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ABSTRACT Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the
stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or
as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological
conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-
angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We
evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray
scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATPgS, and 3 mM ATP in 10 mM MgCl2 and 100 mM
KCl) at three different temperatures (10�C, 25�C, and 37�C). We then compared the experimentally observed scattering patterns
with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly
demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On
the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 mM BeCl2), we observed the formation of
a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.

INTRODUCTION

The chaperonins are ubiquitously found in bacteria, archaea,

and eukarya—a class of molecular chaperones that promote

protein folding in vivo (1,2). The best characterized of these is

the Escherichia coli chaperonin, GroEL, and its partner GroES

(1–5). GroEL is a tetradecameric protein of 14 identical 57

kDa subunits arranged in two heptameric rings stacked back-

to-back with a central cavity (6,7). GroES contains seven

identical 10 kDa subunits assembled as a heptamer ring and

acts as a lid of the central cavity when GroEL forms a complex

with GroES (7,8). Under physiological conditions, GroEL

and GroES form this complex, and the complex formation

seems to be essential for the biological functions. A substrate

protein in the chaperonin-assisted folding is known to be

encapsulated within the central cavity of the GroEL-GroES

complex and to fold in this location (7,9).

Despite the well-known functional importance of GroEL-

GroES complex formation, the stoichiometry of the complex

has not yet been fully established. The complex may occur in

two different forms: i), one GroES binds to one side of the

GroEL oligomer with a 1:1 (GroEL/GroES) stoichiometry to

form an asymmetric (bullet-type) complex (10–14), and ii),

one GroES binds to both sides of the GroEL oligomer with a

stoichiometry of 1:2 (GroEL/GroES) to form a symmetric

(football-type) complex (15–21). Previous structural studies

performed by different groups and employing primarily

electron microscopy have reported conflicting results. That

is, some of the studies reported that the asymmetric complex

was the major species formed under physiological conditions

(10–14) and others that the symmetric complex was the main

complex formed (16–21), despite the fact that the conditions

and solutions used to prepare the complexes were similar. As

a result, several research groups have proposed a model in

which the symmetric complex is significantly accumulated

during the reaction cycle and acts as an important interme-

diate in the chaperonin function (19–25), whereas other

groups have proposed a model in which only the asymmetric

complex appears during the reaction cycle (26–30). Although

the latter model with the asymmetric complex prevails and

seems to be widely accepted, the conflict between the two

models has not yet been fully resolved. It is certainly critical

in understanding the molecular mechanisms of the chaper-

onin function to resolve the question about the stoichiometry
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of the GroEL-GroES complex, and hence further clarifica-

tion of the stoichiometry by another experimental technique

will be useful.

Thus, in this study we employed small-angle x-ray scat-

tering (SAXS) techniques to resolve the above question

about the stoichiometry of the GroEL-GroES complex. The

SAXS pattern directly reflects the structure of the protein

complex in solution, and hence it has an advantage over the

techniques previously used for investigating the structure

of the GroEL-GroES complex (31–34). To investigate the

structure of the GroEL-GroES complex in solution under

physiological conditions, we measured the SAXS patterns of

the complex under various nucleotide conditions in the

presence of ADP, ATPgS, or ATP (3 mM) in 50 mM Tris-

HCl, 10 mM MgCl2, and 100 mM KCl at pH 7.5 at three

different temperatures, 10�C, 25�C, and 37�C. We measured

the SAXS patterns both in the absence and in the presence of

a denatured substrate protein (disulfide-reduced a-lactalbu-

min) (35–37). We observed only the asymmetric complex

under all the above conditions, clearly demonstrating that the

asymmetric (bullet-type) complex must be the major species

stably present in solution under physiological conditions.

Our results thus show that the symmetric (football-type)

complex does not accumulate significantly during the native

chaperonin cycle. However, in the presence of ATP and

beryllium fluoride (BeFx), which may form an analog

(ADP�BeFx) of a transient intermediate of the ATP hydrol-

ysis by GroEL (38–43), we observed the formation of the

symmetric 1:2 GroEL-GroES complex, suggesting the

existence of a transiently formed symmetric complex during

the chaperonin cycle.

MATERIALS AND METHODS

Materials

GroEL and GroES were overexpressed in E. coli and purified as described

previously (44–46). The overexpression of GroES was also carried out using

an expression plasmid, pETESwild, which was a gift of Professor Kawata of

Tottori University; GroES was purified using the procedure reported by his

group (47). The concentrations of GroEL and GroES were measured by

absorption at 280 nm using extinction coefficients, E0:1%
1cm ¼ 0:21 for GroEL

and E0:1%
1cm ¼ 0:143 for GroES (44), which correspond to the molar extinction

coefficients of 1.68 3 105 M�1cm�1 and 1.04 3 104 M�1cm�1, respec-

tively. The molar concentrations of GroEL and GroES shown in this work

are those for the GroEL tetradecamer and the GroES heptamer.

Bovine a-lactalbumin was purified from crudely purified powder (Sigma,

St. Louis, MO) by ion-exchange chromatography on a diethylaminoethyl-

Sepharose fast-flow column with a salt gradient of NaCl from 0 M to 0.3 M.

Its concentration was determined spectrophotometrically using an extinction

coefficient of E0:1%
1cm ¼ 2:01 (48), which corresponds to the molar extinction

coefficient of 2.85 3 104 M�1cm�1. Apo-a-lactalbumin was prepared by

acid denaturation of the protein followed by gel filtration on a Sephadex

G-25 column (36). The disulfide-reduced form of a-lactalbumin was pre-

pared by reduction of the disulfide bonds of apo-a-lactalbumin (2 mg/ml) for

more than 20 min by 1 mM dithiothreitol (DTT) in 50 mM Tris-HCl, 10 mM

MgCl2, and 100 mM KCl at pH 7.65 (36).

The nucleotides ATP, ADP, and ATPgS were purchased from Sigma.

ADP and ATPgS were purified by anion-exchange chromatography before

use as described (45). BeFx was prepared as described previously (41). All

other chemicals were of guaranteed reagent grade.

Standard buffer

The standard reaction buffer used in all of the experiments described here,

except where stated otherwise, was 50 mM Tris-HCl, 10 mM MgCl2, and

100 mM KCl at pH 7.5.

SAXS measurements

The SAXS experiments were performed at beam line 15A of the Photon

Factory at the High Energy Accelerator Research Organization, Tsukuba,

Japan. The experimental details and the analysis of the scattering data were

essentially the same as described previously (48). The scattering patterns

were recorded by a charge-coupled device (CCD)-based x-ray detector,

which consisted of a beryllium-windowed x-ray image intensifier (Hama-

matsu V5445P-MOD; Hamamatsu, Japan), an optical lens, a CCD image

sensor, and a data acquisition system (Hamamatsu C7300), as described

previously (49,50).

The scattering patterns of the proteins are represented by the scattering

intensity I as a function of the momentum transfer Q, which is given by Q¼
4psinu/l (l, wavelength; 2u, scattering angle). The l of the x-ray beam was

1.5 Å. The minimum value of Q, Qmin, which may depend on the beam

stopper size and camera length, was on the order of 0.013 Å�1 in our x-ray

scattering system.

The pair distance distribution function, P(r), was calculated from the

scattering pattern in a Q range of 0.013–0.165 Å�1 by the method of

Svergun et al. (51) using the GNOM software package, which is based on

the regularization of the inversion of the integral equation relating I(Q) to the

P(r). The radius of gyration, Rg, and maximum dimension, Dmax, were thus

obtained from the P(r), which is related to Rg by the equation

R
2

g ¼
R Dmax

0
r

2
PðrÞdr

2
R Dmax

0
PðrÞdr

: (1)

The Rg and the forward intensity I(0) were also calculated from the

Guinier approximation using the innermost portion (0.013 , Q , 1.4/Rg) of

the scattering patterns by the equation

IðQÞ ¼ Ið0Þexpð�R
2

gQ
2
=3Þ: (2)

From Eq. 2, the slope and the intercept of the semilogarithmic plot (the

Guinier plot) of ln I(Q) versus Q2 gave the Rg and I(0), respectively.

Although the Rg values from the P(r) and the Guinier plot were in general

agreement with each other, the relation of Rg to P(r) (Eq. 1), making use of

the whole scattering curve, is much less sensitive to factors such as the

presence of residual interparticle interactions than is the Guinier approxi-

mation (33). The Rg values obtained from the P(r) analysis are thus expected

to be more reliable than those from the Guinier approximation.

The SAXS patterns, the P(r) profiles, and the Guinier plots shown in this

work are those after extrapolation to zero protein concentration. We

measured SAXS patterns at several different protein concentrations and

calculated I(Q)/c, where c denotes the protein concentration. The SAXS

pattern at zero protein concentration was obtained by extrapolation of I(Q)/c

to zero protein concentration. The P(r) profiles and the Guinier plots were

calculated from the SAXS pattern at zero protein concentration, and the

scattering parameter values obtained from the P(r) analysis and the Guinier

approximation were, thus, those values at zero protein concentration.

The scattering parameters (Rg and Dmax from the P(r), and Rg and I(0)/c
from the Guinier plot) at zero protein concentration were also obtained by

extrapolating these parameter values themselves, which were calculated

from the P(r) profiles and the Guinier plots at different protein concentra-

tions, to zero protein concentration. The parameter values at zero protein
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concentration thus obtained were coincident with those obtained from the

SAXS pattern at zero protein concentration shown above.

The I(0)/c extrapolated to zero protein concentration (I(0)/c)c/0 is

known to be proportional to a weight-averaged molecular weight (Mw) of

solutes as

Ið0Þ
c

� �
c/0

¼ k

+
i

Mici

+
i

ci

¼ kMw; (3)

where k is a constant and Mi and ci are the molecular weight and the weight

concentration, respectively, of the ith molecular species (33). The value of k

was obtained from the SAXS pattern of the GroEL tetradecamer that has a

molecular weight of 8.02 3 105. Equation 3 was applied to the SAXS

patterns of GroEL-GroES mixtures, where the GroEL-GroES complexes

and free GroEL (or GroES) coexisted (see below).

Theoretical SAXS patterns were obtained by the multipole spherical

harmonic expansion method of Svergun et al. (52) using the CRYSOL

software package. In all cases, a 3-Å-thick hydration shell with the contrast

(dr) of the order 75 e/nm3 (i.e., 0.075 e/Å3) and the effective atomic radius

(r0) of 1.8 Å were used in all the scattering calculations. The P(r) profiles

were then calculated for the theoretical models using the program GNOM as

described above, with the Dmax chosen based on the longest chord length of

the model structure. For the use of the GNOM and CRYSOL software, we con-

sulted the following web site: http://www.embl-hamburg.de/ExternalInfo/

Research/Sax/index.html.

RESULTS

Isolated GroEL and GroES characterized by SAXS

Fig. 1 shows the x-ray scattering patterns of isolated GroEL

and GroES. We measured the scattering patterns of the

protein complexes at different concentrations from 3 to 9 mM

for the GroEL tetradecamer and from 10 to 41 mM for the

GroES heptamer and extrapolated the patterns to zero protein

concentration to reduce the contribution of interparticle in-

terference. The scattering patterns shown in Fig. 1 a are those

that occur after the extrapolation. We then applied an indirect

Fourier transformation method to these scattering patterns

using the GNOM software package and obtained the P(r)

function for each of the isolated protein oligomers (Fig. 1 b)

(52). From the P(r), we calculated the radius of gyration, Rg,

and the maximum dimension, Dmax, of the particle (52). The

Rg and Dmax values thus obtained were 67 and 175 Å, re-

spectively, for GroEL and 35 and 100 Å, respectively, for

GroES. The Rg values were also obtained from the Guinier

plot using Eq. 2, and the values were 69 and 35 Å for GroEL

and GroES, respectively (Fig. 1 c). The Rg values obtained

from the Guinier plot were in good agreement with those

from the P(r) analysis, but the value of GroEL from the

Guinier plot was ;2 Å larger than that from the P(r). This

observation might be due to the presence of small aggrega-

tion in free GroEL; the same observation was reported pre-

viously by Krueger et al. (53).

For GroEL, we also obtained P(r) profiles and Guinier

plots at three different protein concentrations and calculated

Rg and Dmax values from the P(r) as well as Rg and I(0)/c
values from the Guinier plot at each protein concentration.

Fig. 2 shows the Rg and Dmax thus obtained from the P(r) and

FIGURE 1 (a) SAXS patterns of GroEL under various nucleotide condi-

tions and the pattern of GroES (black crosses) in the standard buffer (see

Materials and Methods) at 25�C. The conditions for GroEL were in the

absence of nucleotide (black circles) and in the presence of 3 mM ADP (red
squares), 3 mM ATPgS (yellow diamonds), 3 mM ATP (blue inverted

triangles), and ATP plus BeFx (green triangles). The scattering intensity I(Q)

is shown as a function of the momentum transfer Q, which is given by Q¼ 4p

sinu/l (l, wavelength; 2u, scattering angle). (b) The P(r) functions for GroEL

in the absence of nucleotide (thick black line) and in the presence of ATPgS

(dashed yellow line) and ATP (cyan line) and the P(r) function for GroES

(thin black line) in the standard buffer. The P(r) functions were calculated

using the GNOM software package (51). (c) The Guinier plots of GroEL (open
circles) and GroES (open squares). The continuous lines show the least-square

fit of the experimental data to Eq. 2 in a Q range of 0.013 Å�1 to 1.4/Rg.
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the Rg and I(0)/c from the Guinier plot as a function of the

GroEL concentration. The extrapolation of the Rg and Dmax

values from the P(r) to zero GroEL concentration gave the

values of 67 and 176 Å, respectively, which were essentially

identical to the values obtained from the P(r) profiles

extrapolated to zero GroEL concentration shown above. The

Rg from the Guinier plot (Fig. 2 c) shows steeper dependence

on the protein concentration than the Rg from the P(r) (Fig.

2 a), reflecting the fact that the scattering in the low-Q region

used in the Guinier plot is more strongly affected by inter-

particle interference. Nevertheless, the Rg value from the

Guinier plot was 69 Å when extrapolated to zero GroEL con-

centration, and hence it was identical to the value obtained

from the Guinier plot extrapolated to zero GroEL concen-

tration shown above.

The scattering patterns of GroEL in the presence of ATP,

ADP, and a nonhydrolyzable ATP analog (ATPgS) are also

shown in Fig. 1 a. The scattering pattern at 3 mM ATP was

also measured in the presence of BeFx (10 mM NaF plus 300

mM BeCl2) because the presence of both ATP and BeFx led

to the symmetric (football-type) GroES-GroEL-GroES com-

plex when excess GroES was present simultaneously (see be-

low). Although distinct differences in the scattering patterns

under different nucleotide conditions were observed in a

region of Q larger than 0.1 Å�1 in the semilogarithmic plot of

log I(Q) versus Q, the corresponding differences in the P(r)

profiles were rather minor (Fig. 1 b). This is because the P(r)

profile reflects the overall shape of GroEL and is affected

more strongly by the scattering in the smaller Q region. The

presence of ATP shifted the P(r) profile of GroEL to a

slightly smaller r by 0.7 Å with a shoulder around 60 Å, and

this led to a reduction of the Rg by 0.6 Å. It is known that

only ATP induces a cooperative allosteric transition of

GroEL (45,54). The presence or absence of BeFx did not sig-

nificantly affect the scattering pattern of GroEL at 3 mM ATP.

The changes in the scattering pattern of GroEL induced by

the nucleotides were much smaller than the changes in the

scattering pattern caused by the GroEL-GroES complex

formation (see below), and hence the above changes did not

interfere with the following SAXS analysis of the GroEL-

GroES complexes.

Because GroEL may coexist with nonnative substrate pro-

teins in vivo, we also investigated the effect of the denatured

protein, which binds to GroEL, on the scattering patterns of

GroEL. We used disulfide-reduced a-lactalbumin as the dena-

tured substrate protein (35–37) and measured the scattering

patterns under the same nucleotide conditions as used above,

but in the presence of disulfide-reduced a-lactalbumin in a

molar concentration twice as high as those for GroEL, 1 mM

DTT, and 1 mM EGTA; DTT and EGTA were required to keep

the disulfide bonds of the substrate protein fully reduced.

There were only small changes in the scattering patterns with

a small increase in the I(0) by a small percentage caused by

the presence of the substrate (data not shown), reflecting the

binding of the substrate to GroEL. Because the changes in

the scattering patterns were much smaller than the changes

caused by the GroEL-GroES complex formation, the former

changes did not interfere with the following SAXS analysis.

Complex formation of GroEL and GroES

To investigate how many GroES oligomers can simulta-

neously bind to one GroEL oligomer under physiological

conditions, we measured the scattering patterns of mixtures

FIGURE 2 Rg (a) and Dmax (b) values from the P(r)

analysis of isolated GroEL (solid circles), the asymmetric

GroEL-GroES complex in the presence of 3 mM ATPgS

with the [GroES]/[GroEL] ratio (¼1) kept constant (open
circles), and the symmetric GroES-GroEL-GroES complex

in the presence of 3 mM ATP plus BeFx with the [GroES]/

[GroEL] ratio (¼2) kept constant (solid triangles) as a

function of GroEL concentration. The Rg (c) and I(0)/c (d)

values from the Guinier plots of isolated GroEL (solid

circles), the asymmetric GroEL-GroES complex (open

circles), and the symmetric GroES-GroEL-GroES complex

(solid triangles) as a function of GroEL concentration.

Error bars indicate standard errors of the average estimated

from several independent determinations.
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of GroEL and GroES at different molar ratios under various

nucleotide conditions at 10�C, 25�C, and 37�C. Here, we

show only the data at 25�C, because we observed no sig-

nificant differences in the scattering pattern between 10�C

and 25�C or between 25�C and 37�C. For each particular

molar concentration ratio [GroES]/[GroEL], we measured

the scattering patterns at three different GroEL concentra-

tions from 3 to 9 mM with the [GroES]/[GroEL] ratio kept

constant. We then obtained the P(r) profiles from these

scattering patterns using the GNOM as well as the Guinier

plots from the innermost portions of the scattering patterns,

from which we calculated the structural parameters, Rg and

Dmax from the P(r) and Rg and I(0)/c from the Guinier plot at

each GroEL concentration. These SAXS parameter values

were averaged and extrapolated to zero protein concentration

(see Fig. 2). We then investigated the dependence of the

SAXS parameters thus obtained on the [GroES]/[GroEL]

ratio under different nucleotide conditions in the absence and

in the presence of denatured a-lactalbumin.

Because in the presence of a nucleotide (ADP, ATP, or

ATPgS) the binding constant between free GroEL and GroES

is larger than 107 M�1, i.e., more than 10 times larger than 1/c
(27,30,55), essentially all GroES molecules were bound to

GroEL under the conditions here when the [GroES]/[GroEL]

ratio was less than the stoichiometric number of the GroEL-

GroES complex formation. However, in the absence of the

nucleotide, we observed no significant binding between

GroEL and GroES (see below).

Radius of gyration and maximum dimension

Fig. 3, a and b, shows the Rg and Dmax values from the P(r) of

the GroEL-GroES mixture as a function of the [GroES]/

[GroEL] ratio at 25�C in the absence of the denatured protein.

In the absence of the nucleotides, even when we added an

increasing amount of GroES to the GroEL solution, the Rg and

Dmax values remained approximately constant, 66.3 and 174 Å

for Rg and Dmax, respectively (Fig. 3). GroEL thus remained

in the uncomplexed state under this condition. In contrast, in

the presence of ADP, ATP, or ATPgS, the Rg and Dmax values

increased up to ;71.3 and 205 Å, respectively, with

increasing GroES concentration. These values were saturated

at a [GroES]/[GroEL] ratio of 1, and the further addition of

GroES did not increase the Rg and Dmax values. When both

ATP (3 mM) and BeFx (10 mM NaF and 300 mM BeCl2) were

present in the GroEL-GroES mixture, however, the Rg and

Dmax values further increased up to 74.1 and 226 Å,

respectively, with a further increase in the GroES concentra-

tion; and these values were saturated at a [GroES]/[GroEL]

ratio of 2 (Fig. 3, a and b). These results, therefore, lead to the

following conclusions: i), GroES does not bind to GroEL in

the absence of the nucleotides; ii), one GroES heptamer binds

to one GroEL tetradecamer to form the asymmetric (bullet-

type) complex in the presence of ADP, ATP, or ATPgS; and

iii), two GroES heptamers simultaneously bind to one GroEL

tetradecamer to form the symmetric (football-type) complex

in the presence of both ATP and BeFx.

Fig. 3 c shows the Rg values from the Guinier plot of the

GroEL-GroES mixture as a function of the [GroES]/[GroEL]

ratio at 25�C in the absence of the denatured protein.

Although the Rg values for free GroEL were ;2 Å larger

than the values obtained from the P(r) analysis, the results of

the [GroES]/[GroEL] dependence of Rg were essentially the

same as those obtained from the P(r) analysis shown above.

In the presence of ADP, ATP, or ATPgS, the Rg thus in-

FIGURE 3 Influence of the GroES to GroEL molar

concentration ratio, [GroES]/[GroEL], on the complex

formation as shown by the radius of gyration (Rg) (a) and

the maximum distance (Dmax) (b) from the P(r) analysis

and by the radius of gyration (Rg) (c) and the weight-

average molecular weight (Mw) (d) from the Guinier plot as

a function of [GroES]/[GroEL]. The data were obtained in

the absence of nucleotide (solid circles) and in the presence

of 3 mM ADP (open squares), 3 mM ATPgS (open

circles), 3 mM ATP (solid squares), and 3 mM ATP plus

BeFx (solid triangles). The GroEL concentration was kept

constant at 2.5, 4.5, and 7 mg/ml (3.1, 5.6, and 8.8 mM,

respectively). The Rg and Dmax values from the P(r)

analysis were obtained from the scattering pattern at each

protein concentration using the GNOM software, and these

values were averaged and extrapolated to zero protein

concentration (see text). The Rg and Mw values from the

Guinier plot were obtained from the slope and the intercept

(I(0)) of the Guinier plot at each protein concentration, and

the values were averaged and extrapolated to zero protein

concentration (see text). A thin dotted line and a dot-dash

line are the theoretical curves with the stoichiometries of

nmax ¼ 1 and nmax ¼ 2, respectively, drawn by Eqs. 4–6.
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creased up to 71 Å at a [GroES]/[GroEL] ratio of 1, whereas

in the presence of both ATP and BeFx, the Rg further in-

creased up to 74 Å at a [GroES]/[GroEL] ratio of 2.

Although the Dmax increased with increasing GroES

concentration in the same manner as Rg did, the Dmax may

provide additional structural information on the GroEL-

GroES complex. The saturated values of Dmax for the GroEL-

GroES mixture when titrated with GroES were 174 Å in the

absence of the nucleotides, 205 Å in the presence of ADP,

ATP, or ATPgS, and 226 Å in the presence of both ATP and

BeFx. The finding that the Dmax values were longer in the

presence of the nucleotide than in its absence indicates that

GroES is located at the longer axis of the GroEL, as shown by

crystallographic and electron microscopic studies (7,10–13).

The Dmax values calculated from the x-ray crystallographic

structures were 180 and 204 Å for the isolated GroEL tet-

radecamer (56) and the asymmetric 1:1 GroEL-GroES com-

plex (7), respectively. These values thus coincide well with

the observed Dmax values in the absence of the nucleotides and

in the presence of ADP, ATP, or ATPgS, further supporting

the above conclusions. The fact that the longest Dmax value

(226 Å) was observed in the presence of both ATP and BeFx

thus demonstrates the formation of the symmetric GroES-

GroEL-GroES complex under this condition.

Weight-averaged molecular weight

We also examined the I(0)/c value as a function of the

[GroES]/[GroEL] ratio. We calculated the weight-averaged

molecular weight Mw from I(0)/c using Eq. 3, and the Mw

values thus obtained are plotted as a function of the [GroES]/

[GroEL] ratio in Fig. 3 d. The Mw value increased with

increasing [GroES]/[GroEL] ratio up to 1 in the presence of

ADP, ATP, or ATPgS, and up to 2 when both ATP and BeFx

were present in the GroEL-GroES mixture. After reaching

the maximum, the observed Mw value decreased with in-

creasing [GroES]/[GroEL] ratio (Fig. 3 d).

The dotted line and dot-dash line in Fig. 3 d represent

theoretical curves of the dependence of Mw on the [GroES]/

[GroEL] ratio, under the assumption that GroES is strongly

bound to GroEL. The binding between GroEL and GroES is

known to be sufficiently strong in the presence of the

nucleotide (ADP, ATP, or ATPgS) (27,30,55) (see above),

and hence all the GroES molecules must be bound to GroEL

when the [GroES]/[GroEL] ratio (g) is less than the stoichi-

ometric number (nmax) of the GroEL-GroES complex. There-

fore, when g # 1, only free GroEL and the asymmetric 1:1

GroEL-GroES complex are present in solution, and hence Mw

is given by

Mw ¼
M

2

ELð1� gÞ1 ðMEL 1 MESÞ2g
MEL 1 MESg

; (4)

where MEL and MES are the molecular weights of the GroEL

tetradecamer (8.02 3 105) and the GroES heptamer (7.2 3

104), respectively, and here we also assume the negative

cooperativity of the two rings of GroEL with respect to the

GroES binding, so that the trans ring of the 1:1 GroEL-

GroES complex is not occupied by GroES. When nmax¼ 2

and 1 , g # 2, only the asymmetric 1:1 and the symmetric

1:2 GroEL-GroES complexes are present, and there is no

free GroEL in solution. The Mw is thus given by

Mw ¼
ðMEL 1 MESÞ2ð2� gÞ1 ðMEL 1 2MESÞ2ðg � 1Þ

MEL 1 MESg
: (5)

When g is larger than the stoichiometric number nmax of

the complex, the GroES binding to GroEL is saturated, and

hence only the saturated GroEL-GroES complex and excess

free GroES are present in solution. The Mw is thus given by

Mw ¼
ðMEL 1 nmaxMESÞ2 1 M

2

ESðg � nmaxÞ
MEL 1 MESg

: (6)

The dotted line in Fig. 3 d, a theoretical curve with nmax ¼
1 indicating the formation of the asymmetric 1:1 GroEL-

GroES complex, shows excellent agreement with experi-

mental data in the presence of ADP, ATP, or ATPgS. The

dot-dash line in Fig. 3 d, a theoretical curve with nmax ¼ 2

indicating the formation of the symmetric 1:2 GroEL-GroES

complex, shows excellent agreement with the experimental

data in the presence of both ATP and BeFx. Because Mw (or

I(0)/c) is independent of Rg and Dmax, these results thus make

our conclusions—i), the formation of the asymmetric

complex in the presence of ADP, ATP, or ATPgS; and ii),

the formation of the symmetric complex in the presence of

both ATP and BeFx—very convincing.

Effect of substrate binding

GroEL in vivo may bind to nonnative substrate proteins, and

such binding to the substrate proteins might be an important

factor for the complex formation of GroEL and GroES in

biological cells (1). To address the question, we repeated the

above experiments on the complex formation of GroEL and

GroES but in the presence of disulfide-reduced a-lactalbu-

min, which is known to be denatured and bound to GroEL

(35–37); the solution conditions were the same as those used

in the experiments in the absence of the denatured protein,

except for the presence of 1 mM DTT, 1 mM EGTA, and

disulfide-reduced a-lactalbumin at a molar concentration

twice as high as the concentration of GroEL. The dependence

of the complex formation on the GroES concentration was,

however, the same as that in the absence of the denatured

protein under each of the nucleotide conditions (data not

shown), indicating that the denatured substrate protein has no

significant effect on the complex formation of GroEL and

GroES. These results strongly suggest that the asymmetric 1:1

GroEL-GroES complex is the major species of the chaperonin

within the cell.
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Effect of other solution conditions

We further investigated the effect of the simultaneous

presence of two different nucleotides (ADP and ATPgS) on

the GroEL-GroES complex formation and also the effect of

the prolonged incubation with ATP on the complex forma-

tion. In the former experiment, we measured the scattering

patterns of the GroEL-GroES mixture at three different

[GroES]/[GroEL] ratios (i.e., 1, 2, and 3) at 9 mM GroEL in

the presence of 0.5 mM ADP and 3 mM ATPgS at 25�C. In

the latter experiment, we measured the scattering patterns

of the GroEL-GroES mixture (7.5 mM GroEL plus 15 mM

GroES) at 3 mM ATP and 25�C at different times (3, 10, 20,

53, 71, and 128 min) after the incubation started. In both the

experiments, we observed only the asymmetric 1:1 GroEL-

GroES complex. Therefore, neither the presence of the two

nucleotides nor the prolonged incubation with ATP was

effective for the formation of the symmetric complex.

Structure of the GroEL-GroES complex

To further characterize the structures of the GroEL-GroES

complexes, we analyzed the scattering patterns of the

asymmetric and the symmetric GroEL-GroES complexes.

We used the scattering pattern of the equimolar GroEL-

GroES mixture in the presence of ATPgS as the scattering

pattern of the asymmetric complex, and the scattering pattern

of the mixture at the [GroES]/[GroEL] ratio of 2 in the

presence of both ATP and BeFx as the scattering pattern of

the symmetric complex (Fig. 4 a). The scattering patterns of

the equimolar GroEL-GroES mixture (the asymmetric

complex) in the presence of the other nucleotides were the

same as that in ATPgS (data not shown). As a control, the

scattering pattern of isolated GroEL in 3 mM ATPgS was

also investigated (Fig. 4 a). All the scattering patterns shown

in Fig. 4 have been extrapolated to zero GroEL concentra-

tion. Compared with the scattering patterns of isolated

GroEL, these scattering patterns show distinct differences in

a Q region above 0.07 Å�1 in the plot of log I(Q) versus Q.

This is in contrast with the previous observation that the

nucleotide binding to GroEL led to distinct changes in the

scattering pattern only in a region of Q above 0.1 Å�1 (Fig.

1 a), indicating that the GroES binding to GroEL results in a

much larger change in the overall structure of the chaperonin

complex than the nucleotide binding to GroEL does.

However, it should also be noted that the plots in Fig. 4

are semilogarithmic, and hence changes in I(Q) itself in a

smaller Q region (,0.07 Å�1), caused by the binding of

GroES to GroEL, were not negligible, as clearly indicated by

the changes in Rg and Dmax.

Fig. 4 b shows the P(r) functions calculated from these

scattering patterns of Fig. 4 a. As the number of bound GroES

oligomers increased, the peak of the P(r) profile shifted from

93 to 95 Å, and the Dmax value increased from 174 to 205 Å

(see also Fig. 3).

FIGURE 4 SAXS patterns (a) and the P(r) functions (b) of isolated GroEL

(black circles), the asymmetric GroEL-GroES complex (red squares), and

the symmetric GroES-GroEL-GroES complex (blue diamonds). The scat-

tering pattern of the mixture of equimolar GroEL and GroES in the presence

of ATPgS and that of the mixture containing a twofold molar excess of

GroES relative to GroEL in the presence of ATP and BeFx were used for the

asymmetric and the symmetric complexes, respectively. The scattering

patterns were measured at different GroEL concentrations from 3 to 9 mM

and extrapolated to zero GroEL concentration. The P(r) functions were

then calculated from the scattering patterns using the program GNOM.

The theoretical scattering curves calculated from the x-ray crystallographic

structures of free GroEL oligomer (Protein Data Bank code, 1KP8) (gray

line) and the asymmetric GroEL-GroES complex (1AON) (red line), and the

theoretical profile from the putative structure of the symmetric GroES-

GroEL-GroES complex (blue line) were compared with the experimentally

obtained scattering curves (open symbols) in (a). Similarly, the theoretical

P(r) profiles (dashed lines) calculated from the x-ray crystallographic

structures and the putative complex structure were compared with the

experimentally obtained P(r) profiles in b. (c) The three-dimensional

structures of free GroEL (gray), the asymmetric GroEL-GroES complex

(magenta), and the symmetric GroES�GroEL�GroES complex (cyan) used

for the calculations. The putative structure of the symmetric complex was

constructed from the cis ring of the asymmetric complex (1AON).
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We then calculated the theoretical P(r) profiles of isolated

GroEL, the asymmetric complex, and the symmetric com-

plex from the known x-ray structures and compared these

theoretical profiles with the experimental ones (Fig. 4 b). We

employed the x-ray structures of GroEL (1KP8) and the

GroEL-GroES-ADP complex (1AON) for isolated GroEL

and the asymmetric 1:1 GroEL-GroES complex, respectively

(Fig. 4 c) (7,56). For the symmetric GroES-GroEL-GroES

complex, we constructed a model structure from the cis ring

of the asymmetric complex (1AON). In this model structure,

the two cis rings were stacked back-to-back and formed the

symmetric GroES-GroEL-GroES complex (Fig. 4 c). There

are 22 or 23 residues missing at the C-terminus of GroEL in

the x-ray coordinates of both 1KP8 and 1AON. Therefore, in

all three structures, these unresolved amino acids at the

C-terminus of GroEL were modeled using a cylinder that

was essentially the same as that employed by Thiyagarajan

et al. (57). The cylinder was located at the bottom of each

central cavity of GroEL and had a size of 40 Å in diameter

and 65 Å in height and a mass of 2.85 3 104.

The theoretical x-ray scattering patterns for the above three

structures were calculated using CRYSOL software, and the

resultant patterns were transformed into the corresponding

P(r) profiles by using GNOM software (51,52). The theoret-

ical scattering patterns and P(r) profiles thus obtained are

compared with those observed experimentally in Fig. 4. The

theoretical and experimental patterns and profiles are found to

be generally in good agreement, although there are some

differences observed (see below). The theoretical P(r) profiles

reproduced the shifts of the peak and the Dmax toward larger

values with an increasing number of bound GroES oligomers

(Fig. 4 b). In addition, the theoretical x-ray scattering patterns

reproduced the two small peaks at Q values of 0.125 and 0.168

Å�1 in isolated GroEL and their collapse into a single peak at a

Q of 0.13 Å�1 in the asymmetric and symmetric complexes,

both of which were observed experimentally (Fig. 4 a). Such

agreement between the experimental and theoretical P(r)

profiles and also between the experimental and theoretical

scattering patterns thus indicates that the crystal structures of

isolated GroEL (1KP8) and the asymmetric 1:1 GroEL-

GroES complex (1AON) well represent their structures in

solution and that the putative atomic model of the symmetric

GroES-GroEL-GroES complex well represents the confor-

mation of the symmetric complex in solution.

There are, however, small but nontrivial differences

between the experimental data and theoretical curves (Fig.

4, a and b); e.g., a trough observed in the scattering patterns

at 0.052 Å�1 is significantly deeper in the theoretical curves.

These differences may be due to differences between the

crystallographic and solution structures of the proteins.

DISCUSSION

Which is predominant under physiological conditions, the

asymmetric or the symmetric complex of GroEL and GroES?

Although there have been a large number of structural studies

of the GroEL-GroES complex, this fundamental question

remains to be resolved. Previous structural studies performed

by different groups and employing primarily electron micros-

copy have reported conflicting results. Although the condi-

tions and solutions used were similar, some of the studies

reported that only the asymmetric complex was formed (10–

13) and others that the symmetric complex was formed as the

major species under physiological conditions (15,17,18,20).

Whether the asymmetric or the symmetric complex is the

major species is indeed of critical importance in considering

the molecular mechanisms of the chaperonin cycle. A model

in which the symmetric complex appears as an important

intermediate in the chaperonin reaction cycle has been pro-

posed by several research groups, including the Fersht group

(22), the Buchner group (21,58,59), the Goloubinoff group

(24,25), and the Valpuesta group (19), whereas another model

in which only the asymmetric complex appears during the re-

action cycle has been proposed by the Horwich group (28,30)

and the Hartl group (26,27,29).

In addition to the observations of the symmetric 1:2 GroEL-

GroES complex by electron microscopy (16–21), chemical

cross-linking (15,60), analytical ultracentrifugation (55), and

fluorescence techniques (23,61), the most efficient GroEL-

mediated refolding reactions of target proteins (Rubisco, mi-

tochondrial malate dehydrogenase, and the Y283D mutant of

maltose-binding protein) were known to be attained when the

[GroES]/[GroEL] ratio was 2 or greater under a physiological

condition in the presence of ATP. This has also been taken as

evidence for the requirement of the symmetric football-type

1:2 GroEL-GroES complex as the efficient catalyst of the

folding (20,21,60,62).

On the other hand, Hayer-Hartl et al. (29) have shown by

the use of rapid cross-linking, native gel electrophoresis, and

the refolding assay of malate dehydrogenase that the sym-

metric complex is not required for chaperonin function, and

its presence does not significantly increase the rate of protein

folding. Their result thus supports the view that the symmet-

ric 1:2 GroEL-GroES complex has no essential role in the

chaperonin mechanism. The acceleration of the refolding rates

of the substrate proteins at a molar ratio ([GroES]/[GroEL])

of 2 or greater was previously observed at a nanomolar to

submicromolar concentration of GroEL. If we assume that the

dissociation constant between the asymmetric complex and

GroES was ;1 mM, the acceleration was not necessarily

caused by the formation of the symmetric 1:2 GroEL-GroES

complex (29). Hayer-Hartl et al. have also shown by electron

microscopy and rapid cross-linking that the symmetric com-

plex is formed only under an unphysiological condition of a

high magnesium concentration (50 mM) and an increased pH

(pH 8.0) (26,29).

Rye et al. (28,30) employed stopped-flow fluorescence

anisotropy and energy transfer to directly observe the bind-

ing and dissociation of GroES and GroEL. They found that

the dissociation of the asymmetric GroEL-GroES-ADP
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complex was directly and efficiently coupled to the binding

of ATP and nonnative substrate protein on the opposite

(trans) ring; so that this event occurred before another

molecule of GroES could bind to the trans ring. Their results

thus suggest that the symmetric 1:2 GroEL-GroES complex

does not accumulate significantly during the chaperonin cycle.

In this study, to resolve the above question about the

stoichiometry of the GroEL-GroES complex, we employed

the SAXS technique and investigated the structure of the

GroEL-GroES complex under various nucleotide conditions.

We observed only the asymmetric (bullet-type) complex

when excess GroES was present in the presence of ADP,

ATPgS, or ATP (3 mM) at pH 7.5 (50 mM Tris-HCl, 10 mM

MgCl2, and 100 mM KCl) at 10�C, 25�C, and 37�C; and the

presence or absence of the denatured substrate protein

(disulfide-reduced a-lactalbumin) did not affect the results. It

is thus concluded that the asymmetric complex is the major

species under physiological conditions.

Some previous studies have reported that the formation of

the symmetric complex depended on the amount of time after

the incubation of the GroEL and GroES mixture was started

(63) and that the symmetric complex was also formed when

ADP and a nonhydrolyzable ATP analog were both present

(17,23). Therefore, we also investigated the effect of the

prolonged incubation of the GroEL-GroES mixture in 3 mM

ATP and the effect of the simultaneous presence of ADP and

ATPgS on the GroEL-GroES complex formation. In both

cases, however, we observed only the asymmetric GroEL-

GroES complex, further strengthening our conclusion that

the asymmetric complex is the major species under physi-

ological conditions.

Why did some previous groups observe the symmetric

complex under similar conditions? The answer to this ques-

tion is largely unknown. However, in the electronmicroscopic

analysis, which most previous studies used, the side views

were subjected to the analysis; and there might be a bias

toward the symmetric images, because the symmetric com-

plex always appears in the side view orientation whereas a

significant portion of the asymmetric bullet-type complexes

may appear in the top view orientation. Chemical cross-

linking, which was often used for the stabilization of the

complexes in electronmicroscopic studies and electrophoretic

analysis (15,18), might also affect the complex formation and

stabilize the symmetric GroEL-GroES complex. The SAXS

technique has an advantage over the techniques used in the

studies that reported the symmetric complex formation. The

SAXS pattern directly reflects the structure of the GroEL-

GroES complex formed in solution (31–34,53,64); this is in

contrast to the techniques such as electron microscopy,

chemical cross-linking, and refolding assay, all of which are

more or less indirect. Furthermore, the concentration of

GroEL (3 ; 9 mM) used in the SAXS experiments here was

comparable to the real concentration (2.6 mM) of GroEL in E.
coli cells (65). Therefore, although some previous studies

have reported the formation of the symmetric GroES-GroEL-

GroES complex, the observation here by SAXS that only the

asymmetric complex was significantly present in solution

should leave little doubt that the asymmetric complex is the

major species within biological cells.

Although GroEL and GroES formed only the asymmetric

complex under physiological conditions, we found that they

formed the symmetric (football-type) complex when BeFx

and ATP were both present. In the presence of ATP and

BeFx, the ADP-BeFx complex was probably bound to the

nucleotide-binding site of GroEL, and ATP hydrolysis by

GroEL was stalled (42). The symmetric complex may not be

perfectly symmetric in terms of the bound nucleotides in the

two GroEL rings. One ring may be saturated with ADP-

BeFx, whereas the other ring may be bound to ATP. The

analysis of nucleotides extracted from the stable symmetric

complex showed, however, that only ADP occupied all 14

nucleotide-binding sites of GroEL, probably due to the

hydrolysis of the bound ATP (42). The complex of metal

fluoride and ADP strongly stabilizes interactions of the

GroEL heptameric (cis) ring with GroES (66); and hence the

binding of ATP to the trans side cannot eject the bound ADP

and GroES in the cis side, resulting in the formation of the

pseudosymmetric GroES-GroEL-GroES complex. It is noted

that such a pseudosymmetric complex formed in the pres-

ence of ATP and BeFx was also observed in archaeal group II

chaperonin (43).

Because ADP-BeFx mimics a transient state of ATP

hydrolysis (38–41,43), it is suggested that GroEL and GroES

may form the symmetric complex transiently during the ATP

hydrolysis cycle under physiological conditions. The exis-

tence of such a transiently formed symmetric complex is

supported by a recent report by Horowitz et al. (67), who

have studied the kinetics of binding and dissociation between

GroEL and GroES and suggested that the transient formation

of the symmetric complex may permit the exchange of a free

GroES for the GroES bound in the stable asymmetric

complex. The GroES/GroEL molar ratio within E. coli cells

is known to be 2, indicating that the transient formation of

the symmetric complex is feasible in vivo.
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