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Abstract—Wwe develop a generalized bounding method for the Weiszfeld iterative procedure used
to solve the hyperbolically approximated ¢,-norm single- and multifacility minimum location prob-
lems. We also show that, at optimality, the solution to the bound problem coincides with the solution
to the original location problem. We use this result to show that the rectangular bound value con-
verges to the single-facility location problem optimal objective function value. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

A single facility minimum location problem (SFMLP) in the Euclidean plane (R?) is stated as
follows:

k23
min S(x) = Y w;d(x,a,), (1)

—
where n is the number of fixed facilities; a; = (aj1,a;2), j = 1,...,n are the fixed facility
locations; x = {xy, z2) is the sought-after location of the new facility; w; >0, j =1,...,n is the

weight (demand) associated with fixed facility j; and d(u,v) is some distance function used to
calculate the distance between any two points u, v € 2. Using similar notation, the multifacility
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minimum location problem (MFMLP) is given by

m n m—1 m
min M(X) = Z Zwmd(xi,aj) + Z Z Waird(Xi, Xp ), (2)
=1 j=1 =1 reitl

where m is the number of new facilities; wy,; converts the distance between new and existing
facilities ¢ and j into a cost, where ¢ = 1,...,m, j = 1,...,n; and wsq,;, converts the distance
between two new facilities ¢ and r into a cost, wherei =1,...,m -1, r=i+1,...,m. A com-
prehensive review of continuous location theory is found in [1; 2, Chapter 11]. As is readily seen
in formulations (1) and (2), distance predicting functions are an important part of the objective
function of a continuous location model. Since the model should represent the real situation
as closely as possible, the accuracy of the distance predicting function employed plays a crucial
role in terms of the validity and the applicability of the locational decisions. The importance
of an accurate representation of demand, the other ingredient of the model, is discussed in [2,
Chapter 2.

Norms are usually employed as the basis for distance predicting functions in continuous location
models. The main reason for this lies in the basic properties of a norm [3] which makes it well
suited for distance predictions. Moreover, since norms are convex functions, incorporating a
norm in the objective function of a continuous location problem provides the useful property of
convexity in the optimization model. Love and Morris [4,5] present several distance predicting
functions which are mostly round norms weighted by an inflation factor (stretch factor) to account
for the amount of nonlinearity in the transportation network. A significant conclusion of their
study is that an empirical distance function should be tailored to a given region whenever a
premium is placed on accuracy. This result is based on statistical analyses showing that the
weighted £p-norm outperforms both the weighted Euclidean and the weighted rectangular norms.
Recall that the ¢, distance between any two points u = (u1,u2) and v = (v, v2) is given by

b, v) = [Jus — o1 + Jua —waP]"7, p>1. (3)

Using the notation given in (1) and (2), the objective functions of the single- and multifacility
location problems with the £,-norm are represented by S(x) and M (X), respectively.

2. WEISZFELD PROCEDURES

The Weiszfeld procedure depends upon the convexity of the Euclidean metric, and thus, utilizes
the first-order necessary and sufficient conditions. Since it is impossible to express the unknown
variables x, and x2 in closed form equations, the first-order derivatives cannot be solved directly.
Instead, an iteration function is obtained by using these derivatives. Morris and Verdini [6]
generalized the Weiszfeld procedure to solve §(x) and M (X), and provided several properties for
that instance of the problem.

In order to eliminate the obvious difficulty caused by the discontinuities in the derivatives, we
use an approximation of the £,-norm in the objective function S(x). Using an approximation is
discussed for rectangular distances by Wesolowsky and Love [7] and for Euclidean and rectangular
distances by Eyster et al. [8]. Similar approximations are given for the ¢,-norm by Love and
Morris [9], and Morris and Verdini [6]. Verdini [10] shows that the approximation given by
Eyster et al. (for the Euclidean distance case) and Love and Morris is not appropriate when the
Weiszfeld procedure is used for the ¢, distances problem with p > 1. Therefore, the approximation
given here follows the one given by Morris and Verdini [6]. We employ the following hyperbolic
approximation of the £,-norm. Using the notation given in (3),

. o211/
Ly(u,v) = [((ul —v)? + e)p/2 + ((u2 — v2)? + s)z/z] p, where p > 1, € > 0. (4)
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Note that as shown by Brimberg and Love {11,12], the convergence of the Weiszfeld procedure
for the £, distance problem is only guaranteed for 1 < p < 2. For location problems where p > 2,
the convergence properties of the Weiszfeld procedure is provided by Uster and Love [13].

We use the notation S(x)and M (X) to denote the objective functions of the approximated
KP—norm SFMLP and MFMLP, respectively. Weiszfeld’s one-point iteration scheme for minimizing
S(x) is given by

5wy (o = )+ ) (0 (5,))

k+1 _ 3=l
Ty = n /2)-1,. i-p t= 1a27 (5)
J; w]<(azf—aﬁ)2+5> (Ep (x ,a]-))
and for minimizing M (X), it is given by
NFE 4+ NSk
k+1 _ 7t rt — -
Ty = _——DFQ +D5ft ’; r=1,...,m, t=1,2 (6)
where
R . (p=2)/2 1-p
NFt :Zwlrj((w';t—aﬁ)Q—l—e) (ﬂp (x};,a])> Qjts
7=1
n ) (p—2)/2 /. 1-p
DFf =Y wi((wh—a) +e) (6 (hay)
j=1
7 2 (p~2)/2 /. 1-p
NSk = ng((xft — zft) + e) (ﬁp (x’;,xi‘)) zk
i=1
s (p—-2)/2 /_ 1-
DSk = ng((xft - .rft)Q + e) g (é,, (xT,xf')) p,
i=1
and

Wors, If 7 <4,
wy = . )
Woer, 7 >4,

It should be noted that in order to deal with a well-formulated problem, we assume that all new
facilities are chained [14]. New facility 4 is chained if there exists a positive wi,;; where j is any
existing facility or if there exists a positive ws;, (or wo,;) where r is any chained new facility.

3. BOUNDING METHOD

The Weiszfeld procedure is basically an iterative steepest-descent algorithm with a predeter-
mined step size. Therefore, to terminate the iterative procedure, a stopping rule or a bound for
the best objective function value is required. The rectangular bound at an iteration is obtained by
solving a rectangular distance location problem. The bound problem involves locating the same
number of facilities in the original problem with respect to the existing facility locations with
newly created weights. At each iteration, the percent difference between the optimum objective
function value of the rectangular bound problem and the current objective function value of the
original problem is calculated. If this difference is smaller than a termination value prespecified
by the user, the procedure is terminated.

Several bounding methods have been proposed for single- and multifacility continuous location
models. Love and Yeong [15] and Juel [16] developed stopping rules that can be used with £,
distance continuous location models. Drezner [17] introduced a stopping rule, which involves
the solution of a rectangular distance location problem, for the single-facility Euclidean distance
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location problem. Dowling and Love [18] provided the extension of Drezner’s rectangular bound
to multifacility Euclidean distance models. Wendell and Peterson [19] utilized the dual of the £,
distance minimum location problem to calculate a lower bound for the primal objective func-
tion. Finally, Love and Dowling extended the rectangular bound to the single-facility £,, distance
model [20] and the multifacility ¢, distance model {21]. Both extensions involve the unapproxi-
mated ¢, distances. Among those methods, it has been shown by Love and Dowling [18,20,21]
that the rectangular bound is more efficient than the others. Based on this result in this section,
we first present some new results regarding the rectangular bounding methods for the £,-norm
SFMLP and MFMLP. In particular, we develop rectangular bounding methods for the iterative
solution methods of these problems with the approrimated distance function fp—norm. We also
show that, at optimality, the solution to the bound problem for S (x) coincides with the solution
to the original location problem. We use this result to show that, at optimality, objective function
values of S(x) and the rectangular bound problem are equivalent.

3.1. Bound for SFMLP

A rectangular bound for the iterative procedure (5) can be obtained by using the Holder
inequality given by

1/q

N N Ur ;N
D el < (Zbﬂp) (ZWHQ) 5
i=1 =1 =1

where o and § are N-dimensional vectors, p > 1 and 1/p+1/¢ = 1. Taking N = 2 for the planar
location model and letting

oy = ((z1 — a;1)? + 6)1/2,

By = ((:1:’1“ _ aﬂ)z n 6)(1)—1)/27

ag = ((z2 - ajo)® + €) 1/2,
and

By = ((1’5 B aﬂ)z n 6) (p—l)/z’
we obtain

(p—1)/2 )(7)*1)/2

(21 = a3 + 9" ((at = 0)" +)
= <((($1 —a;)® + 6)1/2>p + (((l’g —aj)? + 6)1/2)p)

X ((((,r’f —an)’ + e) (7'_1)/2){] + (((r’; —ap)’ 4+ e) WW?) q) W.

Rearranging terms, we have

- p/2 J2\ Ve
ép(x,aj)(((z’f—ajl)2+e> + ((z’z‘ —aj2)2+e>p )
)(P—l)/Q

-+ ((.’IIQ — ajg)z + 6) 1/ ((ﬂfé - aj2)2 + €

1/p

1/2 : 2
> (@1 —ap)? +6) " ((of —ap0)" + e
1/2 . (p—1}/2
+ (w2 —a0)?+e) " (2% —ap) +¢)7 2
Rewriting the second term on the left-hand side, we obtain

; ; P , (r-1)/2
fp(x,a;) (57) (kaaj)) > (21— a)* + €)' ((iﬁf —a;) + 6> ’

+ ((:Lz - (sz)2 + 6) 2 ((;1:’2c — ajg) + e) (pil)/z.
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In order to obtain the cost function of the minimum model, we multiply both sides by w; and
sum for j =1,...,n. Thus, we have

S(x) =Y wiby(x,a))
=1 v

1/2 2 (p~1)/2
(z1 —a;1)? +e) / ((z'f —-aj1) +e)

(gp (xkvaj))p_l
=0+ (5 —a)" +)

(B k)

2
> ij
j=1

(p—1)/2

+ i w; ((I
j=1

Minimizing both sides of the inequality over x gives

(p—1)/2
xy —aj1)? +6)1/2 ((ﬂl‘ —ajl)z +e> ’

(gp (x*,a; )) P*1

+ iw]‘ ((
i=1

S (x*) > mi S

(x*) > min ij
j=1

(p-1)/2
Ip — aj2)2 + 6)1/2 ((’L‘IQc - CL]Q)Q -+ 6)
- p—1
(7 (xt,27))
Without changing the direction of the inequality, the terms ((z1 —a;1)%+¢€)}/2 and ((z2 — a;2)% +

€)!/? can be simplified as |21 —a;1| and |z3 — aj2|, respectively. Thus, the bound as a rectangular
distance problem, SB*(x), is found as ’

n n
SBk (xR) = ri]}?nZuJ !.I{? — (1]'1| + IS}PZU] ‘LE? — aj2|, (7)
1 j=1 2 j=1

where

=172
(@ -an)®+e)"

(Zp (xk, a]-)) e
((az’zc - aj2)2 + e) (o

(Ep (xk:aj))p_l

, and

V; = Wy s j:l,.“,n.

For notational convenience, we denote the solution of a rectangular distance location problem
by x®, and thus, the bound at an iteration k is given by SB*(xf").

Let S'j(x), j =1,...,n, denote the terms in S(x). Then the first derivatives of S;(x) with
respect to z; and z; are

95,00 _ (@ —an)+9" " (21~ a;1) and
oz, ! (B,(x,2,))P~1 ((z1 — a;1)? +€)*?
95;(x) (22 = ap)* + """ ( (z2 —a;2) ) =1
iz ) J=5-mn

oz T (B(x.ap))r (22 — az2)? +¢)
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By letting € — 0 and using the equality (z; — a;;) = sign (z¢ — ajs)|@zs — aj¢l, for £ = 1,2, we can
simplify the last terms and obtain

g 2 (p—1)/2
. )
OZJ:C(X) =Y (i ~aﬂ) 67))—1 sign (z1 — aj1), and
! (f,,(x, aj))
S, PRY (p—1)/2
B?T(X) = w; ((”62 a]Z) +5) sign (xo —ajg), j=1,...,n.
T

(gp(x, aj))p&l

Thus, u; and v; can be rewritten as

E)S'j (Xk)
81‘1

a5, (x*
u; = and v; = —% 7=1,...,n (8)

PROPERTY 3.1. Let S™ be the set of all the points which are optimal for the rectangular bound
problem. Then, x* € S™.

PRrROOF. We order the existing facility locations a;, 7 = 1,...,n in their coordinates in the z,-
and zo-directions as follows:

In]

(1]
: < ajy

[u+1]
]1 < ..

agll} <-e<ay) <ay
and

aglz] << a%] < a%ﬂj <o < a%],
where the bracketed superscripts denote the ordering and ties are broken arbitrarily. Let HC
denote the convex hull of the existing facility locations. It is well known that x* € H® [22].

There are four cases to consider.

CASE 1. Suppose that x* € HZ where HZ = H® NH® and H* is a rectangular hull defined by
i ) _u1 W Nz
the edges =1 = aji, Ty =057 0, T2 = Qo =aj

conditions for the SEFMLP state that

To . The first-order necessary and sufficient

8:81 - 6$2

"L 985 (x*) "L 98;(x*)
E — =0 and E --]——-:O.
Jj=1

Since

agﬁa](x*) 0, f < 85‘1[.0](x*) 0, f > 1
T>’ or o < pu, T<, oro > u+1,
257 (x*) 85171 (x*)
. >0, foro<v, ——— <0, foro>v+1,
d&?g (9.’L'2
we must have
881} (x*) 881 (x*)
> > =, ©
a<lp 1 ozp+l T
Glo) (o glol
BS].a (x*) _ Z 85’]5 (x*) (10)
o<v z2 o>r+1 T2
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Using (8), (9) and (10) can be rewritten as

Soul= 3w (11)
o<u o>u+1
Sul= 30 o (12)
o<v a>v+1

respectively. Observe that (11) and (12) imply the optimality conditions for the rectangular
bound problem. Any point in HZ is an optimal solution to the rectangular bound problem, i.e.,
S® = HZ, and thus, x* € S®.

CASE 2. Suppose that x* € HZ, where H? = H® N H* and H% is a line segment on the
hyperplane z, = agll between z, = a[Q] and 2o = ay;”]
sufficient, conditions for the SFMLP, (8 ) and the relations

. Using the first-order necessary and

851 (x* a5l (x*
—J—u>0, for o < pp— ;(—Z:O, for o = p,
8I1 611
85171 (x> a8l (x*
——Jg<0, foroc>p+1, ——l———(———2>0, for o < v,
8m1 axz
ag[_‘f](x*)
—1 <0, foro>v+1,
612
we must have
¥ - X w
o<pu—1 o>u+l
S T "

o<y

o>v+1

Observe that (13) and (14) imply the optimality conditions for the rectangular bound problem.

= HET where HEZ =

), 1 —ag’”l] 2o = al)

We have S® =

oo 1]
ry = ajl

CASE 3. Similar to Case 2, suppose that x* € H* where HZ =

vl

on the hyperplane z3 = aj, between z; = a[‘

]2,and$ =a;

HE NHER and HE™® is a rectangular hull defined by the edges
[|/+1]

Obviously, H% ¢ HET, and thus, x* € SR,

HENHE and HE is a line segment
h +1 Using the first-order necessary

{

and x; =aj

and sufficient conditions for the SFMLP, (8) and the reldtlons

————————BS[U (X ) f < 85'][-0]()(*) <0 fi >n+1
oz, TS o1 Cre =TS
sl a5\ (x*
—]r—(x—)—>07 foro <v-1, ——L:O, for o = v,
8$2 8$2
8517 (x*)
—J - 1«0, foro>v+1,
8$2
we must have
Tl = 3 W (15)
o<lp a>p+l
SR S 6

o<rv—1

o>v+l

Observe that (15) and (16) imply the optimality conditions for the rectangular bound problem.

We have S® = HEZ, where HET = HE NHER and HER is a rectangular hull defined by the edges
T, = aw, T = a[“H], Ty = % ,and zop = g”; I Obviously, HT  H®7, and thus, x* € S™.
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CASE 4. Suppose that x* is the intersection point of hyperplanes z; = a%]

the first-order necessary and sufficient conditions for the SFMLP, (8) and the relations

. = ¥l ;
and 72 = a;,. Using

83[}7] x* 85'[‘7] x*

_—%I_(I_)>O’ foro <p-1, %:O, for o = p,

a8l (x*) o517 (x*)

— - <0, foro > p+1, — >0, foro<v-—1,
8$1 0;132

85["] * 85‘[‘7] <*

—]—(x—):O, for o = v, ¢<0, forc>v+1,
Oxo Oxg

we must have

o= 3 W (17)

o<pu—1 a>u+l
> oul= 3y (18)
o<v—1 a>v+1

Observe that (17) and (18) imply the optimality conditions for the rectangular bound problem.

We have S = H®Z, where HEZ = HE N HER and HE® is a rectangular hull defined by the

—1 1 -1 1 .
edges x; = ag’{ Ve = ag.‘fr L a% I and 2o = a%+ I, Obviously, H¥ < HfT, and thus,

x* € S®. ]
PROPERTY 3.2. If x* is optimal for S(x), then limg_o, SB(x*) = S(x*), for all p > 1.
ProoF. We first rewrite (7) at optimality in its original form by introducing € > 0,

N 1/2 : (p—1)/2
((m{? —aj1)2+6) <(xf—aj1)z+e) !
wj ~ =1
1 (ép (x",a_.,-))
. . 1/2
n ((l? — ajg)z + 6) ((’Lg — 012)2 + E)

j=1 (Ep (x"‘,aﬂ)pAl

SB* (xR‘> =

I

If

J

(p—1)/2

1/2 .
(23 - 0i2)" +€) (w3 —a2)” + ¢

n
+ E W
j=1

and by simplifying, we obtain

klir{:O SB* (x*) = Zwl
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3.2. Bound for MFMLP

e develop a rectangular bound for the iterative procedure (6) used to solve M(X). The
Holder inequality is used in the same way as in the single-facility case. Considering the first part
of the objective function, let

1/2

o) = ((fﬂzl - aj1)2 + 6) )
2 (p—-1}/2
((ah —ay)® +e :

) 1/2
ay = ((%2 - aj:))2 + 6) )

B

il

and
(p—-1)/2

po = ((ah =) +¢)
Then it follows that:

- p/2 : p/2\ M/
£, (xi,a5) (((mfl — aj1)2 + 6) + ((7:5“2 - ajg)z + e) )
. (p—1)/2
Z ((1'11 — aj1)2 + 6) 1/2 ((acfl - aj1)2 + 6)
+ (a2 — aj2)? + ) (2% — aza) +6) 772,

and using similar steps as those for the single-facility case, we obtain

m n m T m n
Z Z wiilp (xi,85) > Z Zum\ﬂ?u —a|+ Z Zvuﬂmiz — ajal, (19)
i=1 ‘:

i=1 j=1 i=1 j=1
where
(p—1)/2
(((Licl — ajl)z + 6)
Uiij = Wiy - p—1 ’ and
(é,, (xi ’aj))
2 (p—1)/2
((@h -~ ap)* +e) |
V1ij = Wiy , 1=1,....m, j=1,...,n.

(B (t,2))"

For the second part of the objective function, we define

o1 = ((zin — z01)? + 6)1/2,

(p—1)/2
= (e st 1)
Qg = ((am —zm0)? + 6)1/2 ,

and (p—1)/2

2
8= ((ah k)" +¢)
Using the Holder inequality, it follows that:

m

m—1 m m-— m
Z Z xmxr > Z Z u21r|$11 - $r1| + Z Z U21r|x12 - -’lrz‘ (20)
=1 r=1

=1 r=i+1 i=1 r=i+1
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where

(p—1)/2

(5 —=5)" +¢)
(5 (b))
((96?2 ) 6) (p~1)/2
(7 (et )"

Combining the two results (19) and (20), we obtain

Uiy = Wogp , and

V2ir = Wir

m n
M(X) >3 gz - aj1] +viglzio — ajo]
=1 j=1
m—-1 m

+ Z Z U2ir|Ti1 — Tr1| + V2ir|Tio — Trol.

i=1 r=it+l
Minimizing both sides of (21) and defining X% as in the SFMLP case, we have

m n

J\TI(X*) > I)Iéllp ZZUW lzﬁ — aj1| + vy I:cg - a]-2|
i=1 j=1

m—

, 1=1,....m—=1, r=+1,...

,m.

(21)

1 m
+ Z Uiy |7«ﬁ - -7?1»11 + V2ir ITg - Irz‘ .

i=1 r=i1+1

Let ]\7[1ij(X) and AT{QW(X) denote the terms of the first and second sum in ]\Y(X), respectively.

Then, similar to the SFMLP case, the created weights are given by

AMy,; (XFk AMy,; (XK , .
U’li]: %[7 vlij: _—8.]'17‘(2—>’ 7’:17"'7mv ]:17”'7”7
1 T
OMy,, (XF OMo;, (XF
UQ,-T:—Q—A—), Ugir:—-———M t=1,....m—-1, r=i+1,...,m.
8(Ei1 8271‘2

If we denote the right-hand side of inequality (21) by MB*(X®), then a bound for the multifacility
location problem is obtained at any iteration k by solving the multifacility rectangular distance
location problem minx ]\]Bk(XR). The equality of the objective function values for the MFMLP
and the rectangular bound problem at optimality, i.e., MB(X*) = M(X*), can be obtained as in

the single facility case (Property 3.2).
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