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Abstract 

This work deals with obtaining models for predicting the cetane number and ignition delay using artificial neural 
networks. Models for the estimation of the cetane number of biodiesel from their methyl ester composition and 
ignition delay of palm oil and rapeseed biodiesel using artificial neural networks were obtained. For the prediction of 
the cetane number model, 38 biodiesel fuels and 10 pure fatty acid methyl esters from the available literature were 
given as inputs. The best neural network for predicting the cetane number was a conjugate gradient descend (11:4:1) 
showing 96.3 % of correlation for the validation data and a mean absolute error of 1.6. The proposed network is 
useful for prediction of the cetane number of biodiesel in a wide range of composition but keeping the percent of total 
unsaturations lower than 80 %. The model for prediction of the ignition delay was developed from 5 inputs: cetane 
number, engine speed, equivalence ratio, mean pressure and temperature. The results showed that the neural network 
corresponding to a topology (5:2:1) with a back propagation algorithm gave the best prediction of the ignition delay. 
The correlation coefficient and the mean absolute error were 97.2% and 0.03 respectively. The models developed to 
predict cetane number and ignition delay using artificial neural networks showed higher accuracy than 95 %. Hence, 
the ANN models developed can be used for the prediction of cetane number and ignition delay of biodiesel.  
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Nomenclature 
ANN     Artificial neural network                  BP         back propagation 
CN cetane number     CGD conjugate gradient descend  
ID  ignition delay      LM  Levenberg-Marquardt  
FAME Fatty Acid Methyl Esters     QP  quick propagation  
n engine speed [rpm]     QN  quasi-Newton  
φ  equivalence  ratio      DBD  Delta-bar-Delta  
Pm mean pressure     T temperature in Kelvin 
R correlation coefficient 

 

1. Introduction 

Energy is the most fundamental requirement for human existence and activities. As an effective fuel, 
petroleum has been serving the world to meet the needs for energy production and consumption [1]. But 
the fast industrialization of the world has led to an increase in the demand for petroleum-based fuels 
obtained from limited sources. To reduce the dependence on fossil fuel, researches on alternative fuels are 
being extensively carried out, especially on biofuels [2]. Biodiesel is one of the potential alternative fuels 
and has been widely used in many countries [3]. Biodiesel exhibits several advantages when it is 
compared to the existing petroleum fuels. It has physical properties near to the standard diesel and it is 
easily produced and is renewable. Biodiesel fuels are generally classified as fatty acid methyl esters 
(FAME), which are derived from the alkali-catalyzed trans-esterification of fats and oils with methanol, 
although other alcohols can be used [4]. 

Several physical properties of biodiesel fuels depend on their fatty acid ester composition [1-3]. Also 
related to the ester composition is the cetane number which is one of the most cited indicators of diesel 
fuel quality [3-5]. The CN of FAME fuels clearly vary with the degree of unsaturation. The literature also 
reports that increasing degree of unsaturation leads to decreasing CN [2], [6-9]. It is generally dependent 
on the composition of the fuel and can influence the engine stability, noise level, and exhaust emissions. 
While the ignition delay can be influenced by engine type and operation conditions, the cetane number 
mainly depends on the chemical composition of the fuel. 

 
Some researchers have obtained models to predict the cetane number of diesel fuel or biodiesel, 

correlating this parameter with different input factors or using different mathematical methods. 
Cheenkachorn [3] developed statistical models and artificial neural networks for prediction of biodiesel 
properties from the fatty acid composition. Dongmei [10] developed a simple model for predicting CN of 
biodiesel from its FAME composition while Yang [11] developed multiple linear correlation equations 
for predicting the cetane number for 12 hydrocarbons in order to compare with a model developed using 
Artificial Neural Networks (ANNs). Others equations for cetane number estimation have been proposed. 
e.g. Bamgboye [12], Ramirez-Verduzco [8] and Saxena [13].  
 

The cetane number of a fuel is related to the ignition delay time. The shorter the ignition delay time, the 
higher is the cetane number, and vice versa [2]. The ignition delay in direct injection diesel engines is of 
great interest due to its direct impact on the heat release, as well as its indirect effect on engine noise and 
pollutant formation. The ignition delay period is composed of a physical delay, encompassing 
atomization, vaporization, and mixing, coupled with a chemical delay, a result of pre-combustion 
reactions in the fuel/air mixture. The two time scales are occurring simultaneously [5]. 
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Assanis [14], in a work developed for the ignition delay estimation, analyzed several papers that cover 
constant volume bombs, steady flow reactors, rapid compression machines and combustion engines. 
Several of those correlations use an Arrhenius type equation. Also Kadota et al. [14] performed a 
fundamental study of fuel droplet autoignition in an elevated pressure/temperature environment and 
showed that the ignition delay of hydrocarbon droplets can depend on the available oxygen content. 
Weisser et al. [14] took into account low, intermediate, and high temperature chemical processes for 
developing their ignition delay correlations.   

Determination of the CN by an experimental procedure at present is an expensive and time consuming 
process. Therefore, the obtaining of accurate models to predict the cetane number of biodiesel from its 
Fatty Acid Methyl Ester composition in a wide range of feedstocks characteristics would be useful for the 
scientific community. On the other hand, the estimation of the ignition delay based on the use of ANNs 
can allow to decrease the absolute error brought by other correlations and increase the range of biodiesel 
fuels to be applied. Nevertheless, the ignition delay is a dynamic process mainly influenced by dynamic 
variables; therefore, the estimation of it using ANNs is an approach to be carefully studied and assessed 
before its implementation. 

 
The scope of the investigation is to obtain models for the estimation of the cetane number and ignition 

delay of biodiesel using ANNs, seeking for the best suitable model to predict both in the range of biofuels 
studied. 
 

2. Experimental set-up and procedures 

In the present work 48 different biodiesel fuels (including 10 pure fatty acids) and their cetane numbers 
were taken from references as input and output data for the implementation of ANNs for predicting the 
cetane number. The main FAME composition presented in biodiesel obtained from different feedstocks is 
covered by ten input FAMEs selected [15],[16], [10, 17-22]. The input data covers FAME composition 
and the output covers the cetane number. The validation of the models obtained was done using a separate 
data set selected from literature reports, which was not used for developing the models. The data selected 
for validation covers 15 samples.  

 
For the cetane number estimation, different networks were developed using five basic topologies, 

between (11:3:1) and (11:7:1). The ANNs used were the multilayer Perceptrons, with one hidden layer 
and five or seven units. The inputs of the network were ten, representing the chemical composition of 10 
FAMEs and one input representing the total amount of the other FAMEs found in the biodiesel sample. 
60 different ANNs were tested for the prediction of the CN. The experimental data used in the ANNs 
training step for cetane number estimation is shown in [23].The CN was the unique variable output of the 
network.  

 
For the ignition delay, ANNs for palm oil and rapeseed oil biodiesel were also developed. The input 

variables were n, φ, Pm, T and CN; the output covers the ID. The input values are corresponding to 
engine tests in a direct injection diesel engine, except for the CN that was calculated through the best 
network for the CN (conjugate gradient descend, 11:4:1) and according to the composition of both 
biofuels. The engine tests were performed with two biodiesels (palm and rapeseed). The engine used was 
a four stroke diesel engine, type Volvo TD60B turbocharged with six vertical cylinders in an in-line 
arrangement and water cooled. Table 1 shows the main engine specifications and the valve timing and 
injection timing [5]. 



880   Y. Sánchez-Borroto et al.  /  Energy Procedia   57  ( 2014 )  877 – 885 

 
Table 1. Engine specifications 
 

Feature Values 
Connecting rod length 0.23m 
Bore 0098m 
Stroke 0.12m 
Compression ratio 16 
Swept volume per cylinder 913.12cm3 

Total swept volume 5479 cm3 
Inlet valve opens 18 18° before TDC 
Inlet valve closes 234° after TDC 
Exhaust valve opens 120° after TDC 
Exhaust valve closes 16° after TDC 
Injection starts 22° before TDC 

 
 

The experiments were performed at different torque (Me). The selected values were 138, 277 and 415 
Nm, respectively, covering in this order low, medium and high engine loads. The engine speed was varied 
between 1500 and 2300 r/min [5]. 

 
For the determination of the start of combustion, the first derivative of in-cylinder pressure vs. crank 

angles degrees (φ) was used. The start of combustion was defined at the moment where the rate of 
pressure rise (dp/dφ) drastically changes. With the start of injection (22°ca before top dead center) and the 
start of combustion, the ignition delay is obtained for the different working conditions (load and engine 
speed). The temperature was calculated starting from experimental data of in-cylinder pressure and φ. The 
temperature was calculated according to a procedure previously developed [5, 24]. The basic neural 
network topology implemented for the ID model was (5:2:1). Also the typical multilayer Perceptrons 
were used.  12 ANNs were used for the prediction of ignition delay.  

 
In the training step, two phases were established for both modelling processes (cetane number and 

ignition delay estimation), keeping constant the phase 1 (back propagation) for all the ANNs evaluated. 
The second phase was varied among different possibilities: back propagation, conjugate gradient descend 
(CGD), Levenberg-Marquardt (LM), quick propagation (QP), quasi-Newton (QN) and Delta-bar-Delta 
(DBD). The training was developed for 10000 epochs with a learning rate of 0.01. Linear and logistic 
functions in the range of 0.9 were used as the output functions among different networks. The approach to 
select the best network was based on the selection of the highest correlation coefficient and lowest 
absolute errors.  
 

3. Results and Discussion 

The search for the best network for predicting the CN and the ID was based on the lower absolute error 
as the objective function in the process, but combining it with adequate values of the correlation 
coefficient found. The results found for these two objective functions covering the whole group of ANNs 
in order to find the better CN and ID prediction are shown in Table 2, Table 3 and Table 4.  

 
 

 
 
 
 



 Y. Sánchez-Borroto et al.  /  Energy Procedia   57  ( 2014 )  877 – 885 881

Table 2. Absolute errors and correlation coefficients (%) for the CN using a linear output function 
 

ANNs BP CGD DBD LM QN QP 
11:3:1 2.7 (94.7) 2.4 (93.5) 2.4 (94.9) 1.9 (94.6) 1.9 (95.1) 2.1 (95.9) 
11:4:1 2.9 (93.4) 1.6 (96.3) 2.3 (94.3) 2.4 (93.0) 1.6 (95.7) 2.4 (94.6) 
11:5:1 2.3 (93.9) 2.6 (94.9) 2.0 (95.3) 2.3 (95.2) 2.1 (95.9) 2.1 (95.0) 
11:6:1 2.3 (93.9) 2.5 (94.3) 2.0 (93.5) 1.9 (95.0) 2.4 (92.4) 1.9 (95.7) 
11:7:1 2.7 (94.0) 2.3 (94.9) 2.6 (92.6) 2.0 (95.8) 1.8 (95.4) 2.1 (94.3) 

 
The results shown in Table 2 represent the absolute error and correlation coefficient for all the ANNs 

tested corresponding to the cetane number estimation, changing the phase two among six algorithms, 
varying the number of nodes between 3 and 7, using the linear output function. Table 3 shows the results 
for the same method and training algorithm but corresponding to a logistic output function. 
 

Table 3. Absolute errors and correlation coefficients (%) for the CN using a logistic output function 
 

ANNs BP CGD DBD LM QN QP 
11:3:1 2.2 (94.0) 2.1 (94.4) 2.6 (93.5) 2.2 (95.4) 2.4 (94.2) 2.3 (94.8) 
11:4:1 2.8 (93.0) 2.6 (93.1) 2.4 (92.9) 2.3 (94.8) 2.5 (94.1) 2.6 (94.2) 
11:5:1 2.2 (93.3) 2.5 (94.8) 2.0 (92.9) 2.4 (93.8) 2.2 (95.7) 2.1 (96.1) 
11:6:1 2.1 (92.4) 2.3 (94.2) 2.1 (93.3) 2.7 (94.0) 2.0 (94.3) 2.4 (92.6) 
11:7:1 1.9 (94.8) 2.3 (93.5) 2.2 (91.1) 2.5 (91.0) 2.5 (93.1) 2.3 (91.0) 

 
Table 4. Absolute errors and correlation coefficients (%) for ignition delay 

 
ANNs Function BP CGD DBD LM QN QP 
5:2:1 Linear 0.04 

(93.7) 
0.04 

(95.1) 
0.04 

(96.2) 
0.05 

(94.7) 
0.05 

(94.0) 
0.04 

(95.6) 
5:2:1 Logistic 0.03 

(97.2) 
0.03 

(96.8) 
0.06 

(93.4) 
0.05 

(94.3) 
0.04 

(96.4) 
0.05 

(94.0) 
 

All the tables have shown the absolute errors and the correlation coefficients (in parenthesis). 
Concerning the cetane number, the critical point is that in several networks it is not possible to obtain 
absolute errors below 2, as is observed in Table 1. Only eight ANNs are below this value. However, for 
the ignition delay estimation the networks developed showed very low absolute errors joint to adequate 
correlation coefficients. 
 
 
3.1 Models validation 
 

The models validation was only developed for the cetane number. For the ignition delay estimation, the 
validation was not developed due to the low amount of experimental data collected; therefore, the use of a 
validation data set was in this case not possible. The authors of this work are considering the result of the 
estimation of ignition delay based on ANNs as preliminary results. 

 
Two ANNs were selected for the validation step for the cetane number estimation, according to the 

lowest absolute errors combined with two of the highest correlation coefficients found. As can be 
observed in Table 2, the lowest absolute error values were obtained for CGD and QN algorithms (for the 
CN estimation). Therefore, for the validation step both networks were selected.   

 
For the validation of the selected models, a data set not related to the modelling data was used [23]. The 

validation data covers 15 samples from other references. The collected data includes the experimental 
evaluation of FAME composition and the cetane number, covering a wide range of possible cetane 
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number values (between 41 and 69) and taken from experiments using engine tests or an ignition quality 
tester.  

 
The prediction capability of the selected models for this external data were based on the comparison 

between the predicted cetane number (using ANNs) and the experimental value (actual value) trying to 
find less residuals for the whole data tested. A compendium of the main statistical results of the validation 
process corresponding to the selected models is shown in Table 5. The analysis of the networks showed 
that the prediction capability of the network using the CGD is better than using the QN algorithm. As is 
shown in Fig. 1, in many evaluated points, the prediction is better using the ANN (11:4:1) with a CGD 
algorithm than using the QN algorithm. This selection is also based on the sum of squares corresponding 
to the residual values on the cetane number estimation. The lowest sum of squares was also obtained for 
the CGD. 
 

Table 5.  Statistical results in the validation process 
 

ANN Function Absolute Error R for the validation data Sum of squares 
CGD (11:4:1) Linear 

Linear 
1.6 96.3 % 150.3 

QN (11:4:1) 1.6 95.7 % 196.0 
 

According to the analysis exposed above, the best network is implemented using the topology (11:4:1) 
of 11 inputs, 1 output variable and four nodes. The response surface obtained for this CGD (11:4:1) 
network for the prediction of the CN as a function of Myristic and Lauric ethyl esters percents is shown in 
Fig.2. In the right side the plot of the Palmitoleic percent versus the CN values is shown. It was the only 
two-dimensional relationship obtained with changes in the CN influence depending of the factors 
magnitude (Palmitoleic percent). 
 

 
              Fig. 1.  Comparison between two ANNs for prediction of the CN 
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Fig. 2.  Response surface and Palmitoleic percent influence in the CN estimation using a CGD (11:4:1) 

 
 

Lack of accuracy was observed in certain cases of the validation step, when the total percent of 
unsaturations in the FAME composition of the biodiesel reach certain levels. As is observed in Fig.3, for 
higher values than 80 % in the total unsaturations, in some cases the uncertainty percent is increased, 
reaching values higher than 5 %. 

 
According to Fig.3, even when some values are well predicted by one or both ANNs, the general 

behaviour is of low accuracies when the unsaturation percent is higher than 80 %, therefore the selected 
best model can fail in this critical range of total unsaturations. Under this range, the ANN (11:4:1) with 
CGD algorithm predicts the cetane number with equal or higher accuracy than 95 %. The model is not 
recommended for predicting cetane number of pure FAMEs different from the selected ones for this 
work. 
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Fig. 3.  Uncertainties percent vs. unsaturation percent for the selected ANNs 

 
Yang [11] used a backpropagation neural network model with a training step and a validation step. 

Ramadhas [4] used an ANN to predict cetane number selecting four types of networks. Basu [25] also 
used backpropagation, Levenberg, quick propagation and delta-bar-delta as training algorithms in three 
layer (8:3:1) neural networks. For diesel fuels, he found correlation values for the network in the training 
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step (R = 0.9539). Yang [11] obtained R = 0.8602 for the training step in a three layer backpropagation 
network with 2.1 for the mean absolute error but his network is only applied to diesel fuels.  

 
Ramadhas [4] used four types of ANNs, not reporting the absolute error of the networks. The author 

used 5 inputs corresponding to 5 FAME while in this work it is extended to 11 inputs. Ramadhas used a 
data set that covers biofuels with cetane number between 22.7-75.6, similar to the range applied in the 
present work. Therefore the prediction capability of their ANNs can only be restricted to the composition 
of 5 FAMEs that is quite limited due to the amount of feedstocks, different in chemical composition that 
can be found in these biofuels. 

Conclusions 

Two models have been proposed to predict the cetane number and ignition delay using artificial neural 
networks respectively. The ANNs used were the multilayer Perceptrons for both model. An artificial 
neural network model was developed to predict cetane number of biodiesel from their fatty acid 
composition. The best neural network for predicting the cetane number was a backpropagation network 
(11:4:1) using a Conjugate Gradient Descend algorithm for the second training step. The model yielded 
an R value of 96.3 % and a mean absolute error of 1.6 for the validation data. Also using ANNs, a model 
for the ignition delay prediction based on two biodiesels (palm and rapeseed) data sets was developed. 
The network selected to predict the ignition delay was a (5:2:1) with a correlation coefficient of 97.2 % 
and an absolute error of 0.03. The proposed networks are useful for prediction of the cetane number and 
ignition delay of biodiesel fuels. 
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