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Abstract

In this note, the estimate of norms of commutators of self-adjoint operators is established.
© 2007 Elsevier Inc. All rights reserved.
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Throughout this paper, H denotes a Hilbert space. The set of all bounded linear operators acting on H is denoted
by B(H). An operator A is said to be self-adjoint if A = A*. An operator A is said to be positive if (Ax, x) > 0 for
each vector x € H. An operator P € B(H) is said to be an orthogonal projection if P = P* = P2, where T* denotes
the adjoint of 7. For two operators A, B € B(H), the commutator of A and B is the operator AB — BA. As is well
known, the research about norms of operator commutators has attracted much attention of many authors (see [1-3,
5-9]). In general, by the triangle inequality and the submultiplicativity of the usual operator norm that

IAB — BA| <2|AllllB]|. ey
For the case when A or B is positive, the inequality (1) has been recently improved by Kittaneh in [5] as follows:
|AB — BA| < ||Allll BII. 2)

The purpose of this paper is to establish inequalities for norms of commutators of self-adjoint operators by using
operator spectral theory. We shall see that our inequalities improve the inequality in [5], and they seem natural and
applicable to be widely useful.

Firstly, we shall give some lemmas.

Lemma 1. (See [9].) Let A and B € B(H). Then
IAX — XB| < min{||A — M|+ |IB—=M|: 2 € (C}||X|| for X € B(H).
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Moreover, there exists a sequence {X,} C B(H) with || X, || = 1 such that

lim |AX, — X,Bl|=min{||A —AI|| +||B —Al|: A€ C}.

n—o0
Lemma 2. (See [4].) If W and L are two closed subspaces of H and P and Q denote the orthogonal projections on
W and L, respectively, then P and Q have the operator matrices

P=1L6Ld0®004dIsP0I 3)

and

1 1
Qo Q, s —Qo)2D
0=1&0L®&0L® . CY (4)
D*Qi(Is— Qo)2  D*(Is— Qo)D
with respect to the space decomposition H = EB?:] H;, respectively, where H = W N L, Ho = W N L™,
Hi=WrNL Ha=WENLLY Hs=W o (H) ® Ha) and He =H © (@;:1 H;), Qo is a positive contraction
on Hs, 0 and 1 are not eigenvalues of Qo, and D is a unitary from He onto Hs. I; is the identityon H;, i =1,...,5.

Theorem 3. Let A and B € B(H) be self-adjoint and denote
ar =min{i: A€o (A)}, ay =max{i: 1 €0 (A)}

and

,Blzmin{u: /,LGO'(B)}, ﬁgzmax{uz /,LGO'(B)}.
If

1 1

E(al +o) < E(ﬂl + 2),
then

[AX — XB|| < (B2 —a))[IX].

Proof. By Lemma 1, we only need to prove that
min{|A = Al + |B—Al|l: A€C}=pr—a1.

For convenience, the proof should be divided into four steps.
Step 1. Suppose %(oq +ar) <AL %(;31 + B>). Observe that A — a1 > ap — A and A — 81 < B2 — A, we have

[A=Al=A—a;
and
B —Alll=p2— 2.
Hence
A=A+ 1B —=All=Q—a)+ (B2 —A) = —ai.
Step 2. Suppose A < %(al + o). Similarly, we get
[A—Alll=az—A
and
B —AIll=p2—A.
In this case,

A=Al +[|B = Alll= (a2 =2) + (B2 —A) =2+ B2 — 2A.
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Noting that o + B2 — 24 > a2 + B2 — (a1 + @2) = B2 — a1, then
A=A+ [|B —AL|| = p2 — .
Step 3. Suppose A > %(,31 + B2). Similarly, we get
[A=A=2—a
and
B —AIll=2—pi.
In this case,
A=A+ 1B =Ml =( —a) + (A —B1) =24 — (a1 + B1).
Noting that 21 — (a1 + B1) = (B1 + B2) — (a1 + B1) = B2 — a1, then
A=A+ 1B =Xl = B2 — .
Step 4. Suppose A € C\R.If A =a +ib, then
A=Al +||B=M|=||A—al —ibl|+||B—al —ibl|
Z A —alll+|B—all
Z fr—ai.
Combining the four steps above, we have established

min{|A —AI|+ |B—AI|l: A€ C}=pr— . O

Corollary 4. Let A € B(H) be self-adjoint. If a = min{A: A € 0 (A) and b = max{\: . € 0 (A)}, then
[AX — XA < (b —a)lIX]| for X € B(H).

Corollary 5. (See [5].) Let A € B(H) be positive. Then
[AX — XAl < |AIIXI|  for X € B(H).

Proof. It is clear since ||A|| = max{\: L € 0(A)} and 0 < min{\: L € 0 (A)}if A is positive. O
Corollary 6. Let A € B(H) be positive and invertible. Then
—1y-1
JAX — XAl < (1A = A7 7)IX] for X € BH).

Proof. If A is positive and invertible, then ||A|| = max{x: A € 6(A)} and |A~'||~! = min{A: A € 6(A)}. By Corol-
lary 4, we get

—1y-1
IAX — XA < (1A= A7 )Ix)1. o
Corollary 7. Let A, B € B(H) be self-adjoint. Then
1
|AB — BA|l < E(otz —a)(B2— B),
where o1 = min{A: A € 0 (A)}, ap =max{i: L €0 (A)} and B1 =min{u: pu € o(B)}, B = max{u: u €o(B)}.

Proof. For any pair A and p of complex numbers, we have
AB—BA=(A—-X)B—pl)—(B—ul)(A—AI).

So
IAB — BA|l = |(A—AI)(B —pul) — (B—up)(A—AD|| <2|(A=1D| | (B —uD].
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Therefore,
IAB — BA| < 2min{||(A —AD)|: A € C}min{|(B — uD)||: neC}.

Moreover, suppose A and B are self-adjoint, by Theorem 3, we have min{|[(A — Al)|: L € C} = %(012 —ap) and
min({||(B — uD)|: € C} = 3(B2 — B1)- Hence,

IIAB—BAII<%(az—a1)(ﬂ2—ﬁ1)- O
Corollary 8. (See [6].) Let A, B € B(H) be positive. Then
|AB — BA|l < %IIAIIIIBII-
Proof. By Corollary 7, itis clear. O

Remarks. (1) The inequality of Corollary 8 is sharp. For example, if 2 x 2 matrices A and B are as follows:

11
10 2 7).
Az(o 0)’ BZ(L 1)’
2 2
itis clear that A and B are positive, and ||A| = || B|| = 1. In this case,
0 3
AB — BA = | .
-1 0
So
1
|AB — BA| = —.
2

(2) By Corollary 8, if A, B are two positive contractions and ||[AB — BA|| = %, then ||A|| = ||B]| = 1.
(3) Let P and Q be orthogonal projections. Then ||PQ — QP| = % if and only if % eo(PQ).
In this case, by Lemma 2,
L 1
0 2(Is— Qp)2D
PO — QP =00, 00L &0 00L& 1 1 Qo (s = Qo
—D*Q (Is — Qo)? 0

SO
IPQ — QP =] QZ (s — Qo).

1 1
Since 0 < Qo < 1, |Qy (Is — Qo)% I < % Moreover, || Qg (Is — Qo)% | = % if and only if % € 0(Qp). We know that
1 €0(Qo) ifand only if § € 0 (P Q). Hence, |[PQ — QP| = § ifand only if 1 € o(P Q).
(4) In (2), note that 0 < Qg < 1. Then we get that

1
{IPO— QP|: P and Q are orthogonal projections in B(H)} = |:O, §:|

Corollary 9. (See [5].) Let A and B be positive contractions. Then

IAX — XB| < [ X]|.
Proof. Because A and B are positive contractions, 0 < o1, 2, 81, 62 < 1,80 |2 —aq| < 1 and |y — B1| < 1. By
Theorem 3,

[AX —XB<[Xl. O
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Corollary 10. Let A and B € B(H) be positive and invertible. Then

1A — Bl <max{Al— B~ 1Bl =A='}

Proof. If (Al + A~ 7Y = SIBI + 1B71|7"), then |A — B| < [| Al — |B~!| .
Conversely, if (| BIl + [B~'|™H) = S(IAI + A7), then | A — B < 1Bl — |A7YI7Y. O

Corollary 11. If T = A + i B is the Cartesian decomposition of an operator T, then
IT*T — TT*|| <4min{||A — 11 ||: » € C}min{||B —AI|: 2 € C}.

Proof. Let g = min{a: o € 6(A)} and By = min{B: B € o(B)} and denote Ag = g + iBy. Since T*T — TT* =
(T — 1) (T — rg) — (T — Ao)(T — 1p)* and A — g > 0 and B — By > 0, it follows that
IT*T = TT*| = | (T = 20)*(T = 0) = (T = 20)(T — 20)*
=2||(A = ao)(B — BoI) — (B — oI )(A — o] |
<A —aollIB — Boll
=4min{||A—)J||:)Le(C}min{HB—)JH:)LG(C}. O

Corollary 12. (See [6].) Let T = A + i B be the Cartesian decomposition of an operator T. If A and B are positive,
then

IT*T = TT*|| < Al BII.
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