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A b s t r a c t - - W e  develop a generalized bounding method for the V~eiszfeld iterative procedure used 
to solve the hyperbolically approximated @-norm single- and multifacility minimum location prob- 
lems. We also show that, at optimMity, the solution to the bound problem coincides with the solution 
to the original location problem. We use this result to show that the rectangular bound value con- 
verges to the single-facility location problem optinml objective function value. @ 2002 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

A single facility minimum location problem (SFMLP) in the Euclidean plane (~2) is s tated as 
follows: 

rain S(x) = E wjd(x, aj) ,  (1) 
j= l  

where n is the number of fixed facilities; aj = (ajt,aj2), j = 1 . . . .  , n  are the fixed facility 
locations; x = (zl ,  x2) is the sought-after location of the new facility; wj > 0, j = 1 , . . . ,  n is the 
weight (demand) associated with fixed facility j; and d (u ,v )  is some distance function used to 
calculate the distance between any two points u, v E N2 Using similar notation, the multifacility 
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minimum location problem (MFMLP) is given by 

n rn--1 £ 

minM(X)= 
i=l j = l  i=1 r=i+l 

(2) 

where m is the number of new facilities; Wli j converts the distance between new and existing 
facilities i and j into a cost, where i = 1 , . . . ,  m, j = 1 , . . . ,  n; and w2< converts the distance 
between two new facilities i and r into a cost, where i = 1, . . . ,  m - 1, r = i + 1 , . . . ,  m. A com- 
prehensive review of continuous location theory is found in [1; 2, Chapter  11]. As is readily seen 
in formulations (1) and (2), distance predicting flmctions are an important  part  of the objective 
flmction of a continuous location model. Since the model should represent the real situation 
as closely as possible, the accuracy of the distance predicting function employed plays a crucial 
role in terms of the validity and the applicability of the locational decisions. The importance 
of an accurate representation of demand, the other ingredient of the model, is discussed in [2, 
Chapter  2]. 

Norms are usually employed as the basis for distance predicting functions in continuous location 
models. The main reason for this lies in the basic properties of a norm [3] which makes it well 
suited for distance predictions. Moreover, since norms are convex functions, incorporating a 
norm in the objective function of a continuous location problem provides the useflfl property of 
convexity in the optimization model. Love and Morris [4,5] present several distance predicting 
functions which are mostly round norms weighted by an inflation factor (stretch factor) to account 
for the amount  of nonlinearity in the transportat ion network. A significant conclusion of their 
s tudy is tha t  an empirical distance function should be tailored to a given region whenever a 
premium is placed on accuracy. This result is based on statistical analyses showing that  the 
weighted £v-norm outperforms both the weighted Euclidean and the weighted rectangular norms. 
Recall tha t  the gp distance between any two points u = (Ul, u.)) and v = (v~, v2) is given by 

gp(U,V) : [ lul  - v i i  p + lu2 - v21P] l/p, p ~ 1. (3) 

Using the notat ion given in (1) and (2), the objective functions of the single- and multifacility 
location problems with the t~r,-norm are represented by S(x) and M(X) ,  respectively. 

2. W E I S Z F E L D  P R O C E D U R E S  

The Weiszfeld procedure depends upon the convexity of the Euclidean metric, and thus, utilizes 
the first-order necessary and sufficient conditions. Since it is impossible to express tile unknown 
variables xl and x2 in closed form equations, the first-order derivatives cannot be solved directly. 
Instead, an iteration function is obtained by using these derivatives. Morris and Verdini [6] 
generalized the Weiszfeld procedure to solve S(x) and 2/./(X), and provided several properties for 
tha t  instance of the problem. 

In order to eliminate the obvious difficulty caused by the discontinuities in the derivatives, we 
use an approximation of the gp-norm in the objective function S(x). Using an approximation is 
discussed for rectangular distances by Wesolowsky and Love [7] and for Euclidean and rectangular 
distances by Eyster et al. [8]. Similar approximations are given for the gp-norm by Love and 
Morris [9], and Morris and Verdini [6]. Verdini [10] shows that  the approximation given by 
Eyster  et al. (for the Euclidean distance case) and Love and Morris is not appropriate when the 
Weiszfeld procedure is used for the gp distances problem with p > 1. Therefore, the approximation 
given here follows the one given by Morris and Verdini [6]. We employ the following hyperbolic 
approximation of the gp-norm. Using the notation given in (3), 

[ , , (u ,v)= [ ( (u , - v , )2+e)P /2+( (u2 -v2 )2+~)P /2]UP w h e r e p _ > l ,  ~ > 0 .  (4) 
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Note tha t  as shown by Brimberg and Love [11,12], the convergence of the Weiszfeld procedure 
for the gp distance problem is only guaranteed for 1 < p _< 2. For location problems where p > 2, 
the convergence properties of the Weiszfeld procedure is provided by 13ster and Love [13]. 

We use the notat ion 5 '(x)and 57/(X) to denote the objective functions of the approximated  
gp-norm SFMLP and MFMLP,  respectively. Weiszfeld's one-point i teration scheme for minimizing 

~ 

S(x)  is given by 

, \ 1--p 
f i  w j ( ( xk  - -a j t )2+e)  (P/2)-i (gp (Xk,aj))  ajt 

X~-+I = j= l  

kwj( (xkt  _ajt)2+e)(P/2)-l(~p(Xk,a3))l-~ ' ' 
j=l 

t =  1,2, (~) 

and for minimizing flTI(X), it is given by 

2k+ N F~t -}- N STk.t 
,-t - DF)~ + DSkrt 

r = l , . . . , m ,  t = 1 , 2 ,  (6) 

where 

f i  x (p-2)/2 / ~ NF~r =t w,rj((xk~t a j t )2+e)  ~gp(X~,aj)) 1-p = -- ajt, 
j=l  

\ ( p - - 2 ) / 2 / ~  
DFk.~ = f i w , , . j ( ( z ~ t - a j t ) 2 + e )  [gp ( x ~ , a j ) )  ' - p ,  

j=l 

NSkr t f i l /22((zrkt__ xi~)2 l_ {[)(p-2)/2(~p (x k x/''~'~l-pg2k \ r~ i ]J it, 
i=l 

i=1 

and 
; W2ri, if r < i, 

~/J2 
w2i~, i f r  > i .  

It  should be noted tha t  in order to deal with a well-formulated problem, we assume tha t  all new 
facilities are chained [14]. New facility i is chained if there exists a positive Wlij where j is any 
existing facility or if there exists a positive w2ir (or w'2~i) where r is any chained new facility. 

3 .  B O U N D I N G  M E T H O D  

The WeiszMd procedure is basically an iterative steepest-descent algorithm with a predeter- 
mined step size. Therefore, to terminate  the iterative procedure, a stopping rule or a bound for 
the best objective function value is required. The rectangular bound at an iteration is obtained by 
solving a rectangular  distance location problem. The bound problem involves locating the same 
number  of facilities in the original problem with respect to the existing facility locations with 
newly created weights. At each iteration, the percent difference between the op t imum objective 
function value of the rectangular bound problem and the current objective function value of the 
original problem is calculated. If this difference is smaller than a terminat ion value prespecified 
by the user, the procedure is terminated.  

Several bounding methods have been proposed for single- and nnfltifacility continuous location 
models. Love and Yeong [15] and Juel [16] developed stopping rules tha t  can be used with gp 
distance continuous location models. Drezner [17] introduced a stopping rule, which involves 
tim solution of a rectangular distance location problem, for the single-facility Euclidean distance 
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location problem. Dowling and Love [18] provided the extension of Drezner's rectangular bound 
to multifacility Euclidean distance models. Wendell and Peterson [19] utilized the dual of the gp 
distance minimum location problem to calculate a lower bound for the primal objective func- 
tion. Finally, Love and Dowling extended the rectangular bound to the single-facility fv distance 
model [20] and the multifacility ep distance model [21]. Both extensions involve the unapproxi- 
mated gp distances. Among those methods, it has been shown by Love and Dowling [18,20,21] 
that  the rectangular bound is more efficient than the others. Based on this result in this section, 
we first present some new results regarding the rectangular bounding methods for the fp-norm 
SFMLP and MFMLP. In particular, we develop rectangular bounding methods for the iterative 
solution methods of these problems with the approzimated distance function [p-norm. We also 
show that, at optimality, the solution to the bound problem for S(x) coincides with the solution 
to the original location problem. We use this result to show that, at optimality, objective fllnction 
values of S'(x) and the rectangular bound problem are equivalent. 

3.1. B o u n d  for S F M L P  

A rectangular bound for the iterative procedure (5) can be obtained by using the H61der 
inequality given by 

N (~_~ II/P(£ I 1/q 
I ~ 1  _< I~ I  p 19~1 ~ , 

i=1 i=1 i=1 

where a and fl are N-dimensional vectors, p > 1 and 1/p+ 1/q = 1. Taking N = 2 for the planar 
location model and letting 

Ol I = ((2;1 __ a j l )  2 _L d) 1/2, 

~, _- ((:~f - ~jt)2 + d (~-1)/~, 

~ _- ((~ _ aj~)~ + ~ ) , / 2  

and 

92 : ( ( x ~  - a~2) 2 + ~) , 

we ob ta in  

e) (p- 1)/2 

Rearranging terms, we have 

{p(X, a j ) ( ( ( X l  k -  a j l )2  Jr - £)P/2-1- ((x2 k - aj2)2 ~ - f.)P/2) l/q 

+ ( (x2  - ~ 2 )  ~ + ~ ) ' / ~  ( (x~  - a~2) + ~)~P-'~/~. 

Rewr i t i ng  the second te rm on the lef t -hand side, we obta in  

~p(x, aj) (~'l; (X~:,aj))P'- '  ~ ((Xl _ a j l )  2 _~ ~),/2 ( ( x ~ -  a j l )2  -~ - ~)(p-1)/2 

+ ((x.~ - ~ j2)  ~ + ~)'/~ ( (~  - a~2) + ~)~')-'~/~. 
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In order to obtain the cost function of the minimum model, we multiply both sides by wj and 
sum for j = 1 , . . . ,  n. Thus, we have 

n 

S(x) : E wiSp(x, aj) 
j = l  

n 

j = l  (/p (xk, aj))  p-1 

n + E w  j ((x2-ay2) 2 _]_ ~)1/2  ( ( x 2  k _ a j 2 ) 2  J[- 5)  ( I ) -1) /2  

j=l (~p (xk, aj))  p-1 

Minimizing both sides of the inequality over x gives 

((~1- ~j~): +~)1.  ((xl _ ~1)~ + 
S(x*) > rain wj ([p(xa,aj))p_l 

÷ ~ ,  ((x2 - a~2) 2 + 41/2 ( (~  _ a,~)2 + ~)(.,)/2 / 

j=l ([p(xk,aj))  p-1 ; 
Without changing the direction of the inequality, the terms ((xl -ajl) 2 q-~)1/2 and ((x2 - aj2) 2 + 
e)1/2 can be simplified as Ix1 -a j l l  and Ix2 -aj21, respectively. Thus, the bound as a rectangular 
distance problem, SBk(x), is found as 

?2 n 
oOB k (x R) = rain ~-" u~ IxR1 - aj,] + min E vj Ix~ - aj2 I 

l? ~ o xl  { 
Xl j = l  2 j = l  

(7) 

where 

((~ _ aJ l )  ~ + ~) (~-1>/2 

and ~l,j -.~ W j  p -  1 ' 

([p (xk, aj))  

vd=wJ p-1 , j = 1 , . . . , n .  
(gp (xk, aj))  

For notational convenience, we denote the solution of a rectangular distance location problem 
by x R, and thus, the bound at an iteration k is given by SBk(xR*). 

Let Sj(x), j = 1 , . . . , n ,  denote the terms in o5(x). Then the first derivatives of Sj(x) with 
respect to Zl and x2 are 

G~Sj(X) : Wj ( (Xl  -- a21) 2 -I- ~ ) (p -1 ) /2  

O~j(x) ( ( ~  _ aj2)2 + ~)(~-1)/~ 

(x~aa/12 ) 
( ( x l  - ~ j t )  2 + ~ ) 1 / ~ ] ,  

(x~_- aj22 ) 
((~2 - aj~)2 + ~)1/2]  ' 

and 

j = l , . . . , n .  
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By le t t ing  e --~ 0 and using the equal i ty  (xt - aj t)  = sign (xt - a s t ) l x t  - ao t l ,  for t = 1, 2, we can 
simplify the  last terms and obta in  

OSj(X)  ((Xl __ a j l )  2 -~ ~)(p--1)/2 
-- Wj sign (Xl -- aj I )~ a n d  

0Xl ( [p(X,  a j ) )  p-1  

(~Sj (X) ((X2 -- a j2)  2 -}- 5)(p--1)/2 
0 x 2 - - w j  (~r,(x, a j ) )  p_ 1 sign ( x 2 -  aj2), j = l  . . . .  ,n .  

Thus,  uj  and vj can be rewri t ten as 

(x 
and vj = Ox2 , j = 1 , . . . , n .  ( 8 )  

PROPERTY 3.1. Let $7~ be the  set of all the points which are opt imal  for the  rectangular  bound 
problem. Then,  x* E S n.  

PROOF. We order the existing facility locations a j ,  j = 1 , . . . ,  n in their  coordinates  in the  x~- 
and x2-direct ions as follows: 

a < ' ' '  < ttjl < U,jl < ' ' *  < aj l  

and 

a[31] 2 < . . . <  aS~ ] < 0,5';+1] < . . .  < aS~ ], 

where the  bracketed superscr ipts  denote the ordering and ties are broken arbitrari ly.  Let ~ c  

denote  the convex hull of the existing facility locations. It is well known tha t  x* c 7-/c [22]. 
There  are four cases to consider. 

CASE 1. Suppose tha t  x* E ~ z  where ~ z  = ~ c  N ~ z  and ~re  is a rectangular  hull defined by 
[t*+ L] [,,] _ [~+  11 the  edges Xl = a~q ], xl  = a01 , x2 = aj2,  x2 = {*j2 . The first-order necessary and sufficient 

condit ions for the S F M L P  s ta te  tha t  

OX 1 0222 - -  O. j = l  j = l  

Since 

a~J<(× *) aSg(x*) >o, for <,, <0, 
Ozl Oxl 

~ o~'[< (x  * ) 
O ~](x*) > 0 ,  f o r a < . ,  a < 0 ,  

Ox2 Ox2 

f o r G > _ # + l ,  

for a > t J + l ,  

we must have 

o4<(x.) o4<(,, ,) , 

E = E - 
G<:p, a_>u+l 

agj<(x *) 
E OX 2 = 
G'~ IY 

E 
G_~lJ+l 

ag~<(×*), 
Ox2 

(9) 

(10) 
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Using (8), (9) and (10) can be rewritten as 

a_</~ a k # + l  

E vj = vj , 

( I I)  

(12) 
a < u  cr_>u+l 

respectively. Observe that  (11) and (12) imply the optimality conditions for the rectangular 
bound problem. Any point in ~ z  is an optimal solution to the rectangular bound problem, i.e., 
$ ~  = 7-{ z, and thus, x* ~ 8~ .  

CASE 2. Suppose that  x* ~ 7~ ~, where ? /z  = ~ c  N ~z; and ~ £  is a line segment on the 
= ~1 = = a ['+11 Using the first-order necessary and hyperplane Xl a ] between xu aJ; 1 and x2 j~ . 

sufficient conditions for the SFMLP, (8) and the relations 

o4<(x*) 
> 0 ,  f o r ~ < # - l ,  - 0 ,  

OZ 1 C~X 1 

*) *) 
< 0 ,  for (7 > # +  1, > 0 ,  

Ox~ Ox2 

we must have 

< 0 ,  
Ox2 

for (7 _> u +  1, 

for a = # ,  

f o r  (7 ~ /2~ 

(la) 

(14) 

we must have 

for a>_ u + l ,  

E u~ ~ ] =  E u~ a]' (15) 
a<_tz ~r_>tt+l 

E v; a]= E v; cd' (16) 
c r < u - 1  cr_>~+l 

Observe that  (15) and (16) imply the optimality conditions for the rectangular bound problem. 
\Ve have N~ = 7-/Cz, where ~E z  = ~ c  A ?/E7~ and ~Er~ is a rectangular hull defined by the edges 

["1 = a [~+ll u ['-1] and x2 = a~2 +11. Obviously, 7-{ z C ~ $ z ,  and thus, x* ~ S r¢. 
X l  ~-- a j l  ~ X l  j l  , X2 ~. j 2  

o~5< (x * ) 
< 0 ,  

Ox2 

~ osS<(x *) 
0 °}(x*) > 0 ,  fo r~_<l t ,  < 0 ,  f o r a > _ p + l ,  

O X l  O X l  

4 
0 ~](x*) > 0 ,  f o r ( 7 _ < u - 1 ,  - 0 ,  f o r a = u ,  

Ox2 Ox2 

~<IL--I cr >/~+ I 

[~] E vj E vj = 
~ < u  cr>s/+l 

Observe that  (13) and (14) imply the optimality conditions for the rectangular bound problem. 
We have S r¢ = ~c: r  where ~E z  = ~ c  a 7~ Cr~ and 7-{ Er~ is a rectangular hull defined by the edges 

a[,,+i] ~ z  ~ g z ,  x* $ ~ .  _[,-1] = a [u+l] -['] and x2 = Obviously, C and thus, c Xl : ¢tjl  , Xl  j l  , X2 ~--- {*j2, j2  " 

CASE 3. Similar to Case 2, suppose that  x* c ~ z  where T/z = ~ c N ~ c  and ~ c  is a line segment 
= = = a [~+1] _[vl between xl -[~*] and Xl Using the first-order necessary on the hyperplane x2 ~j2 ~ji jz 

and sufficient conditions for the SFMLP, (8) and the relations 
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"["] Using CASE 4. Suppose that  x* is the intersection point of hyperplanes x 1 = a[3q] and x.2 = "U2" 
the first-order necessary and sufficient conditions for the SFMLP, (8) and the relations 

we nmst have 

o4<(x*) 04<(~*) 
> 0 ,  for ~ _< l z - 1 ,  - 0 ,  f o r c r = p ,  

C~X 1 OXl 

4 °4°~(x*) O O](x,) < 0 ,  for c r _ > i , + l ,  > 0, for (r<_ ~ - 1 ,  
C~X 1 OX 2 

a](X*) --0, fo rc r= /J ,  < 0 ,  f o r c r > z / ÷ l ,  
0 

Ox2 Ox2 

~j° [~] = y~ u5 <, (17) 
o<I*-- 1 c~_>l*+ 1 

C 4 <:  C v;°} (is) 
o<_r,--1 c~_>,~+l 

Observe that (17) and (18) imply the optimality conditions for the rectangular bound problem. 
\Ve have $T¢ = ~ z  where 7-{ E:z- = ~c A ~gr~ and ~g~z is a rectangular hull defined by the 
edges .T 1 = ¢*jl~[;t--1]' X l  ~ -  (*jl̂ [P+I]' X2 = a["-qj2 , and x2 = ~32~[r'+1]" Obviously, 7-{ z C 7-{ Ez., and thus, 
x* ~s r¢ .  I 
PROPERTY 3.2. If x* is optimal for oR(x), then limk~o~ SB(x*) = oR(x*), for all p > 1. 

PROOF. We first rewrite (7) at optimality in its original form by introducing e > 0, 

( (22f*- -a j l )2 - r - (~)  1/2 ((x~'--ajl)2 @~:) (p 1,/2 

j : l  (/,, (xk, a j ) )  p-1 

+ ~ wa 
j=l (/p (x~" aa)) p ' I  

By Property 3.1, we have 

lira ~B k (x*) = ~ ~,~ 
((X~ a j l )  2 ~)1/2 ((2;~ a j l )  2 - + - + e )  ( ~ ' - ] ) / 2  

+ ~ 'wj 
j=,  (/p (x*, a j ) )  p - '  

and by simplifying, we obtain 

j=l (/p(x* aj)) p-1 

lim SB k (x*) = ~ wj 
k~oo 

j=l  

ajl/2 + )PJ2 + a,2/2 + 

= ~(x*). 
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3.2. B o u n d  for M F M L P  

We develop a rectangular bound for the iterative procedure (6) used to solve 5}I(X). The 
H61der inequality is used in the same way as in the single-facility case. Considering the first part 
of the objective function, let 

)1 /2  
Ol 1 ---- (32il -- a j l )  2 -~- (~ , 

~1 = ((xkl _ajl)2-t-~) (p-l)/2, 

Ct2 = Xi2 -- aj2)  2 ~- e , 

and 

Then it follows that: 

((x:2_ + 

[p(Xi,aj) (((xkl --ajl)2-t-OP/2 ~- ((xk2--aj2)2-t-~)P/2) 1/q 

((Xi 1 __ a j l ) 2  t_ ~)1/2 ( ( x ~  1 _ a j l ) 2 _ [ _  ~) (P-1) /2  

Jr- ((xi2 -- a j2)  2 ~- (0 1/2 ((xk2 -- aj2) -~ £)(p-1) /2 ,  

and using similar steps as those for the single-facility case, we obtain 

~-~Wlijgp(Xi,aj)>_ ~ ~UlijlXil-ajll+ ~ ~Vl~ j l x i2 -a j21 ,  
i=1 j = l  i=1 j = l  i=1 j = l  

(19) 

where 

and 
Ulij = Wlij ([P \[xk,a'~P-li 21] ' 

Vl~j =wl i j  p-1 , i =  l , . . . , m ,  j =  l , . . . , n .  
(/p (x~, a j ) )  

For the second part of the objective function, we define 

~1 = ((X~l - x ~ )  ~ + ¢)~/~, 
,~ (p--1)/2 

Zl  : ( (Zkl  -- 22rkl) 2 ~t- {[) , 

~ = ( ( z ~  _ . ~ ) ~  + ~)1/~, 

and ( )(p-i)/2. 
~2 = ( x ~  - x~2)  ~ +~ 

Using the H61der inequality, it follows that: 

m--1 ~ rn--1 ~ m - 1  

i=1 r = i + l  i=1 r=i+l i=1 r=i-b l 
(20) 
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where 

?t2i r ~ W2i r 

((X/kl _ Xrkl)2 _ 5)(p-1)/2 

([p (X)~, Xrk)) p-1 

V2ir ~ W2ir 

and 

i = l , . . . , m - 1 ,  r = i + l , . . . , m .  

Combining the two results (19) and (20), we obtain 

i=1 j=l 
rrl--1 

i=1 r= i+l  

(21) 

Minimizing both sides of  (21) and defining X R as in the SFMLP case, we have 

~ [ ( X * )  ~_ minx a {~i=1j=1 ~ t l i j  [xff  - a j l  ] -{-vii j Ix R - a j 2  ] 

,rn-- 1 ,~ } 

i=1 r : i + l  

Let A)I~j (X) and ~I2~.(X) denote the terms of the first and second sum in h i ( x ) ,  respectively. 
Then, similar to the SFMLP case, the created weights are given by 

71,1i J = 

~t2.ir 

OA~[lij (X  k) 

~Xil  

o :I i, 
~Xil  

, Y l i j  --~ 

V2ir : 

O]~li j  (X  k) 

Oxi2 

Oxi2 

, i = 1 , .  

i = 1 ,  

. ,m,  j - -  1 , . . . , n ,  

. , m - l ,  r = i + l , . . . , m .  

If we denote  the right-hand side of inequality (21) by 2~IBk(XR), then a bound for the multifacility 
locat ion problem is obtained at any iteration k by solving the multifaeility rectangular distance 
location problem minx,~ f¢B k (XR).  The equality of the objective flmetion values for the MFMLP 
and the rectangular bound problem at optimality, i.e., bIB(X*)  = h i ( X * ) ,  can be obtained as in 
the single facility case (Property 3.2). 
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