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GIGI: An Approach to Effective Imputation
of Dense Genotypes on Large Pedigrees

Charles Y.K. Cheung,1 Elizabeth A. Thompson,2 and Ellen M. Wijsman1,3,4,*

Recent emergence of the common-disease-rare-variant hypothesis has renewed interest in the use of large pedigrees for identifying rare

causal variants. Genotyping with modern sequencing platforms is increasingly common in the search for such variants but remains

expensive and often is limited to only a few subjects per pedigree. In population-based samples, genotype imputation is widely used

so that additional genotyping is not needed. We now introduce an analogous approach that enables computationally efficient imputa-

tion in large pedigrees. Our approach samples inheritance vectors (IVs) from a Markov Chain Monte Carlo sampler by conditioning on

genotypes from a sparse set of framework markers. Missing genotypes are probabilistically inferred from these IVs along with observed

dense genotypes that are available on a subset of subjects. We implemented our approach in the Genotype Imputation Given Inheri-

tance (GIGI) program and evaluated the approach on both simulated and real large pedigrees. With a real pedigree, we also compared

imputed results obtained from this approach with those from the population-based imputation program BEAGLE. We demonstrated

that our pedigree-based approach imputes many alleles with high accuracy. It is much more accurate for calling rare alleles than is

population-based imputation and does not require an outside reference sample.We also evaluated the effect of varying other parameters,

including the marker type and density of the framework panel, threshold for calling genotypes, and population allele frequencies. By

leveraging information from existing genotypes already assayed on large pedigrees, our approach can facilitate cost-effective use of

sequence data in the pursuit of rare causal variants.
Introduction

Strategies used for identifying the genetic basis of human

disease have evolved considerably over the past few de-

cades. Pedigrees have been central to the discovery of genes

relevant to simple Mendelian traits, leading to the identifi-

cation of nearly 4,500 such genes by the end of 2011.1More

recently, genome-wide association studies (GWASs) of large

population-based samples have been used to search for var-

iants influencing complex traits based on the common-

disease-common-variant hypothesis.2 However, although

GWASs have yielded many candidate loci,3 common vari-

ants now appear to explain only a small percentage of her-

itability.4 Empirical evidence5–9 also suggests that most

complex diseases are likely be explained by rare variants.

This hypothesis is leading to a resurgence in the use of large

pedigrees, because the analysis of sequence data collected

in large pedigrees is a particularly efficient design for iden-

tifying rare variants that affect disease risk.10,11

Methods now exist that overcome many earlier compu-

tational challenges for large pedigrees. Although exact

computation is not feasible for large pedigrees with even

a moderate number of markers,12 Markov Chain Monte

Carlo (MCMC)-based methods enable feasible and accu-

rate analyses of large pedigrees withmanymarkers on large

pedigrees.13–16 Recent advances continue to improve

MCMC methodology17,18 and have been implemented in

(for example) the MORGAN package.18

Although essential to the identification of causal vari-

ants, generation of very dense genotypes from platforms
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that include next-generation sequencing technologies is

both expensive and challenging. First, the total cost of

producing dense genotypes on many subjects remains

expensive, especially for sequence data. Nevertheless, it

can be important to carry out a deep and comprehensive

analysis of all variants in a region of interest in order to

reach a conclusion about a causal locus.19,20 Second, it is

not always possible to produce genotypes on all subjects

because of the quality and quantity of available DNA.

This issue is particularly acute in the case of high-

throughput sequencing. Together, these two potential

issues can inhibit optimal analyses. One solution is to

genotype a subset of individuals and carry out genotype

imputation to infer missing genotypes on unobserved sub-

jects. Genotype imputation is a cost-effective approach to

leverage existing genotype data, which is often available

on many subjects, with new dense genotypes collected

on just a few subjects.

Multiple population-based and pedigree-based genotype

imputationmethods exist. Genotype imputation, as a gen-

eral example of imputation,21 typically infers missing data

by borrowing information from correlated observations.

Imputation in population-based samples leverages infor-

mation from the correlation among dense markers due to

linkage disequilibrium (LD) observed in outside reference

samples of unrelated individuals.22–27 In contrast, imputa-

tion in pedigrees uses the correlation of genotypes among

relatives derived from sharing of genomic segments iden-

tical by descent (IBD) within pedigrees. For small pedi-

grees, Burdick and colleagues developed an imputation
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method and applied it to imputation of dense geno-

types.28,29 Genotype imputation was demonstrated in

the most recent generation of a pedigree by using dense

marker data available in the oldest generations, with sparse

markers available in all generations. Rule-based long-range

phasing methods, which detect long strings of noncon-

flicting homozygous genotypes to identify shared haplo-

types between relatives, have also been developed.30,31

These existing genotype imputation methods have ma-

jor limitations for use in large pedigrees. Population-based

methods cannot impute genotypes on relatives who are

completely unobserved for marker genotypes when used

in the context of ignored pedigree structure. In addition,

although high imputation accuracy can often be achieved

when sufficient numbers of subjects in a reference panel

are available,32 imputation of rare variants is particularly

difficult.33,34 Existing pedigree-based methods also have

major limitations. Burdick’s method cannot handle large

pedigrees with many markers because of computational

constraints. Although existing rule-based methods30,31

can handle large pedigrees, they are ad hoc, require high-

quality dense genotype data on subjects for whom we

want to impute data, and do not account for recombina-

tion events.

Here, we present a computationally efficient approach

for imputing dense genotypes in large pedigrees, which is

implemented in the program GIGI (Genotype Imputation

Given Inheritance). Our MCMC-based approach uses a

sparse set of markers typed on most subjects plus dense

markers typed on a few subjects. By analyzing both simu-

lated and real data, we demonstrate that our approach

can impute many alleles accurately on many subjects in

large pedigrees, even including some relatives who are

completely unobserved for genotypes. In addition, we eval-

uate parameters that affect imputation quality, and we

demonstrate that GIGI is substantially more accurate for

imputing rare alleles in a large pedigree than the state-of-

the-art population-based approach in BEAGLE.26,32
Material and Methods

Overview
To clarify what follows, we first present some terminology. We

define a framework marker panel as a relatively sparse set of

markers that are used jointly for inferring inheritance states35

along a chromosome of interest in a particular pedigree. The

framework marker panel could consist of markers of any types,

including short tandem repeats (STRs) and SNPs, or a combination

of these or other types of markers. These framework markers are

assumed to be in linkage equilibrium (LE) and ideally should be

genotyped on a large fraction of subjects in a pedigree. We define

a dense marker panel as additional markers with missing geno-

types on some subjects that we want to impute. For example, these

dense markers could be genotypes obtained from sequence data or

from a dense SNP panel and could be typed on fewer and even

different subjects than the framework panel. Our goal is to impute

genotypes of dense markers on the unobserved subjects. Here the
The Am
imputation relies on correlation resulting from inheritance in the

pedigree. The inheritance of shared segments of chromosome is

represented by inheritance vectors (IVs).35 The imputation

approach consists of four steps. (1) Sample IVs at the positions

of the framework markers conditional on the observed genotypes

at the framework markers. (2) Sample IVs at the positions of the

dense markers conditional on the IVs sampled at the positions

of the framework markers and the meiotic map. (3) Estimate the

probability distribution for each unobserved genotype at the

dense marker positions conditional on all observed dense geno-

types, known or estimated allele frequencies for the dense

markers, and position-specific IVs corresponding to the dense

markers. (4) Call genotypes via the estimated probabilities and

user-specified thresholds.
Details
Sampling IVs at the Positions of Framework Markers

We use the program gl_auto18 in MORGAN to infer IVs at the

positions of framework markers. This program infers IVs by using

observed genotypes of the framework markers ðGob
F Þ and popula-

tion allele frequencies, in amanner similar to other pedigree-based

linkage analysis methods.13,36–38 The program samples IVs from

probabilities obtained by either exact or MCMC-based computa-

tion.13,17,39 In the exact sampling approach, gl_auto uses the

Lander-Green algorithm35 to compute the multipoint likelihood

PðGob
F Þ. After computing the likelihood, gl_auto performs Monte

Carlo sampling of IVs40 with the Baum-Welch algorithm.41

However, the Lander-Green algorithm restricts computation

to use in only small pedigrees. To handle large pedigrees,

gl_auto uses a hybrid MCMC sampler based on both the Elston-

Stewart42 and Lander-Green algorithms, with components of

this likelihood stored for subsequent efficient Monte Carlo sam-

pling of IVs.17 Evaluation of an older version of this hybrid

sampler suggests that it outperforms SimWalk2,15 a widely used

MCMC-based linkage analysis program, in terms of accuracy and

computational speed for the use of dense markers typed on pedi-

grees.16 Results have also shown that the current sampler in

MORGAN performs even better than this older sampler.17 We

sample a set of IVs at the positions of the framework markers.

Sampling IVs at the Positions of Dense Markers

Let S$v denote the inheritance vector at the position of a dense

marker v. S$v ¼ (S1v,., Smv) is composed of a collection of segrega-

tion indicators Siv, for i¼ 1,.,m, in a pedigree withmmeiosis.35,36

The dense marker v is flanked on the left by a framework marker j

and on the right by a framework marker j þ 1. Analogously, let S$j
denote the IVs at position j and Sij denotes its segregation indicator

for i ¼ 1,., m.

We seek to sample from PðS$v ¼ $jGob
F Þ the probability distribu-

tion of IVs at the position of dense marker v conditional on the

observed framework markers. Because IVs are highly correlated

across nearby positions, we infer IVs sampled at the position of

dense marker v by using the IVs sampled at the positions of the

framework markers. Because the use of a moderate number of

framework markers generally extracts much of the information

about the IVs in a pedigree,16,43 IVs sampled at dense positions

should already be well inferred when they are conditioned on

IVs sampled at framework positions. Given the HaldaneMap func-

tion,44 IVs sampled at the positions of the closest flanking frame-

work markers contain all information for the inference of IVs at

the position of dense marker v,45 i.e., PðS$v ¼ s$v jS$F ¼ s$FÞ ¼
PðS$v ¼ s$v jS$j ¼ s$j; S$jþ1 ¼ s$jþ1Þ, where S$F is the IVs at framework
erican Journal of Human Genetics 92, 504–516, April 4, 2013 505



markers and s$v and s$F are configurations of IVs. Conditional on

the IVs of nearby flanking framework positions that are highly

correlated with the yet-to-be-sampled IVs at dense positions, a

set of IVs is sampled marginally for each dense marker v. Since

the m meioses in a pedigree are independent, sampling S$v corre-

sponds to sampling each Siv independently. Under the Haldane

map function, PðSiv ¼ siv; Si jþ1 ¼ si jþ1jSij ¼ sijÞ ¼ PðSiv ¼ siv j
Sij ¼ sijÞPðSi jþ1 ¼ si jþ1jSiv ¼ sivÞ; where siv specifies whether the

chromosome is inherited maternally or paternally at position v.

Because PðSiv ¼ siv jSij ¼ sij; Si jþ1 ¼ si jþ1Þ ¼ PðSiv ¼ siv; Si jþ1 ¼ si jþ1j
Sij ¼ sijÞ=PðSi jþ1 ¼ si jþ1jSij ¼ sijÞ, it is straightforward to sample Siv
conditional on the IVs at the flanking markers.

Each term is calculated easily given the Haldane map function.

At position v, one IV ðSk$vÞ is sampled from the jointly sampled IVs

obtained at positions j and jþ 1.We repeat this process to sample a

total of n such IVs. This set of Sk$v , for k ¼ 1,., n, provides an esti-

mate of the probability PðS$v ¼ s$v jGob
F Þ, because

P
�
S$v ¼ s$v jGob

F

� ¼ P
s$F

P
�
S$F ¼ s$F jGob

F

�
P
�
S$v ¼ s$v j S$F ¼ s$F ;G

ob
F

�
¼ P

s$F

P
�
S$F ¼ s$F jGob

F

�
PðS$v ¼ s$v j S$F ¼ s$FÞ

¼ P
s$F

P
�
S$F ¼ s$F jGob

F

�
P
�
S$v ¼ s$v j S$j ¼ si; S$jþ1 ¼ s$jþ1

�
:

Then bPðS$v ¼ s$v jGob
F Þ ¼ 1

n

Pn
k¼1PðS$v ¼ Sk$vjS$j ¼ Sk$j; S$jþ1 ¼ Sk$jþ1Þ

is the required estimate, because S$F is realized from

PðS$F ¼ s$F jGob
F Þ.

Imputing Dense Genotypes

We estimate the probability distribution of the missing genotype

of subject i of dense marker v (Giv), conditional on the observed

genotypes of all framework markers ðGob
F Þ, the observed genotypes

ðGob
v Þ of dense marker v, and the allele frequencies of dense marker

v. For each genotype configuration g, our estimator is based on the

calculation:

P
�
Giv ¼ g jGob

F ;Gob
v

�¼P
s

P
�
Giv¼g j S$v¼s;Gob

F ;Gob
v

�
P
�
S$v¼s jGob

F ;Gob
v

�
y

P
s

P
�
Giv ¼ g j S$v ¼ s;Gob

F ;Gob
v

�
P
�
S$v ¼ s jGob

F

�
(Equation 1)

y
X
s

P
�
Giv ¼ g j S$v ¼ s;Gob

v

�
P
�
S$v ¼ s jGob

F

�
: (Equation 2)

Equation 1 is an exact equality if dense marker v is one of the

framework markers: i.e., Gob
v 4Gob

F . In general, Equation 1 is a

good approximation when PðS$v ¼ sjGob
F ;Gob

v ÞyPðS$v ¼ sjGob
F Þ,

which says that the inference of IVs at the position of dense

marker v is not influenced much by the addition of the genotypes

of dense marker v, given that we already observe the genotypes of

the frameworkmarkers. Equation 2 is a good approximation when

PðGiv ¼ gjS$v ¼ s;Gob
F ;Gob

v ÞyPðGiv ¼ gjS$v ¼ s;Gob
v Þ. Indeed, this

approximation is an exact equality if the framework markers are

in linkage equilibrium with dense marker v, as is assumed in the

Lander-Green algorithm.35 See Appendix A for further discussion.

PðGiv ¼ gjS$v ¼ s;Gob
v Þ in Equation 2 is calculated by

P
�
Giv ¼ g j S$v ¼ s;Gob

v

� ¼ P
�
Giv ¼ g;Gob

v j S$v ¼ s
�

P
k

P
�
Giv ¼ k;Gob

v j S$v ¼ s
�: (Equation 3)

Each term in Equation 3 can be computed efficiently.14,36 The

second term of Equation 2 is estimated by the sampled IVs at

position v. Because IVs are sampled conditionally onGob
F , Equation

4 provides a Monte Carlo estimator for imputation of Giv:
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bP�Giv ¼ g jGob
F ;Gob

v

� ¼ 1

n

Xn
k¼1

P
�
Giv ¼ g j Sk$v ;Gob

v

�
; (Equation 4)
where Sk$v is the IVs sampled at iteration k, for k¼ 1,., n. Equation

4 assumes that all Sk$v are consistent with the observed genotypes

of dense marker v. For practical purposes, we propose a modified

estimator, Equation 5, that is based only on the sampled IVs

that are consistent with the observed genotypes of marker v:

bP�Giv ¼ g jGob
F ;Gob

v

� ¼ 1

n�
Xn

k¼1

P
�
Giv ¼ g j Sk$v ;Gob

v

�
; (Equation 5)

where n� ¼ Pn
k¼1IðPðGob

v jSk$vÞ > 0Þ. IðPðGob
v jSk$vÞ > 0Þ is an indicator

that Sk$v is consistent with Gob
v . Thus, n� is the number of sampled

IVs that are consistent with the observed genotypes at dense

marker v. A more thorough discussion of the estimators is pre-

sented in Appendix B.

Calling Genotypes

Although we can leave the imputed results as estimated pro-

babilities, we can also call genotypes. By using a confidence-

based genotype-calling approach, we call both alleles ifbPðGiv ¼ gjGob
F ;Gob

v Þ > t1, where t1 is a user-defined threshold. In

allele calling, we first use genotype calling. If we cannot call

the complete genotype, we call one of the two alleles ifbPðGiv ¼ a=:jGob
F ;Gob

v Þ > t2, where a=: denotes that the genotype

contains an a allele. Although this second threshold t2 can be arbi-

trary, we set t2 ¼ t1 þ ð1� t1=2Þ. A reason for this choice is that for

a diallelic marker, the algorithm will select the more likely allele

when the estimated probability of the heterozygous configuration

is equal to t1. Besides the confidence-based genotype-calling

approach, we can alternatively call the most-probable genotype.

In this approach, a genotype call is always made.
Evaluating Imputation Performance
Measuring Quality

We used three metrics to evaluate imputation quality. Call rate

measures the percentage of alleles called, accuracy measures the

percentage of alleles called correctly among the alleles called,

and consistencymeasures the percentage of IVs that are consistent

with the observed genotypes at a marker locus. In real data, these

metrics were calculated by averaging over all marker loci and

across all subjects. In simulated data, these metrics were further

averaged over all simulation replicates. In addition, we summa-

rized the call rate by subject.

Simulated Data

We simulated data on a 5-generation pedigree of 52 subjects

(Figure 1A). Although this pedigree is beyond the limit of exact

computational methods for multipoint computation, the use of

gl_auto’s MCMC option enabled computation on this large pedi-

gree. We used simulated descent patterns from a previous study16

to obtain genotypes in nonfounders after simulating genotypes

in founders. We analyzed several replicates with different descent

patterns. Results from the first ten replicates gave consistent inter-

pretation and were therefore deemed a sufficient sample size.

We simulated both framework and dense markers on a chromo-

some of 100 cM. We simulated two types of framework markers:

diallelic and 4-allelic. The diallelic markers with uniform allele fre-

quencies spaced uniformly at one marker per 0.5 cM represented a

SNP linkage panel. The 4-allelic markers with uniform allele fre-

quencies spaced uniformly at one marker per 4 cM represented a

STRmarker panel. The 4-allelicmarkers represent whatmight exist

in a region where there has been some follow-up genotyping. To
013
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examine a density of STR markers that is more commonly avail-

able in legacy samples in initial genome scans, we also thinned

the STRs to a density of one marker per 8 cM. To test the effect

of framework marker density and observed data patterns, we also

thinned the framework SNP markers and varied the number of

observed subjects, as described below. In addition to the frame-

work markers, we simulated 25,000 uniformly spaced diallelic

dense markers at a density of one marker per 0.004 cM with pop-

ulation allele frequencies simulated from the uniform [0, 1]

distribution. These markers approximate markers from SNP-chip

or variants that might be available from high-throughput

sequencing. After generating the complete marker data set by

simulating the founder alleles and gene-dropping through the

descent patterns as described above, we retained dense SNPs in

only 22 subjects, as indicated by the unlabeled subjects in

Figure 1A. We imputed genotypes on the 30 labeled subjects.

Analysis of Simulated Data

We carried out our analysis under seven different designs that were

organized into three different types of framework marker panels

(Table S1 available online). The first set of designs consisted of

only SNPs (S), where all (52) subjects (Sa), many (36) subjects (Sm),

or few (22) subjects (Sf) were observed for genotypes in the frame-

work panels (Figure 1A). The design Sa is unrealistic but provides a

benchmark for optimal inference of IVs, whereas other designs cap-

ture more realistic situations where only subjects from the more

recent generations are available. The second set of designs consisted

of only STRs (M) in the frameworkpanels typedonmany subjects at

a spacingof either one STRper4 cM ðM4
mÞor one STRper 8 cM ðM8

mÞ.
Finally, the third set of designs consisted of both SNPs and STRs in

the framework panel, where few (22) subjects typed for SNPs were

combined with many (36) subjects typed for STRs at a spacing of

either one STR per 4 cM ðSfM4
mÞ or one STR per 8 cM ðSfM8

mÞ. These
hybrid panels capture the situationwhere STRmarkers observed on

many subjects from older studies are combined with newly

collected dense markers observed on fewer subjects.

We evaluated our approach’s ability to impute rare alleles. By

stratifying on SNPs with minor allele frequencies (MAFs) less

than either 0.05 or 0.01, we computed call rate and accuracy of

imputation specifically for the heterozygotes. In addition, we

computed call rate and accuracy of imputation of doubletons. A

doubleton is defined here as the closest pair of SNPs in an individ-

ual, such that the two SNPs were within 1 cM and the MAF< 0.05.

This analysis was restricted to SNPs with <0.05 because of the low

number of doubletons at lower MAF under our simulation condi-

tions.Weused the default ðSfM8
mÞ framework panel in this analysis.
The American Journal of Huma
We also evaluated four other conditions

that might affect the imputation quality.

First, we varied the density of the frame-
work markers, because the density of markers might affect the

inference of IVs.16 For this purpose, we thinned the original 0.5

cM spaced framework SNPs to obtain 1 and 2 cM spaced SNPs. Sec-

ond, we varied the call threshold on accuracy and call rate by vary-

ing call thresholds ranging from t1 ¼ 0.5 to 0.999999 (~1) while

fixing t2 midway between t1 and 1. We refer to the case where

the call threshold was ~1 as practically deterministic. Unless other-

wise stated, the default t1 ¼ 0.8 and t2 ¼ 0.9 call thresholds were

used. Third, we investigated the effect of MAF on imputation accu-

racy. By using the trueMAF used to simulate the data, we evaluated

accuracy by binning markers into MAF bins of size 0.01. Finally,

we investigated the effect of the distance of dense markers from

the closest framework markers under a STR-only framework panel

ðM8
mÞ, again by binning dense markers by the distance from their

closest framework markers.

Analysis of Real Data

Analysis of a real data set allowed evaluation of our approach in

data that contains complexities not captured well in simulated

data. These include, but are not limited to, variable marker infor-

mativeness, potential misspecification of the genetic map and

allele frequencies, undetected genotyping errors, and LD between

markers. We used a 5-generation pedigree of 95 members,46,47

with some branches from the original pedigree omitted because

they contained neither sparse nor dense marker data. Of the sub-

jects retained, the average sibship sizes in the second, third,

fourth, and fifth generations were 3, 3.8, 2, and 1.4. This pedigree

also included one large sibship of size 9. We focused on imputing

SNPs in a ~50 cM interval defined as a region of interest for a car-

diovascular trait.47 Our original data set contained 60 subjects

observed for 323 SNPs and 64 subjects observed for 21 STRs in

the lowest four generations. Most of these SNPs were tightly linked

with a few adjacent SNPs.

We performed an analysis that resembled the situationwhere we

had legacy genome scanmarker data and just collected new denser

markers on a few subjects (Table S2). We retained SNP genotypes

on 13 subjects scattered throughout different branches of the pedi-

gree, and we masked SNP genotypes on the other 47 subjects. To

infer IVs, we used a framework panel composed of 21 STRs typed

on 64 subjects and 29 SNPs typed on 13 subjects. These 29 SNPs

were chosen because they have high MAFs, so incorporating

them into the framework panel should improve the inference of

IVs.48 The dense genotypes consisted of 294 SNPs typed on the

same 13 subjects typed for SNPs in the framework panel. Finally,

we imputed missing genotypes on those 294 SNP markers on all

other 82 subjects, including both subjects with masked genotypes
n Genetics 92, 504–516, April 4, 2013 507



Figure 2. Different Subjects Have Different Levels of Genotypes
Some subjects (n1 of them) had observed genotypes for both
framework markers (top ticks) and dense markers (bottom ticks);
n2 of the subjects had observed genotypes for framework markers
but had missing genotypes (symbol ?) for dense markers; n3 of the
subjects were completely unobserved for both framework and
dense markers.
(47) and subjects with no observed SNP genotypes (35). The

masked genotypes from the 47 subjects allowed us to evaluate

the accuracy of imputation. The meiotic map for the SNP markers

was obtained by linear interpolating from Haldane map position

of STR markers49 with sequence positions of both STRs and

SNPs. The population allele frequencies of the SNP markers were

estimated by Loki v.24613 with this pedigree along with three

other large pedigrees with similar European ethnicity.

Comparison with BEAGLE

We compared GIGI to BEAGLE, a state-of-the-art population-based

genotype imputation approach.26,32 BEAGLE can be used by

ignoring the pedigree structure. Because BEAGLE uses information

from population-level LD while not incorporating the pedigree

structure, we sought to understandhow the use of different sources

of information could affect genotype imputation in a pedigree.We

used the same real-data pedigree and region of interest. We

computed the accuracy and call rate over all genotypes, as well as

separately, over rare SNPs.Here,wedefineda rare allele to be themi-

nor allele of a SNP with minor allele frequency less than 0.05. The

accuracyof imputing rare alleles is especially importantbecause the

primary motivation for using such pedigrees could be to identify

rare variants that affect disease risk or phenotypic variation.

We evaluated GIGI and BEAGLE v.3.3 (Table S3) with the real

data set. Because BEAGLE does not output genotype probabilities

if we use both STRs and SNPs, we modified the previous analysis

to perform a SNP-only analysis (Figure 2: n1 ¼ 13, n2 ¼ 47, n3 ¼
35). Similar to the previous analysis, the same 13 subjects were

given the complete genotype data. In BEAGLE’s terminology,

these genotype data were the outside reference samples used to

infer haplotypes of dense markers. In the other 47 subjects, we

kept genotypes of 35 approximately evenly spaced SNPs and

masked genotypes of the remaining 288 SNPs. Under this setup

(design FW), we compared GIGI and BEAGLE based on the

imputed results of the masked SNPs on the 47 subjects.

We also evaluated BEAGLE under other designs (Table S3).

When markers are tightly linked and when sample size of the

outside reference is large, BEAGLE is more likely to perform well.

In Design L1, we supplied BEAGLE with more markers by using

a leave-one-out analysis where we imputed one SNP at a time,

based on all other SNPs. In this leave-one-out analysis, genotypes

of each SNP in the 47 subjects were omitted sequentially and were

subsequently imputed back. In design FWO, we added genotypes

from 202 subjects to the outside reference panel (Figure 2: n1 ¼
13 þ 202, n2 ¼ 47, n3 ¼ 35). These 202 subjects were derived

from three other pedigrees of similar ethnic background and

who were typed on the same SNP platform. In design L1O, we sup-

plied both densemarkers and additional outside reference samples
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in a leave-one-out analysis. In each design, we called genotypes by

using both the most probable genotype-calling and the threshold-

based approaches. To evaluate the performance of imputation of

rare alleles, we performed a subgroup analysis in heterozyogous

genotypes, each containing a rare allele.
Results

Simulated Data

Data Patterns and Framework Marker Panels

High call rates were obtained in most subjects from multi-

ple branches in the simulated large pedigree (Figure 1B). In

the SfM
8
m framework panel, subjects descended from the

central pedigree, who tended to share more alleles with rel-

atives, had higher call rates than married-in spouses

(96.1% versus 88.7% for group D versus F; 95.4% versus

81.2% for E versus G). In addition, high call rates were

observed in subjects from the bottom generation who

had multiple relatives typed for dense markers but were

not themselves typed for dense markers (95.8% in group

L). Also, high call rates were observed even in some sub-

jects who were not typed for either sparse framework

markers or dense markers (>95% in groups D, E, and I).

The call rate depended much more on the number of

subjects typed than on the density of framework markers.

Among different framework panels considered (Table 1),

the design where only a few subjects were typed for frame-

work SNPs (Sf) gave the lowest call rate (78.8%). Regardless

of the type of panel, having more subjects typed for the

framework panel increased the call rate to 89.1%–92.1%

for Sm and all STR panels. Genotyping the majority of sub-

jects for the framework panel (92.1% for Sm) is nearly as

beneficial as genotyping all subjects (93.5% for Sa). In

contrast, alteringmarker density did not strongly influence

the call rate. Doubling the density of STR markers

increased the call rate only slightly (89.1% versus 90.7%

for M8
m versus M4

m). Similarly, increasing density by adding

SNP markers on a few subjects to an existing STR panel

only slightly improved the call rate, when the STR panel

was either sparse (89.1% versus 90.9% for M8
m versus

SfM
8
m) or dense (90.7% versus 91.5% for M4

m versus SfM
4
m).

Whenwe called a genotype, it was highly accurate across

all conditions considered (Table 1). Among SNP-only

panels, accuracy was the lowest in the Sf design (98.7%).

Typing more subjects for SNPs (Sm) increased the accuracy

only slightly (99.2%). Doubling the density of STRmarkers

also only slightly increased the accuracy (98.6% versus

99.2% for M8
m versus M4

m). In addition, the 4 cM spaced

STR panel typed on many subjects ðM4
mÞ was similar in

accuracy to the denser but diallelic SNP panel typed on

many subjects (Sm). Unlike call rate, accuracy did not

improve from increasing density by adding SNP markers

on a few subjects to an existing STR panel, whether the

STR panel was sparse (98.6% for M8
m and SfM

8
m) or dense

(99.2% for M4
m and SfM

4
m).

Both the call rate and accuracy increased only slightly

when the density of the SNP framework panel increased
013



Table 1. The Effect of Different Framework Panels on Imputation Quality and Different Designs Evaluated with Simulated Data

Panel: Quality
Metric (%)

SNPs Only STRs Only SNPs and STRs

Sa Sm Sf M4
m M8

m SfM
4
m SfM

8
m

Called 93.5 (91.7, 95.8)a 92.1 (90.1, 94.7) 78.8 (77.8, 79.6) 90.7 (87.2, 93.1) 89.1 (86.3, 90.2) 91.5 (89.7, 93.1) 90.9 (89.5, 92.8)

Accuracy 99.6 (99.4, 99.7) 99.2 (97.8, 99.6) 98.7 (97.0, 99.5) 99.2 (98.9, 99.4) 98.6 (98.1, 99.0) 99.2 (98.6, 99.6) 98.6 (98.0, 99.4)

Consistency 93.6 92.1 90.2 71.0 54.2 92.4 91.6

aRange across ten runs: (low, high).
(Table 2). Among SNP-only panels typed onmany subjects,

the call rate increased slightly when doubling the SNP

density from one marker per 2 cM (90.5%) to one marker

per 1 cM (91.7%) and again when doubling density from

one marker per 1 cM to one marker per 0.5 cM (92.1%).

Similarly, although accuracy increased slightly when

doubling SNP density from one marker per 2 cM (98.9%)

to one marker per 1 cM (99.2%), it did not further increase

when doubling from one marker per 1 cM to one marker

per 0.5 cM. Both gains, however, were modest, because

call rate and accuracy were high even at the 2 cM density.

Overall, thesemarginal increases in both call rate and accu-

racy were consistent with the previous results from

increasing the STR marker density (Table 1).

Unlike call rate and accuracy, consistency depended

strongly on the density of framework markers (Table 2).

All panels that contained the 0.5 cM spaced SNPs had

high consistency (>90.2%) (Table 1). However, consis-

tency decreased as the density of framework markers

decreased. As the marker spacing in SNP-only panels

decreased from 0.5 to 2 cM, consistency decreased

from 92.1% to 69.5% (Table 2). Similarly, as the marker

spacing in STR-only panels decreased from 4 to 8 cM, con-

sistency also decreased from 71.0% to 54.2% (Table 1).

Even though the 8 cM spaced STR panel ðM8
mÞ had the

lowest consistency (54.2%), call rate and accuracy were

still high.

GIGI called rare alleles with high accuracy (Table S4). For

SNPs with MAF < 0.05, under the default call threshold

GIGI imputed 88.1% of the heterozygous genotypes with

a high accuracy of 89.6%. Lowering the MAF by defining

rare alleles as MAF < 0.01 slightly increased the call rate

and accuracy, yielding 88.5% of the heterozygous geno-
Table 2. The Effect of Different Marker Density on Imputation
Quality Evaluated with the Sm Panel in Simulated Data

Quality
Metric (%)

Spacing of SNPs in Framework Panel (cM)
Typed on Sm

0.5 1 2

Called 92.1 (90.1, 94.7)a 91.7 (90.3, 93.8) 90.5 (88.6, 93.5)

Accuracy 99.2 (97.8, 99.6) 99.2 (97.8, 99.5) 98.9 (98.1, 99,4)

Consistency 92.1 84.5 69.5

aRange across ten runs: (low, high).

The Am
types called with an accuracy of 90.0%. In addition, GIGI

called doubletons at MAF < 0.05 with imputation quality

similar to that of calling single heterozygotes, achieving a

call rate of 83.2% and accuracy of 86.6%. With the ‘‘practi-

cally deterministic threshold,’’ GIGI called rare heterozy-

gous, either as singletons or doubletons (as defined in the

Material and Methods), with an accuracy of more than

99.7% for SNPs with MAF < 0.01 or 0.05, although the

call rate diminished to about 30% because at such a strin-

gent threshold, often it was not possible to call both alleles

in a genotype.

Other Parameters

Call thresholds affected both call rate and accuracy but in

different directions. The use of a more stringent call

threshold decreased the call rate (Figure 3A). For instance,

under the design SfM
8
m (Figure 3A), the call rate decreased

from 95.8% to 81.0% as the call threshold increased from

t1¼ 0.6 to t1¼ 0.99. In contrast, the use of a more stringent

threshold increased the accuracy: accuracy increased from

97.8% to 99.9% as the call threshold increased from t1 ¼
0.6 to t1 ¼ 0.99. However, the change in accuracy was

less dramatic than that of the call rate, because accuracy

was already high at a liberal call threshold (97.8% for

t1¼ 0.6). In this particular simulation, a reasonable balance

between call rate and accuracy was achieved at the call

threshold of t1 ¼ 0.8.

The MAF of dense markers also affected quality metrics.

At the default t1 ¼ 0.8 call threshold, the call rate decreased

as the MAF increased (Figure 4). Also, there was a sudden

drop in the call rate at MAF ¼ 0.2 (Figure 4A). Besides call

rate, accuracy decreased as the MAF increased from 0 to

0.2 but was approximately constant near 99.1% for fre-

quencies above 0.2. We also called alleles by using the

‘‘practically deterministic’’ threshold (Figure 4B). Similar

to the call rate with t1 ¼ 0.8, the call rate with the practi-

cally deterministic threshold decreased when the MAF

increased. In contrast, the imputation accuracy was almost

perfect regardless of the MAF.

The confidence-based call threshold directly determines

when the call algorithm relies heavily on population allele

frequencies. Because allele frequencies had no impact on

calling genotypes when we used the practically determin-

istic threshold (Figure 4B), calls were made only when

forced by very tight constraints between the sampled IVs

and observed genotypes. As we relaxed the call threshold,

additional calls were made with input from population
erican Journal of Human Genetics 92, 504–516, April 4, 2013 509
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Figure 3. Call Rate and Accuracy as a Function of Call Threshold
in Simulated and Real Pedigree
Call rate is indicated by circle and accuracy is indicated by a
plus sign.
(A) Analysis of simulated data: we used the SfM

8
m framework panel.

(B) Analysis of real data: see text for the description of the analysis.
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We used the SfM

8
m framework panel from simulation. Different

call thresholds were used: (A) t1 ¼ 0.8, t2 ¼ 0.9 and (B) practically
deterministic ðt1y1:0Þ.
allele frequencies. These additional calls include alleles

transmitted from unobserved founder chromosomes that

can be called only by using population allele frequencies,

so the use of a call threshold that exceeds 0.5 will call those

alleles as the major alleles. Hence, when we used a call

threshold of t1 ¼ 0.8, unobserved alleles from SNPs with

MAF < 0.2 were called as the major allele whereas SNPs

with MAF R 0.2 were not called because their major allele

frequencies then fell below the call threshold (Figures 4A

and S1). As expected, the MAF at which the call rate

suddenly changed was proportional to 1 � t1 (Figures S2

and S3), even though the calls were made from the same

underlying estimated genotype probabilities.

The distance between dense genotypes and their respec-

tive nearest framework markers affected consistency much

more than the call rate and accuracy (Figure 5). Under the

M8
m panel, consistency decreased substantially as dense

genotypes were farther from the nearest framework

markers, e.g., from ~63% to ~45% as the map distance
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increased from 0 to 4 cM. In contrast, the accuracy and

call rate did not greatly drop as themap distance increased,

even though decreasing trends were observed.

Real Data

High imputation accuracy and call rate were also obtained

on the real data. In the real pedigree, the method called

68% of alleles among the 47 subjects that could be vali-

dated and achieved an accuracy of 97.6% via the default

threshold (Figure 3B). Relaxation of the call threshold to

t1 ¼ 0.6 increased the call rate to 85% but with a decline

to 93% in the accuracy. Similar to the simulated data, allele

call rate was inversely related to the population allele

frequency.

Comparison with BEAGLE

GIGI called rare heterozygous genotypes with substantially

higher accuracy than did BEAGLE (Table 3). Under design

FW and with the most probable genotype calling, GIGI

called these genotypes with an accuracy of 64.4%, in

contrast to BEAGLE, which achieved an accuracy of only

4.6%. Increasing the number of dense markers and

providing more subjects in the reference panel (designs

L1 and L1O) improved BEAGLE’s accuracy in calling rare

heterozygous genotypes (up to 26.4%), but the accuracy

was still much lower than that for GIGI. In addition,

GIGI called 46.2% more rare genotypes for relatives who

were completely untyped. These genotypes were not called

by BEAGLE because BEAGLE did not impute genotypes on

completely unobserved subjects. With the confidence-

based calling with the default threshold (Table 3), the

same trends were observed.

We also compared the overall genotype accuracy and ge-

notype call rate in GIGI and BEAGLE (Table 3). Under the

design FW and with the most probable genotype calling,

GIGI called genotypes with higher accuracy than BEAGLE

(79.7% versus 70.2%). However, the availability of outside

reference (FWO) or dense framework marker panel (L1)

improved both accuracy and call rate in BEAGLE. In partic-

ular, the joint use of dense framework SNPs and outside

references (L1O) improved the imputation accuracy of
013
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Nearest Framework Marker
We used the M8

m framework panel from
simulation. Wemeasured the (A) accuracy,
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BEAGLE substantially (95.4%). The accuracy of imputing

genotypes via GIGI could increase substantially to 96.4%

when using the default threshold. However, the tradeoff

was that a considerable fraction of genotypes was not

called (52.3%).
Discussion

Wehave introduced an approach for carrying out genotype

imputation in potentially large pedigrees. By harnessing

existing computational tools that combine exact com-

putation with MCMC-based sampling, our imputation

approach can be used in pedigrees that range from small

to very large with a range of possible missing data that

could include founders. Our results demonstrate that

imputed genotypes, including those with rare alleles, can

be accurate and obtained with a high call rate. Results

from analysis of the simulated data suggest that the num-

ber of subjects genotyped for a framework panel has a

higher influence on the quality of imputed genotypes

than does marker density. Also, results from the analysis

of real data show that our genotype imputation approach

has higher accuracy in imputing rare alleles than does

the population-based approach as implemented in the

state-of-the-art BEAGLE.

Our imputation approach can efficiently incorporate

new collections of very dense markers, including high-
The American Journal of Human
throughput sequencing data, into

studies involving existing genome

scan data. Results obtained here sug-

gest that an existing framework panel

does not need to have high density to

infer IVs needed for genotype impu-

tation. This is consistent with both

theory50 and past results16,43 that

show diminishing gains in pedigrees

in determining inheritance at a

particular position with increasing

marker density. Our results suggest

that markers from existing genome

scans can be leveraged to allow geno-

type imputation of dense markers on

many individuals when these exist-

ing marker genotypes are coupled

with dense markers typed on some

subjects. As demonstrated in our real

pedigree analysis, genotypes of some

informative dense markers, such as

those with high minor allele fre-
quencies typed on multiple individuals, can also be

included in the framework marker panel.

Results from the comparison between GIGI and BEAGLE

have several implications. First, GIGI provides much

higher accuracy in calling rare alleles than does BEAGLE.

This is an expected outcome, because explicitly modeling

the transmission of genomic segments via the pedigree

structure allows rare alleles on such segments to be reliably

called. In contrast, BEAGLE is not accurate in calling rare

alleles, a result that agrees with other studies.33,34 When

rare alleles are segregating in only one pedigree, increasing

the reference sample size is unlikely to help impute such

rare alleles. Such pedigree-specific rare or ultra-rare alleles

could be typical, especially for causal disease alleles, as is

suggested by the very large number of alleles known for

some disease loci.9 Second, conditioning on the pedigree

structure together with marker data in the pedigree allows

imputation of genotypes in relatives who are unobserved

for any genotypes. Both of these considerations are impor-

tant when the motivation is to identify rare causal variants

in pedigrees. Third, BEAGLE excels in imputing common

variants when both dense markers and an adequate num-

ber of reference samples are present. Under these condi-

tions, BEAGLE imputes common alleles quite accurately

and calls them with high confidence; however, the avail-

ability of dense framework markers typed on many

subjects is not always guaranteed in pedigree studies. A

potential future direction would be to integrate the use
Genetics 92, 504–516, April 4, 2013 511



Table 3. Comparison between GIGI and BEAGLE under Various Designs of the Real Data

Call Choice Groupa Metricb

Program

GIGI BEAGLE

Framework Framework Leave-One-Out

FWc FWc FWOc L1c L1Oc

Most probable rare A 64.4 4.6 4.6 26.4 14.9

overall A 79.7 70.2 73.3 82.5 95.4

Threshold rare A 69.0 5.3 4.6 15.7 18.2

C 82.0 86.5 100 57.3 76.4

overall A 96.4 88.8 91.5 95.1 98.0

C 47.7 47.1 43.8 54.1 93.6

aRare ¼ among the 87 heterozygous genotypes that each contain a rare allele.
bA, accuracy (%); C, call rate (%). Under the most probable genotype calling approach, C ¼ 100% and therefore has been omitted.
cDesign. FW, framework. Refer to Table S3 for the description of the designs.
of information from population LD that BEAGLE uses into

GIGI to improve the call rate for common variants. We also

acknowledge that BEAGLE has potential for improvement

in use for genotype imputation. For instance, BEAGLE has

an option to detect pairwise IBD segments51,52 that could

potentially be used for this purpose.

The success of genotype imputation requires reliable

inference of IVs. Ultimately, this requires the use of infor-

mative framework markers. The methods implemented

in MORGAN sample IVs from the appropriate conditional

distribution,18 giving accurate results for computations on

large pedigrees,16 and here we showed how imputation

quality is affected by the density, type, and number of sub-

jects observed for the frameworkmarkers. In practice, users

of these imputation methods will need to determine

whether they have sufficiently informative framework

markers for their own data, possibly by means of an exist-

ing information measure.48 In real data, genotyping errors

could also affect the reliability of IVs, so genotyping errors

should also first be cleaned. This topic is beyond the scope

of this current paper but will be addressed in the future.

Two notable features of our approach allow efficient

imputation in large pedigrees. First, our approach separates

the inference of IVs from imputation of dense genotypes.

One advantage of this strategy is that it circumvents the

linkage equilibrium assumption between markers that is

needed for application of the Lander-Green algorithm.

This is an advantage because the estimated probability of

IVs could be incorrect if the linkage equilibrium assump-

tion is violated, which could lead to an increase in false-

positive linkage signals.53,54 Another advantage is compu-

tational efficiency, which is achieved because IVs needed

to be sampled only once via sparse framework markers.

This approach is in contrast to the computationally inten-

sive approach used in MERLIN to incorporate LD through

the use of haplotype blocks.37 Second, our approach uses a

state-of-the-art MCMC sampler for analysis of large pedi-

grees. This allows us to sample IVs to enable analyses
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that are otherwise computationally intractable on large

pedigrees. Computation is relatively rapid, given a sample

of IVs: on an Intel L5420 Xeon 2.50 GHz processor, GIGI

used 26 min to impute genotypes for 25,000 dense

markers, given 1,000 sampled IVs on a 52 member pedi-

gree. In this example, gl_auto required 3.5 hr for 30,000

Monte Carlo iterations for multipoint computation on

213 framework markers that span 100 cM. Therefore, if

the 1,000 sampled IVs had not previously been obtained,

in this example imputation on the entire largest human

chromosome would require ~12 hr of computation,

because computation time is approximately linear in the

number of markers. Parallelization of computation in-

volving both chromosomes and pedigrees can, of course,

keep throughput computation time relatively low.

Genetic analyses can be performed with imputed dense

genotypes to identify variants that affect traits. In large

pedigrees, it might be fruitful to limit the initial search

space to regions where there is positive evidence for link-

age with the trait, because only here is there sufficient joint

segregation of trait and markers to provide strong confi-

dence in any implicated variants. In these regions, we

can then search for causal variants with different ap-

proaches. One approach is to perform a measured geno-

type approach on imputed SNPs, treating them as covari-

ates to adjust out a linkage signal55 in, for example, a

variance component analysis. Another approach is to

perform a family-based association test that is suitable for

small56 or large57 pedigrees. Yet another approach is to

perform exploratory analyses via simple filters to correlate

disease status with rare variants. Because many types of

analysis require genotypes on many subjects, the use of

imputed genotypes will enable these types of analyses. In

any case, where imputation is used, themost significant re-

sults should be checked with direct genotyping, just as is

standard for population-based studies.58

Our genotype imputation approach, as implemented

in GIGI, can facilitate cost-effective genetic analyses,
013



including but not limited to the identification of rare

causal variants in complex traits. Because rare alleles

affecting traits can be enriched in pedigrees, the use of

large pedigrees is an efficient design to detect signals that

are statistically significant. Such pedigrees are emerging

as an important class of data used to identify rare causal

variants. Statistical analyses of such large pedigrees via

imputed dense genotypes could benefit from increased

power. Other potential extensions to our approach

include inferring haplotypes of dense markers, providing

an option for multiple imputation, and providing guid-

ance in selecting which subjects to genotype for dense

variants.
Appendix A: Approximation in the Inference of IVs

To achieve computational efficiency, we use the approxi-

mation that PðS$v ¼ sjGob
F ;Gob

v ÞyPðS$v ¼ sjGob
F Þ. Making

this approximation allows us to sample IVs by using only

framework markers. This approximation states that the

knowledge of Gob
v does not dramatically influence the

inference of S$v given that Gob
F is already observed. This
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approximation is reasonable because meiotic events in a

chromosome do not occur frequently and the use of a

moderately sparse set of markers can often extract much

of the information of the IVs in a pedigree.16,43 Also see

Appendix B.
Appendix B: Convergence Property of the

Estimators

Under the assumption that dense marker v is in

linkage equilibrium with the framework markers, the
The Am
estimator ~PðGivjGob
F ;Gob

v Þ ¼ Pn
k¼1PðGivjSk$v;Gob

v ÞPðGob
v jSk$vÞ=Pn

k¼1 PðGob
v jSk$vÞ converges to PðGivjGob

F ;Gob
v Þ. The modified

estimator bPðGivjGob
F ;Gob

v Þ ¼ 1

n�
Xn

k¼1
PðGivjSk$v;Gob

v Þ, where

n� ¼ Pn
k¼1IðPðGob

v jSk$vÞ > 0Þ, converges to a quantity like

PðGivjGob
F ;Gob

v Þ that replaces the emission probability

PðGob
v jsÞ by the emission function IðPðGob

v jsÞ > 0Þ at posi-

tion v. In test data sets, the estimates from the two estima-

tors are often quite similar.

Proof of Convergence

To see this, let hðGob
v ; sÞ be the generic emission function at

the position v, conditional on the IVs s at the position v.

Most commonly, hðGob
v ; sÞ ¼ PðGob

v jsÞ.
We show equality between PðS$v ¼ sjGob

F ;Gob
v Þ and ~p ¼

PðS$v ¼ sjGob
F ÞhðGob

v ; sÞ=PwPðS$v ¼ wjGob
F ÞhðGob

v ;wÞ when

hðGob
v ; sÞ ¼ PðGob

v jsÞ. For brevity, we omit the inclusion of

allele frequencies into the equation below. We assume that

the dense marker v is not in linkage disequilibrium with

the framework markers, which are indexed from 1 toM.

Define ajðsÞ ¼ PðGob
1 ;.;Gob

j ; S$j ¼ sÞ and bjðsÞ ¼
PðGob

jþ1;.;Gob
M jS$j ¼ sÞ:
which holds because

P
�
S$v ¼ s j S$j ¼ x; S$jþ1 ¼ y

�
P
�
S$jþ1 ¼ y j S$j ¼ x

�
¼ P

�
S$v ¼ s j S$j ¼ x

�
P
�
S$jþ1 ¼ y j S$v ¼ s

�
by the property of the Haldane Map function.

If hðGob
v ; sÞ ¼ PðGob

v jsÞ, this equation becomes the usual

calculation of PðS$v ¼ sjGob
F ;Gob

v Þ. This result tells us that

the proper way to update the probability distribution of

S$v after adding genotypes of the dense marker v is to re-

weight the top and bottom by the emission probability

of the dense marker v. Alternatively, we can define
erican Journal of Human Genetics 92, 504–516, April 4, 2013 513



h
�
Gob

v ; s
� ¼ P

�
Gob

v is compatible with s
�

¼
�
1 if P

�
Gob

v j s�> 0

0 if P
�
Gob

v j s� ¼ 0

¼ I
�
P
�
Gob

v j s�> 0
�
:

This emission function uses only the deterministic infor-

mation of Gob
v and does not depend on the allele frequency

of the dense marker v. Therefore, we do not have to worry

about making the unrealistic assumption that the tightly

linked markers are independent of each other.

Now, we calculate PðGivjGob
F ;Gob

v Þ.
P
�
Giv jGob

F ;Gob
v

�¼P
s

P
�
Giv jS$v¼s;Gob

F ;Gob
v

�
P
�
S$v¼s jGob

F ;Gob
v

�
¼ P

s

P
�
Giv j S$v ¼ s;Gob

v

�
P
�
S$v ¼ s jGob

F ;Gob
v

�

¼ P
s

P
�
Giv j S$v ¼ s;Gob

v

� P
�
S$v ¼ s jGob

F

�
P
�
Gob

v j s�P
w

P
�
S$v ¼ w jGob

F

�
P
�
Gob

v jw�:

A natural estimator of PðGivjGob
F ;Gob

v Þ is to plug inbPðS$v ¼ sjGob
F Þ for PðS$v ¼ sjGob

F Þ.
bPðS$v ¼ sjGob

F Þ ¼ 1

n

Xn

k¼1
IðSk$v ¼ sjGob

F Þ is an empirical

estimator of PðS$v ¼ sjGob
F Þ using the realized MCMC

samples S1$v,., Sn$v. We propose the estimator

~P
�
Giv jGob

F ;Gob
v

� ¼
X
s

P
�
Giv j S$v ¼ s;Gob

v

�
�

bP�S$v ¼ s jGob
F

�
P
�
Gob

v j s�P
w

bP�S$v ¼ w jGob
F

�
P
�
Gob

v jw�

¼

P
s

P
�
Giv j S$v¼s;Gob

v

�1
n

Xn
k¼1

I
�
Sk$v¼s jGob

F

�
P
�
Gob

v j s�
P
w

1

n

Pn
k¼1

I
�
Sk$v ¼ w jGob

F

�
P
�
Gob

v jw�

¼
Pn
k¼1

P
�
Giv j Sk$v;Gob

v

�
P
�
Gob

v j Sk$v
�

Pn
k¼1

P
�
Gob

v j Sk$v
�

/
p
P
�
Giv jGob

F ;Gob
v

�
:

Alternatively, we replaced PðGob
v jsÞ by IðPðGob

v jsÞ > 0Þ. We

used this estimator in Equation 5.

bP�Giv jGob
F ;Gob

v

� ¼
Pn
k¼1

P
�
Giv j Sk$v;Gob

v

�
I
�
P
�
Gob

v j Sk$v
�
> 0

�
Pn
k¼1

I
�
P
�
Gob

v j Sk$v
�
> 0

�

¼ 1

n�
Xn
k¼1

P
�
Givj Sk$v;Gob

v

�
I
�
P
�
Gob

v j Sk$v
�
>0

�

¼ 1

n�
Xn
k¼1

P
�
Giv j Sk$v;Gob

v

�

Supplemental Data

Supplemental Data include three figure and four tables and can be

found with this article online at http://www.cell.com/AJHG/.
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