

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 342 (2008) 747-751

Note

Norms of commutators of self-adjoint operators *

Yue-Qing Wang, Hong-Ke Du*

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China
Received 28 September 2007
Available online 26 December 2007

Submitted by J.A. Ball

Abstract

In this note, the estimate of norms of commutators of self-adjoint operators is established. © 2007 Elsevier Inc. All rights reserved.

Keywords: Norm inequality; Commutator; Self-adjoint operator

Throughout this paper, \mathcal{H} denotes a Hilbert space. The set of all bounded linear operators acting on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. An operator A is said to be self-adjoint if $A = A^*$. An operator A is said to be positive if $\langle Ax, x \rangle \geqslant 0$ for each vector $x \in \mathcal{H}$. An operator $P \in \mathcal{B}(\mathcal{H})$ is said to be an orthogonal projection if $P = P^* = P^2$, where T^* denotes the adjoint of T. For two operators $A, B \in \mathcal{B}(\mathcal{H})$, the commutator of A and B is the operator AB - BA. As is well known, the research about norms of operator commutators has attracted much attention of many authors (see [1–3, 5–9]). In general, by the triangle inequality and the submultiplicativity of the usual operator norm that

$$||AB - BA|| \le 2||A|| ||B||. \tag{1}$$

For the case when A or B is positive, the inequality (1) has been recently improved by Kittaneh in [5] as follows:

$$||AB - BA|| \le ||A|| ||B||.$$
 (2)

The purpose of this paper is to establish inequalities for norms of commutators of self-adjoint operators by using operator spectral theory. We shall see that our inequalities improve the inequality in [5], and they seem natural and applicable to be widely useful.

Firstly, we shall give some lemmas.

Lemma 1. (See [9].) Let A and $B \in \mathcal{B}(\mathcal{H})$. Then

$$||AX - XB|| \le \min\{||A - \lambda I|| + ||B - \lambda I||: \lambda \in \mathbb{C}\}||X||$$
 for $X \in \mathcal{B}(\mathcal{H})$.

E-mail addresses: wongyq@163.com (Y.-Q. Wang), hkdu@snnu.edu.cn (H.-K. Du).

^{*} This research was partially supported by the National Natural Science Foundation of China (10571113).

^{*} Corresponding author.

Moreover, there exists a sequence $\{X_n\} \subseteq \mathcal{B}(\mathcal{H})$ with $||X_n|| = 1$ such that

$$\lim_{n \to \infty} ||AX_n - X_n B|| = \min\{||A - \lambda I|| + ||B - \lambda I||: \lambda \in \mathbb{C}\}.$$

Lemma 2. (See [4].) If W and L are two closed subspaces of \mathcal{H} and P and Q denote the orthogonal projections on W and L, respectively, then P and O have the operator matrices

$$P = I_1 \oplus I_2 \oplus 0I_3 \oplus 0I_4 \oplus I_5 \oplus 0I_6 \tag{3}$$

and

$$Q = I_1 \oplus 0I_2 \oplus I_3 \oplus 0I_4 \oplus \begin{pmatrix} Q_0 & Q_0^{\frac{1}{2}} (I_5 - Q_0)^{\frac{1}{2}} D \\ D^* Q_0^{\frac{1}{2}} (I_5 - Q_0)^{\frac{1}{2}} & D^* (I_5 - Q_0) D \end{pmatrix}$$

$$(4)$$

with respect to the space decomposition $\mathcal{H} = \bigoplus_{i=1}^6 \mathcal{H}_i$, respectively, where $\mathcal{H}_1 = W \cap L$, $\mathcal{H}_2 = W \cap L^{\perp}$, $\mathcal{H}_3 = W^{\perp} \cap L$, $\mathcal{H}_4 = W^{\perp} \cap L^{\perp}$, $\mathcal{H}_5 = W \ominus (\mathcal{H}_1 \oplus \mathcal{H}_2)$ and $\mathcal{H}_6 = \mathcal{H} \ominus (\bigoplus_{j=1}^5 \mathcal{H}_j)$, Q_0 is a positive contraction on \mathcal{H}_5 , 0 and 1 are not eigenvalues of Q_0 , and D is a unitary from \mathcal{H}_6 onto \mathcal{H}_5 . I_i is the identity on \mathcal{H}_i , $i = 1, \ldots, 5$.

Theorem 3. Let A and $B \in \mathcal{B}(\mathcal{H})$ be self-adjoint and denote

$$\alpha_1 = \min \{ \lambda : \lambda \in \sigma(A) \}, \qquad \alpha_2 = \max \{ \lambda : \lambda \in \sigma(A) \}$$

and

$$\beta_1 = \min\{\mu: \mu \in \sigma(B)\}, \qquad \beta_2 = \max\{\mu: \mu \in \sigma(B)\}.$$

If

$$\frac{1}{2}(\alpha_1+\alpha_2)\leqslant \frac{1}{2}(\beta_1+\beta_2),$$

then

$$||AX - XB|| \le (\beta_2 - \alpha_1)||X||.$$

Proof. By Lemma 1, we only need to prove that

$$\min\{||A - \lambda I|| + ||B - \lambda I||: \lambda \in \mathbb{C}\} = \beta_2 - \alpha_1.$$

For convenience, the proof should be divided into four steps.

Step 1. Suppose
$$\frac{1}{2}(\alpha_1 + \alpha_2) \le \lambda \le \frac{1}{2}(\beta_1 + \beta_2)$$
. Observe that $\lambda - \alpha_1 \ge \alpha_2 - \lambda$ and $\lambda - \beta_1 \le \beta_2 - \lambda$, we have

$$||A - \lambda I|| = \lambda - \alpha_1$$

and

$$||B - \lambda I|| = \beta_2 - \lambda.$$

Hence

$$||A - \lambda I|| + ||B - \lambda I|| = (\lambda - \alpha_1) + (\beta_2 - \lambda) = \beta_2 - \alpha_1.$$

Step 2. Suppose $\lambda < \frac{1}{2}(\alpha_1 + \alpha_2)$. Similarly, we get

$$||A - \lambda I|| = \alpha_2 - \lambda$$

and

$$||B - \lambda I|| = \beta_2 - \lambda.$$

In this case,

$$||A - \lambda I|| + ||B - \lambda I|| = (\alpha_2 - \lambda) + (\beta_2 - \lambda) = \alpha_2 + \beta_2 - 2\lambda.$$

Noting that $\alpha_2 + \beta_2 - 2\lambda \geqslant \alpha_2 + \beta_2 - (\alpha_1 + \alpha_2) = \beta_2 - \alpha_1$, then

$$||A - \lambda I|| + ||B - \lambda I|| \geqslant \beta_2 - \alpha_1.$$

Step 3. Suppose $\lambda > \frac{1}{2}(\beta_1 + \beta_2)$. Similarly, we get

$$||A - \lambda I|| = \lambda - \alpha_1$$

and

$$||B - \lambda I|| = \lambda - \beta_1$$
.

In this case.

$$||A - \lambda I|| + ||B - \lambda I|| = (\lambda - \alpha_1) + (\lambda - \beta_1) = 2\lambda - (\alpha_1 + \beta_1).$$

Noting that $2\lambda - (\alpha_1 + \beta_1) \ge (\beta_1 + \beta_2) - (\alpha_1 + \beta_1) = \beta_2 - \alpha_1$, then

$$||A - \lambda I|| + ||B - \lambda I|| \geqslant \beta_2 - \alpha_1.$$

Step 4. Suppose $\lambda \in \mathbb{C} \setminus \mathbb{R}$. If $\lambda = a + ib$, then

$$||A - \lambda I|| + ||B - \lambda I|| = ||A - aI - ibI|| + ||B - aI - ibI||$$

 $\geqslant ||A - aI|| + ||B - aI||$
 $\geqslant \beta_2 - \alpha_1.$

Combining the four steps above, we have established

$$\min\{\|A - \lambda I\| + \|B - \lambda I\| \colon \lambda \in \mathbb{C}\} = \beta_2 - \alpha_1. \qquad \Box$$

Corollary 4. Let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. If $a = \min\{\lambda: \lambda \in \sigma(A) \text{ and } b = \max\{\lambda: \lambda \in \sigma(A)\}$, then

$$||AX - XA|| \le (b-a)||X||$$
 for $X \in \mathcal{B}(\mathcal{H})$.

Corollary 5. (See [5].) Let $A \in \mathcal{B}(\mathcal{H})$ be positive. Then

$$||AX - XA|| \le ||A|| ||X||$$
 for $X \in \mathcal{B}(\mathcal{H})$.

Proof. It is clear since $||A|| = \max\{\lambda: \lambda \in \sigma(A)\}$ and $0 \le \min\{\lambda: \lambda \in \sigma(A)\}$ if A is positive. \square

Corollary 6. *Let* $A \in \mathcal{B}(\mathcal{H})$ *be positive and invertible. Then*

$$||AX - XA|| \le (||A|| - ||A^{-1}||^{-1})||X||$$
 for $X \in \mathcal{B}(\mathcal{H})$.

Proof. If A is positive and invertible, then $||A|| = \max\{\lambda: \lambda \in \sigma(A)\}$ and $||A^{-1}||^{-1} = \min\{\lambda: \lambda \in \sigma(A)\}$. By Corollary 4, we get

$$||AX - XA|| \le (||A|| - ||A^{-1}||^{-1})||X||.$$

Corollary 7. Let $A, B \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Then

$$||AB - BA|| \le \frac{1}{2}(\alpha_2 - \alpha_1)(\beta_2 - \beta_1),$$

where $\alpha_1 = \min\{\lambda : \lambda \in \sigma(A)\}$, $\alpha_2 = \max\{\lambda : \lambda \in \sigma(A)\}$ and $\beta_1 = \min\{\mu : \mu \in \sigma(B)\}$, $\beta_2 = \max\{\mu : \mu \in \sigma(B)\}$.

Proof. For any pair λ and μ of complex numbers, we have

$$AB - BA = (A - \lambda I)(B - \mu I) - (B - \mu I)(A - \lambda I).$$

So

$$||AB - BA|| = ||(A - \lambda I)(B - \mu I) - (B - \mu I)(A - \lambda I)|| \le 2||(A - \lambda I)|| ||(B - \mu I)||.$$

Therefore.

$$||AB - BA|| \le 2 \min\{||(A - \lambda I)||: \lambda \in \mathbb{C}\} \min\{||(B - \mu I)||: \mu \in \mathbb{C}\}.$$

Moreover, suppose A and B are self-adjoint, by Theorem 3, we have $\min\{\|(A - \lambda I)\|: \lambda \in \mathbb{C}\} = \frac{1}{2}(\alpha_2 - \alpha_1)$ and $\min\{\|(B - \mu I)\|: \lambda \in \mathbb{C}\} = \frac{1}{2}(\beta_2 - \beta_1)$. Hence,

$$||AB - BA|| \le \frac{1}{2}(\alpha_2 - \alpha_1)(\beta_2 - \beta_1).$$

Corollary 8. (See [6].) Let $A, B \in \mathcal{B}(\mathcal{H})$ be positive. Then

$$||AB - BA|| \le \frac{1}{2} ||A|| ||B||.$$

Proof. By Corollary 7, it is clear.

Remarks. (1) The inequality of Corollary 8 is sharp. For example, if 2×2 matrices A and B are as follows:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix};$$

it is clear that A and B are positive, and ||A|| = ||B|| = 1. In this case,

$$AB - BA = \begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix}.$$

So

$$||AB - BA|| = \frac{1}{2}.$$

- (2) By Corollary 8, if A, B are two positive contractions and $||AB BA|| = \frac{1}{2}$, then ||A|| = ||B|| = 1.
- (3) Let P and Q be orthogonal projections. Then $||PQ QP|| = \frac{1}{2}$ if and only if $\frac{1}{2} \in \sigma(PQ)$. In this case, by Lemma 2,

$$PQ - QP = 0I_1 \oplus 0I_2 \oplus 0I_3 \oplus 0I_4 \oplus \begin{pmatrix} 0 & Q_0^{\frac{1}{2}}(I_5 - Q_0)^{\frac{1}{2}}D \\ -D^*Q_0^{\frac{1}{2}}(I_5 - Q_0)^{\frac{1}{2}} & 0 \end{pmatrix},$$

so

$$||PQ - QP|| = ||Q_0^{\frac{1}{2}}(I_5 - Q_0)^{\frac{1}{2}}||.$$

Since $0 \leqslant Q_0 \leqslant 1$, $\|Q_0^{\frac{1}{2}}(I_5 - Q_0)^{\frac{1}{2}}\| \leqslant \frac{1}{2}$. Moreover, $\|Q_0^{\frac{1}{2}}(I_5 - Q_0)^{\frac{1}{2}}\| = \frac{1}{2}$ if and only if $\frac{1}{2} \in \sigma(Q_0)$. We know that $\frac{1}{2} \in \sigma(Q_0)$ if and only if $\frac{1}{2} \in \sigma(PQ)$. Hence, $\|PQ - QP\| = \frac{1}{2}$ if and only if $\frac{1}{2} \in \sigma(PQ)$.

(4) In (2), note that $0 \le Q_0 \le 1$. Then we get that

$$\left\{\|PQ - QP\|: P \text{ and } Q \text{ are orthogonal projections in } \mathcal{B}(\mathcal{H})\right\} = \left[0, \frac{1}{2}\right].$$

Corollary 9. (See [5].) Let A and B be positive contractions. Then

$$||AX - XB|| \leqslant ||X||.$$

Proof. Because A and B are positive contractions, $0 \le \alpha_1, \alpha_2, \beta_1, \beta_2 \le 1$, so $|\beta_2 - \alpha_1| \le 1$ and $|\alpha_2 - \beta_1| \le 1$. By Theorem 3,

$$||AX - XB|| \leq ||X||$$
.

Corollary 10. *Let* A *and* $B \in \mathcal{B}(\mathcal{H})$ *be positive and invertible. Then*

$$||A - B|| \le \max\{||A|| - ||B^{-1}||^{-1}, ||B|| - ||A^{-1}||^{-1}\}.$$

Proof. If
$$\frac{1}{2}(\|A\| + \|A^{-1}\|^{-1}) \ge \frac{1}{2}(\|B\| + \|B^{-1}\|^{-1})$$
, then $\|A - B\| \le \|A\| - \|B^{-1}\|^{-1}$.
Conversely, if $\frac{1}{2}(\|B\| + \|B^{-1}\|^{-1}) \ge \frac{1}{2}(\|A\| + \|A^{-1}\|^{-1})$, then $\|A - B\| \le \|B\| - \|A^{-1}\|^{-1}$. \square

Corollary 11. If T = A + iB is the Cartesian decomposition of an operator T, then

$$||T^*T - TT^*|| \leq 4\min\{||A - \lambda I||: \lambda \in \mathbb{C}\}\min\{||B - \lambda I||: \lambda \in \mathbb{C}\}.$$

Proof. Let $\alpha_0 = \min\{\alpha : \alpha \in \sigma(A)\}$ and $\beta_0 = \min\{\beta : \beta \in \sigma(B)\}$ and denote $\lambda_0 = \alpha_0 + i\beta_0$. Since $T^*T - TT^* = (T - \lambda_0)^*(T - \lambda_0) - (T - \lambda_0)(T - \lambda_0)^*$ and $A - \alpha_0 \ge 0$ and $B - \beta_0 \ge 0$, it follows that

$$||T^*T - TT^*|| = ||(T - \lambda_0)^*(T - \lambda_0) - (T - \lambda_0)(T - \lambda_0)^*||$$

$$= 2||(A - \alpha_0 I)(B - \beta_0 I) - (B - \beta_0 I)(A - \alpha_0 I)||$$

$$\leq ||A - \alpha_0|| ||B - \beta_0||$$

$$= 4 \min\{||A - \lambda I||: \lambda \in \mathbb{C}\} \min\{||B - \lambda I||: \lambda \in \mathbb{C}\}.$$

Corollary 12. (See [6].) Let T = A + iB be the Cartesian decomposition of an operator T. If A and B are positive, then

$$||T^*T - TT^*|| \le ||A|| ||B||.$$

Acknowledgment

The authors would like to thank the referee for his/her suggestions and comments.

References

- [1] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990) 272–277.
- [2] R. Bhatia, F. Kittaneh, Cartesian decomposition and Schatten norms, Linear Algebra Appl. 318 (2000) 109–116.
- [3] R. Bhatia, X. Zhan, Norm inequalities for operators with positive real part, J. Operator Theory 50 (2003) 67–76.
- [4] H.K. Du, X.Y. Yao, C.Y. Deng, Invertibility of linear combinations of two idempotents, Proc. Amer. Math. Soc. 134 (2005) 1451–1457.
- [5] F. Kittaneh, Norm inequalities for commutators of positive operators and applications, Math. Z., in press.
- [6] F. Kittaneh, Inequalities for commutators of positive operators, J. Funct. Anal. 250 (2007) 132-143.
- [7] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208 (1994) 19–28.
- [8] F. Kittaneh, Commutator inequalities associated with the polar decomposition, Proc. Amer. Math. Soc. 130 (2002) 1279–1283.
- [9] J.G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970) 737–747.