRB PM10 and
PM2.5

VOC NOx SO2 CO Metal HAPs Non VOC
HAPS

CEM Upgrade and IMF of PM
Controls

Mineral Products Point SQ

$21 243

7.7 7.7

CEM Upgrade and IMF of PM
Controls

Metal Processing Point SQ 7.7 7.7

CEM Upgrade and IMF of PM
Controls

External
Combustion
Boilers

Point SQ 7.7 7.7

Fabric Filter (Pulse Jet Type)
Mineral Products
Cement

Point SQ 99 99

Wet Electrostatic Precipitator
(Wire Plate Type)

Chemical
Manufacturing

Point SQ 95 95

Regenerative thermal oxidizer
Industrial
Processing

Point SQ 95 95

Adding Surface Area of Two ESP
Fields

External
Combustion
Boilers

Point SQ and
MPRB b

$31 677

16.75 16.75

Coal Washing
External
Combustion
Boilers

Point SQ and
MPRB b

45 35 45

Wet Electrostatic Precipitator
(Wire Plate Type)

Metals Processing Point MPRB 95 95

Capture Hood Vented to
Baghouse

Metals Processing Point MPRB 95 95

Fabric Filter (Pulse Jet Type) Metals Processing Point MPRB 99 99
Fabric Filter (Mech. Shaker
Type)

Metals Processing Point MPRB 99 99

Education and Advisory
Program c

Residential Wood
Combustion

Area SQ and
MPRB

$3 066

50 50 50 50 50 50 50

NSPS Compliant Wood Stove
and Fireplace Inserts c,d

Residential Wood
Combustion

Area SQ and
MPRB

9.8 8 9.8 8

Conveyorized Charbroilers c
ESP for
Commercial
Cooking

Area SQ and
MPRB

18.5 18.5

Education and Training Program
c

Auto Body
Refinishing

Area SQ and
MPRB

92 18.6 92 18.6

Reformulation for consumer
commercial products c

Solvent Utilization Area SQ and
MPRB

8 8

Prohibit use of solvent for cold
cleaning with a vapor pressure
greater than 1.00 mm Hg at 68
F b

Degreasing Area SQ and
MPRB

6 6

Reduce vapor pressure from 7.8
to 7.0 lbs/in2 e

Fuel Vapor
Pressure

Mobile SQ
$31 385

3.5

Level 2 Diesel retrofits e,f Heavy duty Diesel
Engines

Mobile MPRB

$31 136

13.7 6.4 17.0 13.7

On board Diagnostic (OBD)
Inspection and Maintenance e,g

Vehicles made in
1996 or later

Mobile MPRB 9.77 5.31 15.59

a Control information and costs can be found at: SEMCOG, 2005; U.S. EPA, 2006; U.S. EPA, 2005; Air Improvement Resource, Inc., 2005
bUnits controlled vary per control strategy
c Applied to the counties of Genesee, Lapeer, Lenawee, Livingston, Macomb, Monroe, Oakland, St Clair, Washtenaw, and Wayne
d 98% control efficiency for PM2.5 and PM10 and 80% for VOC and non VOC HAPS with 10% trade out results in an estimated reduction of 9.8% and 8.0% respectively
e Applied to the seven SEMCOG counties of Livingston, Macomb, Monroe, Oakland, St Clair, Washtenaw, and Wayne.
f Assumes 100% implementation for on road heavy duty diesel engines.
g Assumes the following to compute the cost and fuel savings: cars tested: 953, 200; test costs: $25, failure rate: 15%, average repair cost: $200; percent fuel savings: 10%;
average fuel costs: $3/gallon; average miles travelled: 20 000; average miles per gallon: 24.

For O3, the Detroit–Ann Arbor area was classified as a
moderate nonattainment area4) of the 8–hour ozone standard with
the 2001–2003 derived design value being 0.097 ppm (relative to
the 0.085 ppm 1997 8–hour standard). Modeling results indicate
the area to be “VOC–limited,” especially in the urban core, sug
gesting that reducing volatile organic compound (VOC) emissions,
versus nitrogen oxide (NOX) emissions, would have the greatest
impact on reducing O3 (SEMCOG, 2005). The DATI report (Simon et
al., 2005) indicated that there were at least nine VOC species that
had significantly high concentrations in the Detroit urban area and
that could be identified as contributing the most to the risks.

4) On September 16, 2004, EPA granted the request made by SEMCOG and
MDEQ to reclassify Southeast Michigan from a moderate nonattainment
area to a marginal nonattainment area for ozone air pollution.

These included 1,4–dichlorobenzene, acrylonitrile, benzene,
formaldehyde, methylene chloride, naphthalene, carbon
tetrachloride, acetaldehyde, and 1,3–butadiene. Reducing
emissions of these pollutants suggests a possible co–benefit of
reducing both O3 and toxic risk, especially if reductions take place
in or near the city center where the area is the most “VOC–limited”
and the population is high. The emission inventory indicates that
important sources of VOCs in the area include on–road and non–
road vehicles, solvents, residential wood combustion and some
industrial sources.

Using this information, we developed the “Multi–pollutant,
Risk–based” control strategy. Our goal was to find control mea
sures that would get at least the same reductions for PM2.5 and O3
at the monitors as the “Status Quo” control strategy achieved, but
also to go further in reducing PM2.5, O3 and selected air toxic
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concentrations throughout the region, with a particular focus on
densely populated areas. To do this we focused on finding popu
lation oriented reductions, when possible, and tried to select
controls that would offer a co–control opportunity, especially with
respect to reducing air toxics. Between the two strategies, we tried
to keep similar total reductions for the primary controlled pollu
tants but make trade–offs among pollutants reduced. We did this
to keep the “Multi–pollutant, Risk–based” control strategy from
being more successful simply due to larger emission reductions,
though we understood that this would not necessarily be the
approach a state would take in developing this type of strategy. It
should be noted, however, that while the tons reduced were
similar between the two strategies, there were differences in the
sources controlled or the control measures selected. In many
cases, the differences resulted in a greater reduction of pollutants
closer to heavily populated areas. Table 2 shows the differences in
emissions reductions between the two control strategies. While we
did consider control costs by aiming to find cost–effective
reductions (i.e. $ per μg/m3 and ppb reduced) amongst our control
measure options, we did not use the simple “least cost”
methodology of total cost per tons of emissions reduced to decide
whether a control measure should be included or not. The controls
selected for the “Multi–pollutant, Risk–based” control strategy are
listed in Table 1.

2.5. Exposure/risks/benefits analyses

Data from the air quality modeling was used as input into the
environmental Benefits Mapping and Analysis Program (BenMAP)
and the Human Exposure Model–3 (HEM–3) to assess how the
control strategies affect human health. For BenMAP, O3 and PM2.5
concentrations were input from CMAQ for the Midwest domain to
capture regional changes, while local effects were captured
through the PM2.5 concentrations from the MHA. For HEM–3,
toxics concentrations were input from the MHA for the Detroit
urban area for the AERMOD domain shown in Figure 2.

BenMAP. BenMAP is a desktop PC and geographic information
system–based computer program that estimates the health
impacts and monetized benefits of population–level changes in air
pollution (Abt, 2008). BenMAP applies health–impact functions,
which is a well established approach for relating ambient changes
in air pollution to changes in the incidence of adverse health
impacts (Davidson et al., 2007).

To calculate the economic value of avoided (or incurred) cases
of air pollution health impacts, BenMAP multiplies the change in
incidence against a per–unit economic value for that endpoint.
Using Monte Carlo methods, BenMAP calculates a point estimate
for each health impact and monetized benefit estimate as well as a
confidence interval around that estimate (Abt, 2008).

In this analysis we employed BenMAP to assess the PM2.5 and
O3–related health impacts and monetized benefits of the “Status
Quo” and the “Multi–pollutant, Risk–based” control strategies. O3
and PM2.5 concentrations were input from CMAQ for the Midwest
domain to capture regional changes, while local effects were
captured using the fine–scale 1km2 PM2.5 concentrations from the
MHA.

The use of finely resolved air quality inputs in a health impact
assessment requires that special care be taken when specifying the
other portions of the analysis, including the population estimates,
effect coefficients, and baseline incidence rates. In general, as the
spatial scale decreases, national or “generic” data may become less
representative (Hubbell et al., 2009). In particular, national or
regionalized effect coefficients and baseline incidence rates are
less likely to characterize well the risks of air pollution exposure
changes or the baseline incidence rate for key health endpoints
including mortality, rates of chronic disease such as bronchitis and

rates for acute events such as hospital and emergency department
admissions. For this analysis we collaborated with the Michigan
Department of Environmental Quality to procure ZIP–code level
hospitalization rates for key health endpoints including hospital
admissions for asthma (ICD–9 493), chronic heart disease (ICD–9
410), chronic bronchitis (ICD–9 491), acute bronchitis and
bronchiolitis (ICD–9 466), pneumonia (ICD–9 480–486) and chronic
obstructive pulmonary disorder (ICD–9 466, 491, 492, 494, 496).

When estimating health impacts for Detroit, we elected to
apply “EPA default” (U.S. EPA, 2010a) PM2.5 and O3 risk estimates
because of the relative paucity of Detroit–specific epidemiological
studies suitable for health impact analyses. With the exception of
the Ito (2003) study, which estimates the change in PM2.5–related
chronic lung disease hospitalizations in Detroit, we applied effect
coefficients drawn from studies that assess air pollution impacts in
other portions of the country. We also applied “EPA default”
economic valuation functions (U.S. EPA, 2010a).

HEM–3. The Human Exposure Model–3 (HEM–3), Version 1.2.0
(U.S. EPA, 2010b) was used to determine the effect of the two
control strategies on human exposures and health risks. Annual
average concentrations for the toxic pollutants were calculated
using the MHA and input into HEM. Using the Voronoi Neighbor
Averaging (VNA) interpolation technique (Abt, 2003), pollutant
concentrations were interpolated from the receptor locations to
the Census block centroids in the Detroit urban area. Using this
data, HEM–3 estimated cancer risks and non–cancer adverse
health effects due to inhalation exposure at each block. Cancer
risks were computed using EPA’s recommended unit risk estimates
for toxic air pollutants (U.S. EPA, 2007). The resulting estimates
reflect the risk of developing cancer for an individual breathing the
ambient air at a given receptor site 24–hours per day over a 70–
year lifetime. While this assumption is not quite realistic, it is
consistent with EPA’s approach to estimating “Maximum Individual
Risk,” a metric used to inform regulatory decisions.

Non–cancer health effects were quantified using hazard
quotients and hazard indices for various target organs. The “hazard
quotient” for a given pollutant and receptor site was calculated as
the ratio of the ambient concentration of the chemical to the level
at which no adverse effects are expected, and the “hazard index”
for a given organ was computed as the sum of the hazard quo
tients for substances that affect that organ. HEM–3 identified
receptor locations at which the predicted cancer risk and hazard
indices were the highest, and the contributions of the different
pollutants to the overall cancer risks and hazard indices. The model
also estimated the numbers of people exposed to various cancer
risk levels and hazard index levels.

3. Results

Using the currently available tools, methods and data
described above, we applied the framework shown in Figure 1 to
better understand the impact of the emissions reductions in the
two control strategies on air quality and human exposure. To do
this, we compared and contrasted the results of the two strategies
using a set of five evaluation criteria: (1) What is the air quality at
the monitors, especially those exceeding the standard? (2) What is
the change in air quality across the urban core and regionally? (3)
What are the population weighted and monetized air quality
changes for PM2.5 and O3? (4) What is the effect on total cancer
and non–cancer risk? (5) How do the net benefits and cost
effectiveness for the overall strategy compare? Below we discuss
the results of these five criteria.
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Table 2. Comparison of annual emissions reductions between the “Status Quo” and “Multi pollutant, Risk based” control strategies

Pollutant 2020 Base
(tons)

“Status Quo” “Multi Pollutant, Risk
Based”

Total tons
Difference

Tons
Reduced

% Change
from Base

Tons
Reduced

% Change
from Base

PM2.5 31 485 1 747 6% 3 183 10% + 1 436
SO2 187 525 10 297 5% 2 429 1% 7 868
VOC 104 872 5 814 6% 8 623 8% + 2 808
NOX 118 432 31 0.03% 2 016 2% + 1 985
CO 424 426 1 546 0.4% 64 187 15% + 62 641
Acetaldehyde 18.35 38.72 + 20.38
Benzene 130.25 138.73 + 8.84
1,3 Butadiene 41.52 13.19 28.33
1,4 Dichlorobenzene 15.28 15.28 No Change
Formaldehyde 19.16 44.50 + 25.34
Methylene Chloride 1.63 0 1.63
Naphthalene 16.74 4.24 12.50
Manganese 0.86 8.50 + 7.64
Cadmium 9x10 4 2x10 4 7x10 4

Nickel 0.19 0.05 0.14
Diesel PM 0 30.70 + 30.70

3.1. Predicted air quality at the monitors

Using EPA’s Model Attainment Test Software (MATS) (Abt,
2009), the modelled data for January, April, July and October, 2002
and each of the future year scenarios (i.e. 2020, 2020 with the
“Status Quo” control strategy, and 2020 with the “Multi–pollutant,
Risk–based” control strategy) were used to compute O3 and PM2.5
design values (DVs). DV calculation for both O3 and PM2.5 used
ambient monitoring data from 2000–2004. For PM2.5, an annual
average DV5) was calculated using the four months of modelled
data. For O3, the July data were used to compute an 8–hour
maximum DV from the 4th high monitored 8–hour ozone values
and the maximum modelled baseline 8–hour ozone concentrations
with a minimum allowable threshold of 60 ppb.

We then compared the DVs from both of the control
strategies to understand how the control measures selected in
each affected the predicted air quality at the monitors. For PM2.5,
the “Multi–pollutant, Risk–based” control strategy showed much
higher decreases in the PM2.5 annual average DVs, especially at the
monitors predicted to be above 15 g/m3. For example, the
Dearborn monitor (ID #261630033) had a predicted annual average
DV of 18.6 g/m3 for 2020. While the “Status Quo” control strategy
brought this value down to 15.6 g/m3, the predicted DV with the
“Multi–pollutant, Risk–based” control strategy in place was
13.3 g/m3. Similar results were shown for the N. Delray (ID
#261630015) and Wyandotte (ID #261630036) monitors where the
values of 2020 base versus “Status Quo” control strategy versus
“multi–pollutant, risk–based” control strategy at the two monitors
were 16.4 g/m3 vs. 13.6 g/m3 vs. 11.8 g/m3 and 15.4 g/m3 vs.
12.9 g/m3 vs. 12.3 g/m3, respectively.

For O3, all monitors within the Detroit area were predicted to
have a 2020 O3 8–hr maximum DV below 80 ppb. With application
of the “Multi–pollutant, Risk–based” control strategy, many of
these monitor DVs decreased by 1–3 ppb, which was equal to or
more than the predicted reductions resulting with the application
of the “Status Quo” control strategy. The Macomb monitor (ID
#260991003) was one of the most impacted by the control strat
egies with a predicted ozone 8–hr maximum DV of 78.7 ppb for
2020, 78.6 ppb with the “Status Quo” control strategy, and 78.4
ppb with the “Multi–pollutant, Risk–based” control strategy.

5) Because of the lack of a full year of air quality modeling data for each
future year scenario, we do not calculate the daily PM2.5 DV for this analysis.

3.2. Air quality locally and regionally

Analyzing the air quality locally in the Detroit urban area and
regionally in the area outside the urban core, we found that the
“Multi–pollutant, Risk–based” control strategy almost always
produced greater reductions in PM2.5 and ozone concentrations.
For air toxics, we examined the air quality changes in the urban
core of Detroit as defined by the AERMOD domain shown in Figure
2. We found that for most of the air toxics, the control measures in
the “Multi–pollutant, Risk–based” control strategy almost always
resulted in greater reductions than those from the “Status Quo”
control strategy. We further examined the effect of these reduc
tions with respect to population exposure in the following two
criteria.

3.3. PM and O3 benefits

We estimated PM2.5 and O3–related health impacts and mone
tized benefits with BenMAP using the approach described above,
quantifying both a point estimate as well as 95% confidence
intervals. Both control strategies yield substantial health benefits
in the form of hundreds of avoided premature mortalities, dozens
of avoided chronic illnesses including acute myocardial infarctions
and chronic bronchitis, and dozens of avoided acute effects
including asthma exacerbations, respiratory and cardiovascular
hospitalizations and emergency department visits (Table 3).
Consistent with previous EPA analyses assessing PM2.5 and O3–
related impacts, premature mortality represents the largest single
monetized benefits category. This fact is due to the size of the
economic valuation estimate used to value this endpoint ($5.5M in
2000$)6).

As shown in Table 4, the total monetized benefits were
approximately $1.1 B for the “Status Quo” control strategy versus
$2.4 B (2006$, 3% discount rate) for the “Multi–pollutant, Risk–
based” control strategy, relative to the 2020 baseline. For PM2.5,
we estimated both the local and regional benefits7). The local

6) Readers interested in additional details regarding the valuation estimates
used to monetize each health endpoint may refer to the 2010 Transport
Rule RIA (U.S. EPA, 2010a).
7) We define “local” as the Detroit urban area modelled with MHA and
shown in Figure 2, and we define “regional” as the area within the Midwest
CMAQ Domain but not included in the “local” area.
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benefits were $610 million and the regional benefits were $520
million for the “Status Quo” control strategy while the local and
regional benefits were $1,600 million and $810 million, respec
tively for the “multi–pollutant, risk–based” control strategy. For O3,
we analyzed the benefits for the entire Midwest CMAQ domain,
which were $0.9 million for the “Status Quo” control strategy and
$2.1 million for the “Multi–pollutant, Risk–based” control
strategy8).

Table 3. PM2.5 and Ozone–related health impacts avoided in 2020 (95%
confidence intervals)

Health Effect Status quo a Multi pollutant, risk
based a

PM Related endpoints
Premature Mortality

Pope et al. (2002) (age >30) 59
(23 95)

130
(49 200)

Laden et al. (2006) (age >25) 150
(82 220)

320
(180 470)

Infant (< 1 year) 0.2
( 0.2 0.7)

0.6
( 0.5 1.7)

Chronic Bronchitis 39
(7.2 71)

82
(15 150)

Non fatal heart attacks
(age > 18)

91
(34 150)

220
(79 350)

Hospital admissions respiratory
(all ages)

16
(7.7 23)

32
(16 48)

Hospital admissions cardiovascular
(age > 18)

31
(21 36)

65
(46 75)

Emergency room visits for asthma
(age < 18)

72
(43 100)

160
(96 230)

Acute bronchitis
(age 8 12)

47
( 1.6 95)

210
( 7 420)

Lower respiratory symptoms
(age 7 14)

1,100
(530 1 700)

2 500
(1 200 3 700)

Upper respiratory symptoms
(asthmatics age 9 18)

830
(260 1 400)

1,900
(590 3 200)

Asthma exacerbation
(asthmatics 6 18)

1 000
(110 2 800)

2,300
(250 6 300)

Lost work days
(ages 18 65)

7 200
(6 300 8 100)

16 000
(14 000 18 000)

Minor restricted activity days
(ages 18 65)

43 000
(36 000 50 000)

93 000
(79 000 110 000)

Ozone related endpoints
Premature mortality

Bell et al. (2004) (all ages) 0.09
(0.04 0.015)

0.24
(0.11 0.38)

Levy et al. (2005) (all ages) 0.45
(0.33 0.57)

1.1
(0.8 1.4)

Hospital admissions respiratory causes
(ages > 65)

0.55
(0.08 1.1)

0.6
(0.08 1.1)

Hospital admissions respiratory causes
(ages <2)

0.7
(0.36 1)

1.5
(0.8 2.2)

Emergency room visits for asthma (all
ages)

0.57
(0 1.6)

1.6
( 0.8 4)

Minor restricted activity days (ages
18 65)

800
(410 1 200)

1 700
(870 2 600)

School absence days 290
(110 470)

620
(240 1 000)

a Estimates rounded to two significant figures; column values will not sum to total value.

3.4. Cancer and non–cancer risk

For the year 2020, cancer risks and non–cancer hazard indices
were estimated using HEM–3 for the baseline case and for the two
control strategies. Cancer risks and non–cancer hazard indices
were estimated for 1,3–butadiene, acetaldehyde, benzene,
cadmium compounds, formaldehyde9), methylene chloride, naph
thalene, nickel compounds, and 1,4–dichlorobenzene. Because EPA

8) This analysis omits other important health, welfare and ecological
categories including SO2 and NO2 related health impacts, recreational
visibility and changes in terrestrial and aquatic acidification among others.
We exclude other categories due to our inability to quantify impacts and
monetize benefits. Were they included, these categories might affect the
distribution of benefits among the two strategies.
9) The formaldehyde cancer unit estimate of 5.5x10 9 per g/m3 was used,
which was based on a Chemical Industry Institute of Toxicology analysis.
This value is substantially lower than the current IRIS value of 1.3x10 5 per
g/m3. A new EPA IRIS assessment is underway.

has no cancer unit risk estimates for diesel engine emissions and
manganese compounds, only non–cancer hazard indices were
estimated for these pollutants.

For both control strategies, the largest contributor to
maximum individual cancer risk was cadmium compounds, and the
largest contributor to cancer incidence was benzene. There were
no significant differences in maximum individual cancer risk or
cancer incidence between the two control strategies. The highest
non–cancer hazard index (neurological) was driven by manganese,
and was 3 for the “Status Quo” control strategy and 2 for the
“Multi–pollutant, Risk–based” control strategy. Under the “Multi–
pollutant, Risk–based” control strategy, there were about 70
percent fewer people above a hazard index of one.

These results suggest that, to have a more significant impact
on cancer risk, it would be important to prioritize emissions
controls based on HAP risk. For example, in this study we focused
mostly on reducing total VOC emissions in order to achieve O3
concentration reductions. Though we did choose these VOC
emissions reductions to be from population–oriented sources, we
might have achieved greater cancer risk reductions if we had also
considered how to include emissions reductions of the HAPs
contributing the most to the risk and incidence, such as cadmium
and benzene. Of course, since our goal was also to reduce O3, we
would have needed to consider trade–offs between possible
emissions reduction scenarios to achieve both the cancer risk
reduction and the ozone reductions. This type of scenario
demonstrates well the type of considerations that would be part of
a policy–maker’s job in implementing a multi–pollutant, risk–based
approach to air quality management.

3.5. Net benefits and cost effectiveness

While both strategies produce significant benefits, the “Multi–
pollutant, Risk–based” control strategy generated substantially
larger per–person reductions in PM2.5 and O3 and monetized health
benefits. Table 5 summarizes the total monetized benefits for each
strategy. The “Multi–pollutant, Risk–based” control strategy pro
duced over 2x the monetized benefits as the “Status Quo” control
strategy–approximately $2.4 B versus $1.1 B (2006$, 3% discount
rate), respectively.

The cost of the “Multi–pollutant, Risk–based” control strategy
was slightly larger than the “Status Quo” control strategy–about
$56 million versus $66 million (2006$), respectively. However, the
cost:benefit ratio for the “Multi–pollutant, Risk–based” strategy
was significantly more favourable: 36:1 versus 20:1. Moreover, the
cost efficiency, in $ per g/m3 and ppb reduced, was substantially
lower for the “Multi–pollutant, Risk–based” control strategy.

3.6. Limitations and uncertainties

As with any complex analysis, the estimates presented here
are subject to a number of important limitations and uncertainties.
For example, this analysis is based on air quality modelling which
relies on inputs of meteorological data, spatial and temporal
allocations of total emissions, and speciated control efficiencies for
each control measure. There are uncertainties inherent in the
formulation of the air quality models, as well as the data input to
the models. The predicted air quality concentrations are also used
in this study to estimate population exposure, relying on health
impact assessments and estimates of incidence rates, both of
which hold their own uncertainty, as discussed in previous
sections.
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Table 4.Monetary value of avoided PM2.5 and ozone–related health impacts in 2020 (2006$, 3% discount rate)a

Health Effect Pollutant Status quo Multi pollutant, risk based
Premature Mortality
(Pope et al. 2002 PM mortality and Bell et al. 2004 ozone mortality
estimates)

PM2.5 and O3 $420
($58 $950)

$880
($120 $2,000)

Premature Mortality (Laden et al. 2006 PM mortality and Levy et
al. 2005 ozone mortality estimates)

PM2.5 and O3 $1 100
($170 $2 300)

$2,300
($360 $4 800)

Chronic Bronchitis PM2.5 $19
($1 $88)

$40
($2 $190)

Non fatal heart attacks PM2.5 $11
($2 $28)

$23
($4 $58)

Hospital admissions respiratory PM2.5 and O3 $0.2
($0.1 $0.3)

$0.45
($0.22 $0.67)

Hospital admissions cardiovascular PM2.5 $1
($0.5 $1.2)

$2
($1 $2.5)

Emergency room visits for asthma PM2.5 and O3 $0.03
($0.01 $0.04)

$0.06
($0.03 $0.1)

Acute bronchitis PM2.5 $0.01
($ 0.001 $0.02)

$0.00
($ 0.001 $0.05)

Lower respiratory symptoms PM2.5 $0.02
($0.01 $0.04)

$0.05
($0.02 $0.1)

Upper respiratory symptoms PM2.5 $0.02
($0.01 $0.06)

$0.05
($0.01 $0.13)

Asthma exacerbation PM2.5 $0.05
($0.004 $0.2)

$0.12
($0.009 $0.5)

Lost work days PM2.5 $1.1
($0.98 $1.3)

$1.1
($0.98 $1.3)

Minor restricted activity days PM2.5 and O3 $2.5
($1.3 $3.8)

$5.5
($2.2 $2.9)

a Estimates rounded to two significant figures.

While the uncertainties above are important, they do not
diminish our confidence in our principal finding: that a multi–
pollutant, risk–based approach to air quality management is supe
rior to the “status quo” approach. This study illuminates the impor
tance of linking together air quality information and its estimated
impact on health, as shown in Figure 1, to allow for better
informed control strategy development and to encourage
increased emphasis on multi–pollutant, risk–based emissions
reductions.

Table 5. Comparison of annual costs and benefits for the “Status Quo” and
“Multi–pollutant, Risk based” control strategies

“Status
Quo”

“Multi pollutant,
Risk Based”

Total Benefits (M 2006$) $1 127 $2 385

Change in population
weighted PM2.5 Exposure
(μg/m3)

Regional 0.16 0.1666
Local 0.2703 0.7211

Change in population
weighted O3 Exposure (ppb)

Regional 0.0005 0.0006
Local 0.0318 0.0583

Total Costs (M 2006$) $56 $66
Cost per μg/m3 PM2.5 reduced $0.50 $0.32
Cost per ppb O3 reduced $2.6 $0.58
Net Benefits (M 2006$) $1 071 $2 319
Benefit Cost Ratio 20.1 36.1

4. Summary

Based on our evaluation, we were able to achieve our stated
goals: (1) to define and demonstrate the use of a technical frame
work in which to implement and evaluate a multi–pollutant, risk–
based approach to air quality management; and (2) to compare
and contrast the results of applying a SIP–based, “status quo”
approach to emissions reductions to a “multi–pollutant, risk–
based” approach. Compared to the “Status Quo” control strategy,
we found that the “Multi–pollutant, Risk–based” control strategy:
(1) achieved the same or greater reductions of PM2.5 and O3 at
monitors; (2) showed improved air quality regionally and across

the Detroit urban core for multiple pollutants; (3) produced
approximately two times greater monetized benefits for PM2.5 and
O3; (4) reduced non–cancer risk; and (5) resulted in greater net
benefits and was more cost effective. While this case study is only
one example of such an approach and issues may vary from area–
to–area, we believe that this study allowed a better understanding
of the technical tool, methods and data that could be used and the
iterative process that will be needed between the policy
considerations and the technical analysis for implementing a
multi–pollutant, risk–based approach to air quality management.
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