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1. y-GENERATING AND NEHARI PAIRS. STATEMENT OF THE RESULT

The following notations will be used in this paper:

D—unit disk of the complex plane C;

T—unit circle, T =27 D;

L7—space of measurable functions on T, which are pth power
summable;

L™>—space of bounded measurable functions on T;

H'’ —standard Hardy spaces of analytic {antianalytic) functions on D;

P, —orthogonal projectors from L? onto H? ;

Ball(L)}—the ball of radii 1 with center at the origin in the linear
metric space L;

t—independent variable on T.

DEeFINITION [S5]. A pair (a, b) is called y-generating iff
(i) aeH*Y beH?
(i1) a#0, ais an outer function
(iii) 5(0)=0
(iv) lal?+151>°=1,ae. on T.
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The Nehari Problem [1-3,17,6]. Let y_,,y_,, .. be a given sequence
of complex numbers. One wants to find all functions w, we L™, and w is
bounded in modulus by 1, such that

P ow=y i4+y 07+ .

The necessary and sufficient conditions for solvability of the Nehari
problem are well-known. One often sets the following version of the Nehari
problem: Let woe L™ of T, and be bounded in modulus by 1. One wants
to find all functions w of the same class such that w—w,e HY (ie., with
the same P_ part as w,) Existence of the solution is obvious for this
version.

THEOREM. ([2b], See Also [1-3,17,61). If the Nehari problem is
indeterminate (i.e., has more than one solution), then the whole solution set
may be described as follows:

a w—E

W=

s weBall(H ), (1.1)
where (a, b) is a y-generating pair which is defined by the data of the Nehari
problem uniquely up to the following transformation:

(a,b)—(a-c, b-c?), (1.2)

where ¢ is a constant of modulus 1.

DEFINITION. A y-generating pair (a, b} is called a Nehari pair iff it
appears in the context of some indeterminate Nehari problem as mentioned
above.

Remark. Every yp-generating pair (a, b) generates according to formula
{1.1) a mapping from Bali(H %) into Ball(L™) that produces functions w
with the same P_ part (this is the reason for the name “y-generating”),
but not every one produces the whole set of functions with this P_ part.
So the class of Nehari pairs is a proper subclass of the class of y-generating
pairs,

The following theorem is proved in this paper:

MAIN THEOREM. Let (a, b) be any y-generating pair. Then there exists an
inner function 0, such that (a, b0) is a Nehari pair.

Remark. It follows from this theorem that the a-element of a Nehari
pair has no additional properties in comparison with the a-element of
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a y-generating pair. Any outer function a, such that |¢/ <1 on D and
In(1 —]a]®>)e L' on T, is the a-element of some Nehari pair.

There exists a one-to-one correspondence (up to a sign of a) between
Nehari pairs and exposed points of the Ball(H'") [6,21]. The following
formula describes this correspondence

f=(1ib>2,

where f is the exposed point of Ball(H'), (a, b) is the Nehari pair.
D. Sarason set the following question [21]:

QuesTiON. Let (a, b) be any y-generating pair. Does there exist an inner
function 0, such that (a/(1 —b8#))? is an exposed point of Ball(H!)?

An affirmative answer to this question follows from the theorem for-
mulated above.

In this paper we will use a maximum principle. We formulate it here so
as not to interrupt the exposition in further sections.

MAXIMUM PRINCIPLE (see, e.g., [ 17, Lecture 1; 10, Sect. 3]). Let f be the
ratio of two bounded analytic functions on D,

I=hil JieH?, foeHT,

and let the denominator f, be an outer function. Then fe L" = fe H” .

2. y-GENERATING AND SCATTERING MATRICES
DeFINITION [23,4,5). A matrix-function [7 7], defined a.e. on T, is
called a y-generating matrix if p=1/4, g= —bj/a, where (a,b) is a

y-generating pair. This class was introduced and studied by D. Z. Arov
[23,4,5]. Let j=[} °1 Itis easy to check that a y-generating matrix is

J-unitary, i.e.,
P q].[p 9] _.
AR
q p q P

5ot 4],
A
q p q P

where * means adjoint matrix.

and
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Any y-generating pair (or corresponding y-generating matrix) generates
a linear-fractional mapping from the Ball(H# %) into the Ball(L*) by the
formula

_a w—b _pwtq

W

= , we Ball{H™). 2.1

al—bw qw+p (H2) (21
It is convenient to introduce a special notation for the image of the
function w =0 under this transformation:

By means of it, (2.1) may be rewritten as follows:
w=s,+aw(l —bw) 'a (2.2)

Using the Maximum Principle (see Section 1), one can easily deduce from
(2.2) that this mapping produces functions w with the same P_ part.

DerFiNtrioN.  The matrix [£ «1is called the scattering matrix associated

to the y-generating pair (a, ). This matrix is defined almost everywhere on
T and is unitary.

The concepts of A-singular and A-regular pairs were introduced by
D. Z. Arov [23,4,5].

DEFINITION. A y-generating pair (a,b), and the corresponding
y-generating and scattering matrices, are called A-singular if soe HY .

It means that the mapping defined by formula (2.1) or (2.2) acts, in fact,
from Ball(H 7) into Ball(H %), ie., this mapping produces analytic func-
tions (i.e., functions with zero P_ part) but surely not necessarily all of

them.

. . def - [
LemMa 2.1. If (a, b) is A-singular, then u = se H%, and hence it is an
inner function.

Proof. According to the definition,
a -

So=——beHT.

So 3 il

Multiplying this equality by # and using |a|*>+ |b|>=1 ae. on T, one can
obtain

sob=—2(1—aa).
a
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Hence

U=

QIR

=a’—sobeHY.

DEFINITION. A y-generating pair (a,b), and the corresponding
y-generating and scattering matrices, are called A-regular iff the following
decomposition is impossible:

[15 fi]z[ﬁl fLHﬁz qz}’ (23)
q p 49, Piitd: P2

where the matrix to the left of the equality is the y-generating one corre-
sponding to the pair (a, b), the ones on the right are y-generating matrices,

and the second one is non-constant A-singular.
This decomposition can be rewritten by means of y-generating pairs,

2
b,a3;
1—b,s?’

a,a;

= )’
1—b,s;

where s{¥'=¢q,/p,= —(a,/a;)b,e H?, because the pair (a,, b,) is

A-singular. This decomposition of the y-generating pair (matrix) generates
a decomposition of the corresponding linear-fractional mapping.

THEOREM [4, 5]. A y-generating pair is A-regular iff it is a Nehari pair.

THEOREM [4, 5]. Any y-generating pair (matrix) permits an A-regular—
A-singular factorization of the type (2.4) (equivalently (2.3)). The A-regular
part is defined by the given pair uniquely up to the normalization (1.2).

3. j-INNER MATRICES, SARASON PROBLEM, SARASON MATRICES'

DEfFINITION. A meromorphic 2 x 2 matrix-function on the unit disk D is
called j-inner if it takes j-contractive values inside D and j-unitary
boundary values on T.

THEOREM [4, 5]. Boundary values of j-inner matrix-function admit?
essentially unique representation of the type

0, 0[P ¢
= ) (%)
0 6illq p
! y-generating, Nehari and Sarason matrices and pairs were introduced in [1-3] and inten-
sively studied in [4, 5, 23].

2 Matrix-function () may differ from the original j-inner matrix-function by right constant
J-unitary factor.



ON REGULARIZATION OF y-GENERATING PAIRS 315

where
(i) 8, and 6, are inner functions;
(i) [# 2] is y-generating (p=1/a, = —b/a);
def - _
(i) 5o = 0,0,(g/p)=~0,0,5beH .

And vise versa, any matrix-function of that kind on T admits a
meromorphic continuation on D with j-contractive values by the formula

1 u S,
6,a|-b 1]
where u & 0,0,9=60,0,a>—s,b (u is an inner function). In what follows
we will deal with matrix-functions of the type () with properties (i)—(iii)
and will call them j-inner (although, normalized j-inner would be a more

precise name for them). Any j-inner matrix generates a linear-fractional
mapping

r=0,0 , Ball(H 7). 3.1
w=020y s weBallH ) (3.1)

It can be rewritten by means of the y-generating pair (g, b) corresponding
to the “y-generating part” [7 7],

aw—>b
'=0,0, - . 32
MR I T b (32)

And, finally, this mapping can be rewritten as
w=5,+ 0,aw(l —bw) " ab,. (3.3)

According to the (iii), so€ H%. Hence this mapping acts from Ball(H 7)
into Ball(H 7).

DEerFINITION.  The matrix
b ab,
0,a sq
is called the scattering matrix corresponding to the j-inner matrix. The
scattering matrix is inner.

DeFINITION [4,5,23]. A j-inner matrix is called A-singular iff
,=0,=1, ie, iff it is y-generating at the same time. So A-singular
matrices are the ones which are both y-generating and j-inner.

DEFINITION [4, 5,23]. A j-inner matrix is called A-regular iff it does not
permit splitting of a non-constant A-singular factor on the right.
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In what follows we will deal with j-inner matrices of the type

ki
0 lllqg p
(le., 6,=06, 6,=1) and the name “j-inner matrix” will mean a j-inner
matrix of this type.
We are presenting here the “weak” formulation of the Sarason Problem,

but it will be enough for our purposes.

THE SARASON PROBLEM. Let w, be a given analytic function on D
bounded in modulus by 1, and let 8 be an inner function. One wants to find
all analytic functions w bounded in modulus by 1 such that

W—wg

oL
eH7
(i.e., these functions have to “coincide” at the “spectrum” of 8).

THEOREM. (3, See Also [6,17]). If the Sarason Problem has more than
one solution, the whole solution set may be described as

w0 +q W
w=HPw+q=Hg_ it =8¢ + faw(l — bw) 'a,
qu+p al—bw

weBall(H ), (34)

where

is a j-inner matrix.
Remark. One can see from (3.3) that any j-inner matrix produces a set
of functions w, such that

W — S,

eH>.

+
But not every one of them produces all those functions.

DEFINITION. A j-inner matrix is called a Sarason matrix if it appears in
the context of some indeterminate Sarason Problem, as described above.

THEOREM [4, 5]. A j-inner matrix is a Sarason matrix iff it is A-regular.
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4. Two CoMPOSITION LEMMAS

Lemma 4.1 If [2 2] is a y-generating matrix, and [§ Q1[7: 2] is
J-inner, then

Lo e el
01 9 D 0 1llg: p2
is a y-generating matrix.

Proof. Tt can be checked by direct calculation that the matrix above is

of the form
J] 1 b
{ :1 ) p=- g=—-—
q p a a
where
alaz b]ag
= b=b,+0———,
a 1—bys? 2t 1—b, s
s = —02 b,eH x (because of j-innerness).
a;

The product of j-unitary matrices is j-unitary, hence |a|®+|b|>=1 a.e. on

T. Because b, and s>’ are in H* and bounded in modulus by 1, 1 — b, s¢®

is outer. Using the Maximum Principle (see Section 1) one obtains ae H T,
be H*. Because a; and a, are outer, a is outer. Because b,(0)=0 and
b,(0)=0, 5(0) =0. Hence (q, b) is y-generating.

T . , , 9 0 pr ga]
LemMa 42. If [2! @] is a Nehari matrix and [ 1[5} 7] is a Sarason
matrix, then

[17 q} d__c_f[é oHﬁl ri,HH OHﬁz qz} “@n
g » 0 1) Lg, p) 1O 1llg, p '

is a Nehari matrix.

Proof. We consider the linear-fractional transformation

w= , w € Ball(H %). (4.2)

We denote by s, the image of =0, s,=g/p= —(a/d) b. Let w, be any
solution of the Nehari problem with data s,, ie, wyeBall(L™),

580:130:2-5
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wo—3o€ H%'. To prove the lemma we need to find w,e Ball(H =), such
0 + p +

that w, is the image of w, under the transformation (4.2). Due to definition
(4.1},

o P+
0 (2) ’
q,18q "+ P
where
s‘oz’zﬂg—zer.
2
Hence
Os _p_lsi)2)+ql
0=
4,55 +p

Because 6w, —0so=0(wo—s,)e HY and [#! 9] is a Nehari matrix, there
exists m, € Ball(H %) such that

0 hhw,+4q,
Wo=—"—"—"—""".
g0, +p,
Hence
_p + 71
wo= 2121 4L (43)
qy @, +p,

Due to the j-unitarity of [f,’,‘ Z‘. ’

_ 1 1
Wo—S8,=0 @, —s53) 5
qrw; + py G159+
- a a
=H i et 1
l—b,w,( Lo )l—b,s‘z’
Hence
~ l-b,» 1—b,s%
O(wl_si)z)):_;}““‘l(wo —So) 0
1 1

Due to the Maximum Principle, the right hand side is a H < function.
Hence w, is the solution of the Sarason Problem with “data” s’ and
“spectrum” 6. Hence there exists w, such that

o, =0P2w0+ 9>

. (44)
g0+ P
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Combining (4.3) and (4.4), one obtains

_Pwetq
Wo="—""".
qwotp

5. MORE ABOUT THE SARASON PROBLEM

Let £ be an inner function, K, = H? © 0H? . Let w, be a given function
in H% bounded in modulus by 1. We will be concerned with the Sarason
Problem with “data” w, and “spectrum” 6, i.e., one wants to describe all
H* functions w, bounded in modulus by 1, such that

w— W,
eH*.
9 +

It is well known (see, e.g., [17]) that this condition is equivalent to the
following one:

P, wx=P_ wyx, Vxe K,

So, we denote by W* the linear operator from K, to H? acting by the

formula

def
* _
W*x = P, wyx, xe K,

And we want to find all functions we H7, w bounded in modulus by 1,
such that

W*x=P_ wx, xeK,.
This problem was solved by V. M. Adamyan, D. Z. Arov, and M. G. Krein

[1-37 (see also [17,6]).
Let D(x, x) be the non-negative quadratic form on K, defined by

def

D(x, x)=((I-WW*)x, x> =0, xe Ky,
where W: H% — K, is the adjoint operator to W*,
Wy =Powy, yveH?,

where P, is the orthogonal projection from H? onto K,, {, ) is the inner
product on K, (induced from L?).

Assumption. For our purposes we will need the following additional
asumption about the given solution wy: In(1 — |w,|?) € L. This condition is
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equivalent to the existence of an outer function a, such that 1 — |w,|*>=
lag|® a.e. on T.

Under this assumption, D(x, x) may be rewritten,
Dix,x)=<{x—wq P wyx, x>
=1 —woWwp) X, x> +{wy P_Wyx, x>
={agdpx,x) +||P_ V‘_’()x”i2
= lldoxll7, + 1P - woxlI7,. (5.1)

This representation permits one to introduce the following space (which is
equivalent, in fact, to the completion of K, under the quadratic form

D(x, x)),
def dgXx
H = clos xekKy,.
< {lip—wole”{e ﬂ}

We will denote vectors of H by [, ]. “clos” means the closure in the vector
L? space of the unit circle T, and the metric in A is induced from the L2
We define the operator T: K, — K,

x¥p 4 Ix, xe Ky,
where ¢ is the independent variable. Then one can check the identity

D(x, x)—D(Tx, Tx)=|x(0)]* — |[( W*x)(0)>.
This becomes

(-5l

by means of representation (5.1). This identity permits one to introduce the
isometric operator V: H® E, - H® E, (where E, = E, =C') with domain

agTx 0 . ,
H{P M (O} = [(W*x)(0) 2,

dgx ]
d, d—dclos P_wox |,xekK,,,
(W*x)(0) |
and the range
a, Tx
A,d:efclos P_w,Tx|,xeKy,?,
x(0)
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acting by the formula

g X a,Tx
Vil P_wox [ +—| P_wyTx
(W*x)(0) x(0)

The orthogonal complements of the domain and range (the so-called defect
subspaces) play an important role in the investigation of the problem. We
will denote them by N, and N,

def el
N, S (H®E,)©d, N, = H®E,)OA4,.

The following theorem is a special case of the D. Z. Arov’s theorem
[5, Theorem 1(b}].

THEOREM 5.1. dim N, =1.

Proof. 1t is obvious that the vector

0 agx
0 ¢<| P_wox |,xeKyp.
1 (W*x)(0)

We are going to show it does not belong to the closure of this set too. In
fact,

ag(0) - (W*x)(0) = {(W*x), app 12
=P WoX, dy)
={Wwox —P_wyx, a,)
=<{apgx, wo) —{P_Wyx,dy).

Ifdox,,m 0and P_ WOX,,—"T;’ 0 in LZ, then ao(O) -( W*x")(O)'::—x* O,
and hence (W*x,)(0)— 0. Thus

agx
clos P_wox (,xeKy)#H®E,,
(W*x)(0)
ie, dim N, > 1. But if
h
h_|eN,  and c=0,
¢

then [,/ ] L H, and hence [,/ ]=0. Thus dim N, < 1.
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Remark. The following property was proved in [16, 10, 1]:

(dim N, =1)=(dim N, =1).

LEMMmA 5.2. The vector
h
h_{eN,

¢

Pyagh+weh_ +wyae)=0

h ay X )
[h*jl € clos HPWOX],,XEK(,}—H.

Proof. The second condition means nothing but [/ ]e H, and we
rewrite it this way to stress the approximative sense of the definition of the
space H. The first condition is a straightforward consequence of the
orthogonality to d,. Conditions (5.2) will play the key role in further
constructions.

(5.2)

LeMMmA 5.3.  Equation (5.2) has a unique (up to the constant factor)
non-zero solution

hO

Proof. This is true because dim N, =1. |

A Fourier representation is associated to any solution of the Sarason
Problem (see [141]),

wo def 1 w X i
Fx:[w l”:—W*x:,"\EK”'

It maps K, into de Branges—-Rovnyak space H" and (see [14]),

2

! Ao X
| F*x || 3= D(x, x) = H[P_Owox}

(5.3)
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Space H" is defined as f=[4+]e H" if

) , 1 w(e)
freH, f_eH?, f(t)erank[w(t) 1 }

for almost all re T, and

1 W(t)}[”[fﬁt)
W) 1 S

where dm(t) is normalized Lebesgue measure on the unit circule T. The last
integral defines the inner product on H"™ and turns it into a complete
Hilbert space. We refer to [11,15,18,19] for details concerning the

L[TI(:),f_m][ ]dm(t)<oo,

space H".
So, in particulary, F"x has two components
Frx = Fix
F* x|’

which lie in H 2+ and H? correspondingly. Due to (5.3), one can reinter-
pret F* as an isometric mapping defined on H. For the given solution w,
this version of F*° admits a simple explicit representation. In fact,

FWox = ['Y_WOP+ w‘OX:|

P_wyx

[ (I =woWwo) x+woP_Wox
- P_wyx

_|ao-apx+ wo- P _Wyx
P_wyx

So, F*ox =[a"*+mh-7 where [ ]=1,%" ], xe K,. Hence, F*, viewed
h_ h_ P 0

RS 4

as a mapping defined on H, is given by the formula

wl 2] _[ah+weh_ h
PR (e o

ral

One can extend the isometry V to a unitary colligation 4: HOE,® N, —
HOE,®N,, where N;=N,=C, in the following way:

and
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Ald,=V, A|N,, is a unitary mapping onto N,
A| N, is a unitary mapping onto N,,.
The scattering matrix of this colligation is defined as
S(C)=PN1®E2([_ CAPH)A A'N2®E1'

S(¢) 1s a 2x2 contractive inner matrix-function on D [1-3, 14, 22, 15].
§ has the following structure (see [137]),

b a
S= s
[Ha so}
where (a, b) is a Nehari pair. The solutions of the Sarason Problem are
described as

e
J
St

pw+4q
=6 )
1 —wb gw + p

w=sm+&le—wa”a=Hg

weBall(H7), (5.5)

where p=1/a, g= —b/a.
The following formula was proved in [12, 11]:

fa(l —owb) '

, w
F“PH'NJV-‘-[]}PEIINdV:{ (1 —ab) ! ]PMA|N(1V, (5.6)

where w is a solution of the Sarason Problem, w is the parameter
corresponding to the w under formula (5.5). Putting the (unique) non-zero
vector

hO
h° |l eN,,
CO
into (5.6), one obtains
oA wl o [6a(l —wb)'w] _,
d [h"_]Jr[l]c _[ a1 — @by~ ]‘C’ >7)
where
hO
é=Al h°
CO

. - ]
is a constant, [¢%2=[c®|2+||[ v ]I2#0.
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Let w, be the parameter corresponding to the given solution w, under
(5.5). By means of (5.4}, equality (5.7) turns into

agh® + woh® 4+ woc®=8a(l —weh) ' wy - &°

_ (5.8)
W +c=a(l —wyb) ' &%
So, we obtained some additional information about the vector
h° ]
h° | eN,,.
CO
LemMma 54. If
K
hleN,,
CO
then
agh® + woh® +wyc®=0a(l —web) ' w,-&°
B+ =a(l—deb)~"- &
hO 2
02 = (%2 + H[h ] , (59)
— 1l

h° 7
[ho}eclos {{Pjov: x},xe]@}:H.
— o

Now we can answer the following question: How can one recognize, given the
solution wy and the spectrum 6, whether the corresponding parameter w, is
equal to zero or not?

THEOREM 5.5. w =0 iff

4] _

——W

a, °1 eclos {[ aof ],xeK%:H. (5.10)
B P_wyx

P_a,

Proof. (1) Let (5.10) be true. Then the vector
h° —(a¢/ag) wo
w|El pP_a,

e ay(0)
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satisfies the equality
agh® +woh® +woc®=0

0
[:o}eH' (5.11)

Hence it also satsifies (5.2). Then, by Lemma 5.2 it lies in N,,. Hence, by
Lemma 5.4 it has to satsify (5.9) and

e ] e

Comparing (5.11) and (5.9), one obtains

Ba(l —wob) "' wy=0.
Hence w,=0.

{2) Let w,=0. By Lemma 5.4 the (unique up to the constant factor)
non-trivial vector

h° leN,,

must satisfy (5.9) with w,=0, i.e¢.,

0 A L0
agh’ +wyh” +woc”=0 (5.12)
h° +c%=a- &%,

and constant °#0. It follows from (5.5) that w,=0 yields w,=s,.

Because S is inner, |a|2=1 — |s,|% By definition (see the Assumption at the

beginning of this section) |aq|2 =1 —|w,|°. Hence |a| = |a,|. Because a and

a, are outer, coinsidence of their moduli implies a=a,-k , where k is a

constant of modulus 1. One can choose ¢ =k, then he will obtain from
(5.12)

h +c°=aq,

a
ho = _—2 VVO’
12
or
0 -
h —(ay/ag) wo
| = P _a,

c®° ay(0)
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Hence the vector

has to lie in H.

6. REGULARIZATION OF y-GENERATING PAIRS.
KATSNELSON’S APPROXIMATION APPROACH

Let (ag, by) be an A-singular y-generaring pair, ie.

wo —SLheH Y. (6.1)
0

Obviously, this function w satisfies the Assumption of the previous section.
In fact, 1 —|wy|?=1—|by|? = |a,|? but In |ag|*e L', because age HY. In
comparison with the situation we met in the previous section, we now have
additional condition (6.1), which means, in other words, the “pseudo-
continuability” property

Wo_ b e onT. (6.2)
a, a,
The left side is analytic on D, the right side is antianalytic on D, and the
boundary values coincide almost everywhere. Let [7° #] be the A-singular
y-generating matrix corresponding to the A4-singular p-generating pair
(ay, by). Let 0 be an inner function. Then

po dol[0 0}=[0 oMpo q—ﬂ] s
[qo po][o 1710 1)lq08 1o (63)

is a j-inner matrix. The corresponding scattering matrix is [ 59 ©].

The goal of this section is to prove the following theorem

THEOREM 6.1.  For any A-singular y-generating pair (ay, b,), there exists
an inner function @ such that the matrix (6.3) is a Sarason matrix.

The main theorem of this paper follows from the previous one by using

composition lemmas of Section 4.

MaAIN THEOREM. For any y-generating pair (a, b} there exists an inner
Sfunction 8 such that (a, b0) is a Nehari pair.
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Proof. Let [{l3 7] be the y-generating matrix corresponding to the pair
(a, b), and let [’;AZ] =[o #9[2 2] be it§ A-regulaF—A-sir?gular decom-
position (see Section 2). The first multiple 1s a Nehari matrix, the second
one is an A-singular p-generating matrix. According to Theorem 6.1, one

can choose the inner function ¢ in such a way that the matrix.

b i O

q: p210 1 0 1]lg.0 p>

becomes a Sarason matrix. Using composition Lemma 4.2, one obtain that
the matrix

oo 1L 305 G ]
¢ p| [0 1 q p 0 1
[o T G S %)
0 1| gy p) [0 1]lg:0 ps ]
is a Nehart matrix. Hence the corresponding y-generating pair (a, b) is a
Nehari pair.

Now we are on the way to the proof of Theorem 6.1. The main tool is
the Katsnelson’s approximation [10,24]. Let (a,, by) be an A-singular

y-generating pair, 6 be an inner function, w, = —(a,/d,) bol e HY ). We
consider the j-inner matrix [ 2 g;;;][g 9] and the corresponding scattering
matrix
byt a
[ ° 0}. (6.4)
Ba, w,
One can consider the Sarason Problem with “data” w, and “spectrum” 6.
Let
b(} a(i
li o 0] (6.5)
fa” s

be the scattering matrix of this problem, i.e., the formula
w=si+ 0a’w(1 — b’w)~1 d’, we Ball(H %) (6.6)

gives the parametrization of solutions of this problem. The superscript 0
shows that the pairs (a?, b%) are different for different 6.

We are interested in the case when the scattering matrix (6.4) is a
Sarason scattering matrix, i.e., when

[boﬁ ao} and [b” a"} (6.7)
0 .

fa, w, 6a’ s
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are equivalent (ie, a’=a,-¢c, b"=b,0-c* where ¢ is a constant of
modulus 1, w,=s5).

THEOREM 6.2. Let w be the parameter corresponding to the solution w,
under the parametrization (6.6). Then (6.7} is true iffw3=0

Proof. Obviously, w{=0<w,=s]. If matrices (6.7) are equivalent
then, in particular, w,=s{, and hence w$=0. Vise versa: let w$=0, then
wo =155 Because ja,|? =1—|uo|* and [&’|* =1 —|s]%,

P/} 2 _ a2
Wo=154=>lag|* = |a"|".
But a, and a”are outer functions. Hence

0

a’=c-a,,

where ¢ is a constant of modulus 1. The matrix (6.5) is inner. Hence

4

o _ 9__7)
b= —()?so.
According to definmition (6.1)
b0=—@u‘0, or boﬂz—()@wﬁo.
dy dy

Hence b” = ¢?. b, 0. So, the two scattering matrices are equivalent. J

According to Theorem 5.5, w =0 iff

1;0 agx
X . 8
{P_JJECIOS HPAWOX]'XEKU} (6.8)

We write 50 instead of —(a,/a,) wy, according to definition (6.1). So, to
prove Theorem 6.1, we have to choose # such that (6.8) is true. Here we are
following Ref. [ 10, Sect. 1, Sect. 7)] Let

" w,/a
X, £ ——~—0/—0——2, ae. on T. (6.9)
1 +e&|wo/al

X, eL™ and ¥, permits both meromorphic (ratio of two bounded analytic
functions) and antimeromorphic (complex conjugate to the ratio of two
bounded analytic functions) continuations on D (by means of (6.2)),

- Wo/ag Wo /@ Wodg

CLdelwolag) Oig/dy) L —elwo/aglbolag)  ai—ewybg

X, =
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and
(bo/do) _ aobo

- 1 —8(60/50)(‘;’0/50) - a(z)——sbowo.

Let al—ew,b,=0,¢, be the inner-outer factorization. Then, due to the
Maximum Principle,

(y.(0) =0, because b,(0) = 0). But this means that x, e H> and Zx,eH?
ie, x,€ Ky
Now to prove Theorem 6.1 we need two lemmas:

LEMMA 6.1. One can choose the sequence &, |0 such that the product
0=T1;_, 6% is convergent in the L* sense, and hence defines an inner
Sfunction 8.

Remark. x, eKp =x, €K,
k

LEmMMA 6.2.

BoXe | ____, b in L%
P_wyx,| % | P_d,

Proof of Theorem 6.1. Combining Lemmas 6.1 and 6.2, one obtains

50 ayx
xeK,>.
[PJJ“‘”{[PWM]"E }

Hence 6 is the function we are searching for. This finishes the proof of
Theorem 6.1.

Proof of Lemma 6.1. The function ¢,({), |{| <1, is defined by

vt =oxp{[ Tl wobol o

.ao(o)
ay(0)

Note that
2

w
Gi—e wobol =lad)- |1 +2 |22
0



ON REGULARIZATION OF y-GENERATING PAIRS 331

Hence |a,|® < |ai —&-wobo) <1+ ¢ The last estimates mean that the family
Injal—e& wybol

has a summable majorant. But aj —ewqb,—> a5, a€. on T. Hence, by
the Dominated Convergence Theorem, ¢.({) T ai({), V¢, |¢] < 1. Hence
0.(0)—1, |¢] < 1. It is enough now to consider { =0. Due to the equality
It—0,2.=2-86,0)—0,0), 6, »1 in L* (because 0,(0)—1). One can
choose a sequence &, |0 such that the product [17_,6%(0) is convergent.
Hence the product [];_,0?% converges in L.

Proof of Lemma 62. dyx,=0,b,/(1+¢e|wg/aol?),

_ b, ] _
j.x —b, =0 [ ————— 0,—1) b,
dom—bu=0, (o) + 0 e

o o
dox, — boll 2 < ”ml—;—bo

IO 0

(The first term in the right side tends to zero due to the Dominated
Convergence Theorem, the second due to Lemma 6.1.) We should check

now that P,WOXEW P_do.

Wo W /dy

Wox, = —f, ——2010
o “1+¢|wo/aol?

__ (1 —ayae)/ay
“l+4e |W0/ao|2

1/a, + ay
“lte|wo/agl®  *1+elwg/ag)*

The second term tends to d, in L2, due to the Dominated Convergence
Theorem (to see this, one can subtract and add 6,4, and use Lemma 6.1).
The first term can be tranformed as

_ l/a, _ l/a, _ 1/a,
“1+e|wg fagl? “1+e(wo/ay) - wo/fay “1—e(wo/ap)by/ag)
g %
eaé_gwob()* (pe'

It lies in L™, because of the estimate (using |wo|*=1—|ao|?)

Vel el la Jaol
I¥ e lwo/agl laol +elwal> e+ (1—e)lagl® &
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But ¢, is outer, hence a, /¢, € H7 . Thus, it is “killed” by P_ . This proves

P

_ Wox,— P_d,, and finishes the proof of the lemma.

Remark. Using the Frostman—Rudin theorem (see [9, 10]), one can

choose ¢, | 0 such that 6, is a Blaschke product. And, hence, # will be a
Blaschke product.
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13.
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