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Bijections are presented between certain classes of trees and multichains in non-crossing 
partition lattice’+. 

1. Introdmtion 

In a previous paper El], we proved results -about the enumer;ation of certain 
types of chains in the non-crossing partition lattice T, and its, generalizations. In 
this paper we present bijections to certain classes of trees which reprove one 
theorem [l, Corollary 3.41 and provide a combinatoridi proof for the other [I, 
Theorem 5.31. 

We begin with a review of the definitions. A set partition X = {B,, BZ, . . . , Z&} 

of the <set {1,2, . . . , m}= [m] is called non-crossing (n.c.) if there do not exist four 
numbers a < b Cc <d such that a, c E Bi and b, d E Bi and if j. Let T, be the set 
of all n.c. partitions of [m] ordered by refinement. That is, XS Y if each block of 
X is contained in a block of Y. T, is a lattice and was first studied by Kreweras 
[5] and Poupard [S]. 

Define a R.C. 2-partition of the set [m] to be: a set 

rr = {(A,, B,J, (A,, BJ, - . . , L%r &)I 

such that 
(i) the sets Al, Aa,. . . , Ak form a n.c. partition of [m]; 

(ii) the sets &, &, . . . , Bk form an ordinary partition of [m]l; 
(iii) lAil = \B,l for all 1 aid k. 

Let T”, be the poset of n-c. ‘L-partitions ordered by refinement. 
For any poset P, define Z(P; n), the zeta polynomial of P, to be the number 

of multichains in P of cardinality n - 1, i.e., the number of multichains xl s 
d - - - C x-l in P. That Z(P; n) is a polynomial in n follows from element#ary 

?nsiderations. For morle information about Z(P; n) see [3]. 

We follow the definitions of Knuth [4, p. 3051 for trees. efine a k-ary tree to 
be an ordered rooted tree where each node has at most k subtrees and if there are 
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Fig. 1. 

fewer than k subtrees then we distinguish betwee,n the Grst, second, . . . , and kth 
subtree:, For example, Fig. 1 shows three of the J-ax-y trees with 3 vertices. The 
tree of 1Fig. l(a) has an empty third subtree, on the root, (lb) has an empty second 
subtree: and (c) has an empty first s;lbtree. The ith son of a vertex is the root of 
the ith ,subtree rooted at u. 

I'heore~a 1.1. The number of It-ary trees with m u&ices equals Z(T,; k). 

PIRJ& ‘We construct a bijection between the trees :and k - 1 element multichains 
in T, i-s follows: 

Givem! a k-ary tree on m vertices, pre-order the vertices with numbers from 
[m]. That is, label the vertices by the following inductive procedure: 

(0) Label the root with the smallest label remaining. 
(1) Label the first subtree. 
(2) Label the second subtree. 

(k) Label the kth subtree., 
For exalmple, the 3-ary tree in Fig. 2 has been pre-ordered. Note that this 
procedure is the same as labeling the vertices by depth-first search. 

Fig. 2. 

Define the ith partition in the multichain by defining a father and his k -i + 1, 
Is.-i+2,..., and k sons to be in the same block, and ckjse the blocks8 transitively. 
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For example, the cha.in associated with Fig. 2 is X1 d X,, where 

x1 = (I,$, 9)(2,4)(3)(5,7)(6)(10,13)(11)(12), 

X, = (1,5,6,7,8,9)(2,4)(3)(10,12,13)(11). 

Lemma 1.2. The partitions constructed above are all non-crossing. 

Proof. Suppose there were a crossing in the ith pardtion. That means that there 
are numbers a <b CC Cd, where a, c are in one block and b, d are in a different 
block. Since a and c are in the same block, there exists an ancestor x, such that 
the path from x to a and the path from x to c use only sons that are identified as 
k-i + 1 to k, and x is the vertex closest to the root with this property. Similarly 
we can find a y with the same property related to b and d. Since a <b < c and b is 
:not in the same block as x, y is in the subtree rooted at x. A path from x to y 
must use a 1 to k - i son, or a, b, c and d would all be in the same block. Also, 
since b and d lie in the subtree rooted at y, c must also lie in that subtree, since 
the entire tree was pre-ordered. But this implies that the path from x to c 
contains a 1 to k-i son, which is a contradiction. Hence the partition is 
non-crossing. Cl 

This completes our map from trees to chains. We must invert this process to 
prove the bijection. Suppose we have a chain X,<X, G * * a GX~_~ sXk, where 
X0=8 and X, = i. We will construct a sequence of labeled rooted forests of k-ary 
trees, F,,, F,, . . . , Fk, SO that if X, = (Br, &, . . . , El,), then Fi = (T,, Tz, . . . , T,) 
with IBjl= ITj 1 for all j. The elements of Bj label the tree Ti and the root of Ti is 
labeled with the minimum element of Bj. Fk will be the inverse k-ary tree of the 
chain X1<. . *cX~_, under our bijection, its labeling being the same as its 
preorder. 

Our construction will be inductive. Let F,, = (c, c, . . . , To,), where e is the 
one vertex k-ary tree labeled i. Suppose we have our forest Fi = (PI, T’,, . . . , T’,) 

corresponding to the partition Xi. Look at the partition Xi+r. It has a block & 
which is the merge of blocks H3,,, B,,, . . . , B,, 4 < i2 < * * * < i,, of xi. (Linearly order 
the blocks by the smallest element they contain.) Take the root of Ti, and make it 
the (k - i)th son of the largest vertex in Ti,, which is less than the root label of Ti,. 
Now merge Ti:,, into this new tree in the same manner. Repeat with T,, 3 <: k s r, 
to produce a new tree Ts. Do this procedure for each block in Xi+* to obtain Fi.+l, 
which has all the approplriate properties. It is easy to see that Fk will be a k-ary 
tree labeled in pre-order. 

Emple 1.3. Take the chain associated with Fig. 2. The sequence of forests we 
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Eqally we must show that our two bijections are inverses of each other. 
Suplpcse we start with a chain C = (X, G X, G. . * G X,_,) and from it produce a 
seque,.lce of forests F,, F,, . . . , F’. We want to show that if we started from Fk, a 
k-a11 tree, and used our correspondence we would produce the chain C. 

FAG first partition in the chain we derive from F-, is defined by putting a father 
and its kth son in the same block and closing the blocks transitively. But this is 
exadly the partition we get by taking the forest Fd and defining a block to be 
those labels on the same tree. This is XI. Similarly the ith partition derived from 
I;k is the partition related to the forest I$ wplich is, by construction, X. So the 
image of Fk is C. The reverse direction is simih~ly easy and left to the reader. 

This completes our bijection and proves Theorem 1 .l. 

It is well known that the number of k-ary trees with m vertices is (,k!!‘I)/m, see 
for example [4]” Thus Theorem 1.1 provides us with another combinatorial proof 
of [l, Corollary 3.41. 

The bijection given as the proof in Theorem 1. I has more power than may be 
immediately evident. One can see that the number of vertices which are (k - I)th 
sons of some vertex is the same as the di@erence in the nunlber of blocks in & 
and Xi,.r. Using this observation and theorems such ‘as [I., Theorem 3.21 we can 
e~~rn~~~~e k-ary trees by the type of sons the VM~O~S possess. A similar idea is 
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paper [2] where a different bijection between n.c. partitions 
used. 

IL .A bijection to k-trees 

A k-tree is a graph defined recursively: A complete graph on k vertices is a 
k-tree, and a k-tree with n + 1 vertices is any graph obtained by joining a new 
vertex to k vertices mutually adjacent in a k-tree with n vertices. I+ a rooted, 
labeled, k-tree we mean a pair (T, R) consisting of a labeled k-tree 7’ and a k 
element subset of the labels H, such that the vertices labeled by the set R form a 
clique. Thus, given 2: the labeled k-tree in Fig. 3, (I’, (-1, -2}), is not a rooted, 
labeled, k-tree where as (T,{l, 2)) is. 

2 

-1 

+ 

-2 

1 

Fig. 3. 

In what follows, our k-trees will be labeled with the set {-k, -k + 
l,..., -1, 1,2, . . . ,m} and R={-k,-k+l,. .., -1). For cljnvenience we will 
denote the set {-k, -k+l,. . . , -1) by E-k]. In Fig. 4 we see all the rooted 
lalbeled 2-trees (7; R) on 4 vertices. 

fi4izlb 1 

Lk7-A 
-2 -1 _. 2 -2 -1 -1 

2 1 2 1 

A7 M 
-2 -1 -2 -1 

Fig. 4. 

TBeorerr~ 2.1. The number of rooted labeled k-trees (T, R) on m ‘I- k vertices equals 
Z(TL,; k + 1). 

. We will proceed in a manner analogous to the proof of Theorem 1.1. The 
from the set [m] will be called p-labels and correspond to tlhe regular 

partition of the required 2-partition. We must label the verti’ces again, in a 
manner similar to the pre-o r labeling, to get the la s for th3 n.c. partition. 
Tlhese will be called n-label p(v) (n(v)) we mean p-label :,r,l-label) of the 
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vertex u. The labels of the root are n-labels; they do n% have p-labels, and will 
start our inductive labeling. The rest of the n-labels come irom the set [ml. 

Consider the vertices ul, n2, . . . , 2r[ which are adjacent to all k of the root 

vertices, and ordered such that p(ul) < p(uJ <. . * <p(s). Associated with each Ui 

are k sub k-trees, rooted on the n-label sets [-k]-(j)+{n(u,)} for in [-k]. We 
order these trees by the leximgraphic order of the sets [-k]-(i), i.e., 

(-k,-k+l,..., -2}<{-k, -k+ 1, -3, -1)~. * 

<{-k+l,-k+2,. . . ,-2,-l}. 

Now we can define our n-labeling inductively. 
(1) Label t’l with smallest label remaining. 
(2) Label the k subtrees of o1 in order. 
(3) Label g2 and its k-subtrees. 

(I+;) Label U[ and its k-subtrees. 
In Fig. 5 we see a rooted labeled 2-tree with its p-labels in (a) and its n-labels 

in (b). 

5 -2 -1 4 ii -3 -i 

(4 b) 

Fig. 5. 

There are a couple of things to notice about this labeling. First, each vertex with 
an n-label is adjacent to exactly k vertices with smaller n-labels than its own, and 
that those vertices form a clique. We will say that the vertex is rooted at the 
k-clique. Vertices that are rooted at the same clique are called brothers. The 
vertices that are adjacent to the root of the ith subtree of a vertex 2, are called the 
ith som of u. For example, in Fi.g. 5, the vertices p-labeled 6 and 8 are brothers as 
are 3 and 5. 3 and 5 are the first SOYG of 6, 1 is a second son of 6.2 is a second son 
of 8, 4 is a first son of 2 and 7 is a second son of 2. 

The other thing to notice about this labeling is that a vertex v is the son of the 
verte:r w which is adjacent to u and has the largest n-label less than n(u). Thus, if 
w is in a subtree of u, lthen there exists a unique chain w = x1, x2, x3, . . . . xl = u 

such that xi is the son of &+I, and as a corollary 

n(w) = n(x*)> ?&x2) 3 * * - > n(JQ) = n(u). 

To define the chain of n.c. %partitions we will produce a chain of partitions of 
the non-root vertices. From each such partition we get a n.c. 2-lpartition by taking 

1s for the n.c. partSon and the p-labels for the regular partition. 
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The blocks of the first partnion will be those vertices which are brothers. The 
blocks of the second partition are defined so that a vertex is in the same block as 
its brothers and also as its ktb sons where the blocks are closed transitively. 

In general, for the ith partition, a vertex is in the same block a.s i&s brothers, and 
its kth, (k - l)st, . . . , and (k - i + 2)nd sons, with the blocks closed transit,ively. 
For example, the chain generated by the 2-tree in Fig. 5 is X1 c X2, where 

and 

Lemma 2.2. The n-labels of the partitions form a non-crossing pamG+n. 

Proof. We proceed as in the proof for Lemma 1.2. Suppose the ith partition of 
the n-labels crosses. Then there are numbers a < b < c < d, all! n-labels of vertices, 
such that a and c are in one block and b and d are in a difkrent block. Let q be 
the vertex such that u(s) = i. Since a and c are in the same block, we can find a 
vertex x such that there are two sequences x = xb, xi, xi, . . . , xi = s’ for i = 1 and 
2, where Xj and Xi+1 are either brothers of r_+1 is a kth, (k -- l)st, . . “, or 

(k - i + 2)nd son of Xi and s1 = v, and s2 = u,. Let x be the vertex with the above 
property and such that n(x) is minimum. Similarly we can find the vertex y with 
the same property for the n-labels b and d. 

Since a < b < c, the vertex ub is one of the sub k-trees of J: or its brothers. Since 
b is in a different block from a and c, this implies that y is in one of the subtrees 
of x or its brothers. We also know that b <c < d, so u, rmust be in a subtree 
rooted at y or one of its brothers. But since the chain described above exists from 
x to u,, this implies that y is in the same block as 2 and hence that a, b, c and d 
are all in the same block, which is a contradiction. Hence the n-labels are 
non-crossing. 

Now we must produce the map from chains of non-crossing 2-partitions to 
k-trees. Again we proceed as in the k-ary tree case. We will construct a sequence 
of forests of k-trees, F,, F2, . . . , F’+, so that if the ith 2parGtion Xi = 

{(A,, BJ * * * (A,, B,)}, then fi =(T, . . . , T,} with IAil+ k = IBjl+ k = \‘I;] for ai: i. 
The non-root vertices of the k-trees will be labeled by pairs (aI, i?i)E [m]xCr 11. 
The blocks of the two partitionss will be ordered by ordering the n.c. block; ijy 

their s,mallest element, as done previously. 
The construction is inductive. Let X1 ={(A,, B,) - - - (A,, &),)) be the finest n.c. 

2-partition in the chain. L, t Fr be the forest comisting of s k-trees 

(I-1, Tl,. . . , T,) so that T is ne rooted &-tree consisting of the root and (Ai1 
brothers. If Ai -(al, a2,. . . , at} with a,c:a2<. - *i al and Bi =(bl, bz,. . . 9 b,l 
and b,<.** <b,, label the I brothers with the pairs (q, bi). For example, if we a:c 
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dealing with 2-trees and the block of the 2-partition is ((1, 4,5), (2,3,4}), then the 
related 2-tree is shown in Fig. 6. 

-2 -1 

Fig.6. 

Suppose we have the forest cc rooted k-trees 4 = (PI, T’& . . . , T’,) correspond- 
ing to partition X. Look at the partition Xi+i. It has a block & which is formed 
by merging blocks Bi,, B,,, . . . , B,, il < l - l C i, of q. Remove the root of tree q, 
and root it as the (k -’ i + l)st subtree of the vertex with the largest n-label in G, 
whir:h is less than the smallest n-label of CPj2. Merge in q, into this new tree in the 
same manner and continue until1 all the r trees are merged in. Do this procedure 
for each block of X+1 to obtain &fl, with the appropriate properties. We see that 
the n-label of the vertex in Fkt.l corresponds to the label produced by the 
algorithm defined pmviously. 

We present an example. 

ExawpIe 23. Consider the two element chain 

(i:: ;;J[;: ;;)o(36K)G (ii: :: :: ;: ;ne:: :;,@. 

Our scheme produces the followi:lg forests 

(1,6) (5.8) 1(2,3) I:,51 !4,1) (6,2) (7.4) (8.71 

F= 1 

F= 2 

F3 = 

A 
-2 -0 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 

(4,l) 

:. (2,3) (3,51 (7,4) 
11,6) 

M A 
-2 -7 (6.2) -2 -1 -2 -I 

Ml) t8,71 

(2.3) -2 -1 (7.4) 

We still have to show that the bijections presented are inverses. The proof is 
exactly the same as in the k-ary tree correspondence and it is left to the interested 
reader. 
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The number of rooted, labeled k-trees (‘1: 12) on m i- k vertices is known to be 
(mk + l)“‘-’ (see [SD. Thus Theorem 2.1 gives a combinatorial proof of [l, 
Theorem 5.31. The referee has suggested that it may be possi.ble to ,obtain an 
alternative proof to Theorem 2.1 using the techniques of Poupard [7, Chapter 

WI. 
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