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SUMMARY

Abundant expression of the long noncoding (lnc)
PAN (polyadenylated nuclear) RNA by the human
oncogenic gammaherpesvirus Kaposi’s sarcoma-
associated herpesvirus (KSHV) depends on a cis-
element called the expression and nuclear retention
element (ENE). The ENE upregulates PAN RNA by
inhibiting its rapid nuclear decay through triple-helix
formation with the poly(A) tail. Using structure-based
bioinformatics, we identified six ENE-like elements in
evolutionarily diverse viral genomes. Five are in
double-stranded DNA viruses, including mammalian
herpesviruses, insect polydnaviruses, and a protist
mimivirus. One is in an insect picorna-like positive-
strand RNA virus, suggesting that the ENE can coun-
teract cytoplasmic as well as nuclear RNA decay
pathways. Functionality of four of the ENEs was
demonstrated by increased accumulation of an in-
tronless polyadenylated reporter transcript in human
cells. Identification of these ENEs enabled the
discovery of PAN RNA homologs in two additional
gammaherpesviruses, RRV and EHV2. Our findings
demonstrate that searching for structural elements
can lead to rapid identification of lncRNAs.
INTRODUCTION

Both cellular and viral mRNAs are subject to robust RNA decay

pathways. Most mRNAs undergo cytoplasmic decay initiated

by poly(A) tail shortening followed by decapping and degrada-

tion of the transcript body (Chen and Shyu, 2011; Garneau

et al., 2007). Parallel decay pathways in the nucleus act in quality

control systems that degrade aberrant transcripts (Doma and

Parker, 2007; Schmid and Jensen, 2010), but also influence

the levels of normal mRNAs (Kuai et al., 2005). Because of struc-

tural similarity to mRNA, long noncoding (lnc) RNAs may be

subject to the same RNA decay mechanisms (Conrad et al.,

2006; Geisler et al., 2012; Thompson and Parker, 2007). Since

these decay pathways often initiate with deadenylation,

abundant polyadenylated RNAs frequently harbor cis-acting
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elements that protect their poly(A) tails (Conrad et al., 2006;

Conrad and Steitz, 2005; Garneau et al., 2008; Muhlrad and

Parker, 2005; Wang et al., 1999).

Polyadenylated nuclear (PAN) RNA (also known as T1.1 or

nut-1 RNA) is a lncRNA produced by the oncogenic gammaher-

pesvirus, Kaposi’s sarcoma-associated herpesvirus (KSHV)

(Sun et al., 1996; Zhong and Ganem, 1997). PAN RNA accumu-

lates to extraordinarily high levels (�500,000 copies/cell) during

lytic infection and is required for the production of late viral

proteins and infectious virus (Borah et al., 2011; Sun et al.,

1996). The expression and nuclear retention element (ENE),

located �120 nt upstream of PAN RNA’s polyadenylation site,

is essential for this high accumulation (Conrad et al., 2006;

Conrad and Steitz, 2005). The ENE inhibits rapid decay of PAN

RNA by blocking deadenylation (Conrad et al., 2006, 2007). It

also stabilizes heterologous intronless transcripts, but does not

affect the translation of reporter mRNAs (Conrad and Steitz,

2005; Pawlicki and Steitz, 2008).

The KSHV ENE is a 79 nt long RNA element, composed of

a stem-loop structure with an asymmetric internal U-rich loop,

which in conjunction with adjacent base pairs constitutes the

ENE’s functional core (Conrad et al., 2007) (Figure 1A). The

crystal structure of the ENE core bound to oligo(A)9 revealed

5 consecutive U-A:U base triples formed between the U-rich

loop and oligo(A)9 (Mitton-Fry et al., 2010); binding is extended

by A-minor interactions with three G-C base pairs of the lower

stem. Genetic and biochemical analyses indicate similar interac-

tions between the PAN RNA’s poly(A) tail and the ENE in vivo

(Conrad et al., 2007; Mitton-Fry et al., 2010).

Because lncRNAs are poorly conserved (Pang et al., 2006;

Ulitsky et al., 2011), sequence homology searches often fail to

identify homologs even from closely related organisms. How-

ever, they can possess conserved structural elements (Parker

et al., 2011; Stadler, 2010), suggesting that structure-based

queries may be more powerful. Numerous bioinformatics tools

for RNA structure analysis were developed and used to identify

small noncoding RNAs (Cruz and Westhof, 2011; Eddy, 2006;

Menzel et al., 2009; Washietl, 2010).

Here, by devising a structure-based bioinformatics approach,

we identified six ENE-like elements in diverse viral genomes; five

in double-stranded DNA (dsDNA) viruses (herpesviruses, braco-

viruses [Dupuy et al., 2006], and mimiviruses [Claverie et al.,

2009]) and one in a positive-strand RNA virus (picorna-like dicis-

trovirus [Bonning and Miller, 2010]). We tested four structures
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Figure 1. ENE Models for Designing the

RNAMotif Descriptors

(A) Secondary structure of the KSHV PAN ENE

with unfolded flanking sequences. Free energy

(DG in kcal/mol) is for the folded ENE only. The

U residues involved in triple-helix formation with

poly(A) and the G-C base pairs involved in A-minor

interactions are shaded green and blue, respec-

tively. The polyadenylation signal is underlined.

Nucleotide numbering is relative to the 50 end of

PAN RNA. The U903Cmutant (Conrad et al., 2007)

was used for Figure 4D.

(B) Models of the ENE in standard (left) and in-

verted (right) configuration. Parameters for the

RNAMotif search are shown (see Experimental

Procedures for details), where N = A, C, G or U and

ULL = the U-rich loop linker.
and demonstrated their functionality in increasing the accumula-

tion of a reporter RNA. The ENEs in the dsDNA viruses all map

to intergenic regions, suggesting the existence of unidentified

lncRNAs. Indeed, we confirmed the ENE-dependent expression

of one of these lncRNAs, which appears to be a homolog of the

KSHV PAN RNA, in rhesus rhadinovirus (RRV).

RESULTS

To search for novel ENEs, we designed a bioinformatic screen

utilizing the RNAMotif (Macke et al., 2001), Mfold (Zuker, 2003),

and BLAST algorithms. Previous mutational (Conrad et al.,

2007) and crystallographic (Mitton-Fry et al., 2010) analyses

defined functionally important residues and secondary structure

features of the KSHV ENE (see Figure 1A). We incorporated

these into ENE models (Figure 1B) that served as a basis for

designing RNAMotif descriptors allowing (1) the U-rich internal

loop to have 4–10U residues on each side for formation of a triple

helix with poly(A), and (2) the flanking stems to be at least 4 bp

long, with stem I capped by two G-C base pairs to facilitate

A-minor interactions (see Experimental Procedures for details).

The size of the internal loop and length of the stems were chosen

arbitrarily. We reasoned that an ENE could assume two orienta-

tions within an RNA: standard (left panel) or inverted (right panel).

Identification of ENEs
We searched available viral sequences, considering only eukary-

otic viruses because of the interaction with the poly(A) tail by the

original KSHV ENE. Our search yielded fourteen hits in nine

different viruses. Of these, we consider 12 from 7 viruses to

represent ENEs because (1) they exhibit common features not

included in our bioinformatics selection, and (2) the appearance

of either a polyadenylation signal (AAUAAA or AUUAAA) or a

genomically encoded poly(A) tract within 200 nucleotides down-

stream. Of the 12 ENE hits, 7 are unique, including the KSHV ENE

(Figures 1A and 2A). Two are from other gammaherpesviruses,

RRV and equine herpesvirus 2 (EHV2 [Telford et al., 1995]) (see

Figure S1A for phylogenetic distribution) and seven appear in

two polydnaviruses, Cotesia congregata and Cotesia sesamiae
bracoviruses (Dupuy et al., 2006). While each gammaherpes-

virus possesses a single ENE, the C. congregata bracovirus

contains six (four identical and two variant copies that differ by

one or two residues) in different genomic regions (data not

shown). We found only one ENE in C. sesamiae bracovirus, but

the genome is only partially sequenced. One ENE structure

appears in Acanthamoeba polyphaga mimivirus (Claverie et al.,

2009). Interestingly, our screen identified an ENE candidate in

a positive-strand picorna-like virus, Plautia stali intestine virus

(PSIV) (Sasaki et al., 1998).

The ENEs of RRV, EHV2, C. congregata and C. sesamiae

bracoviruses and A. polyphaga mimivirus all lie within predicted

intergenic regions (Figure 2B and data not shown). In PSIV, the

ENE is located in the region of the genomic RNA corresponding

to the 30 untranslated region (UTR) when the genome serves as

a mRNA (Figure S1B); a poly(A) stretch is genetically encoded

106 nt downstream of the ENE.

Each ENE (Figure 2A) can assume an imperfect stem-loop

structure with a U-rich internal loop predicted to form 4, 5, or

6 U-A:U base triples with an oligo(A) sequence. They also

possess several common features not inferred previously from

functional analyses of the KSHV ENE, including (1) a conserved

U-A base pair (A-U in the inverted ENEs) in stem I, and (2)

a biased nucleotide distribution in stem II, which is pyrimidine-

rich near the U-rich loop on the 50 side (30 side in the inverted

ENEs) paired to a purine-rich complementary strand.

Functionality of the Newly Discovered ENEs
To address whether the newly discovered ENEs function in RNA

stabilization, we tested four structures for their ability to increase

accumulation of an intronless b-globin mRNA reporter (Conrad

and Steitz, 2005). One or two copies of the RRV, EHV2,

C. congregata bracovirus or PSIV ENE were inserted 167 nt

upstream of the polyadenylation site in the 179 nt long b-globin

30 UTR and the resulting chimeras transiently expressed in

HEK293T cells. Figure 3 shows that, relative to the no insert

control (lane 1), one copy of the KSHV ENE increased b-globin

mRNA levels 9.2-fold (lane 2), whereas the RRV and EHV2

ENEs showed 3.2- and 2-fold stabilization, respectively (lanes
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Figure 2. Newly Discovered ENEs

(A) Secondary structures were predicted using the Mfold

program with unfolded 50 and 30 flanking sequences. Free

energies (DG in kcal/mol) were calculated for the folded

ENE structures only. Base pairs predicted to be involved in

A-minor interactions with poly(A) targets are shaded blue.

A conserved U-A (A-U in inverted ENEs) base pair is

shaded orange. Polyadenylation signals are underlined. In

the A. polyphaga (A.p.) mimivirus, the 30 proximal stem

loop may direct alternative polyadenylation within the

stem loop itself, as documented for mimivirus transcripts

(Byrne et al., 2009). In RRV and PSIV, the nucleotide

numbering is relative to the 50 end of PAN RNA and

genomic RNA, respectively. The U1084C mutation in the

RRV ENE used in Figure 4D is indicated. Circled nucleo-

tides in bracoviruses are different in C. congregata (C.c.)

and C. sesamiae (C.s.).

(B) Location of ENEs in gammaherpesvirus genomes; only

ORFs that are conserved in all gammaherpesviruses and

KSHV PAN RNA are shown.

See also Figure S1.
4 and 6). The single C. congregata bracovirus and PSIV ENEs

showed 1.7- and 1.1-fold increase, respectively (lanes 14 and

16). Two copies of each ENE exhibited about 3-fold stronger

stabilization activity than one. None of the ENE inserts in anti-

sense orientation increased the levels of b-globin mRNA, but

slightly lowered its accumulation (compare lanes 8–12 with 1

and 18–21 with 13). In summary, all of the ENEs tested increased

accumulation of the intronless b-globin transcript, but to varying

degrees.

RRV Expresses an ENE-Containing PAN RNA Homolog
Within the gammaherpesvirus genomes, the ENEs map to syn-

tenic regions (Figure 2B), arguing that they are transcribed within

as yet unidentified PANRNA homologs. Thus, we asked whether

an ENE-containing RNA is made in the RRV lytic phase. Latently

infected BJAB-RRV-GFP cells were treated with trichostatin A

(TSA) to reactivate the virus (DeWire and Damania, 2005), and

total cellular RNA collected one or two days later was analyzed

by northern blotting (Figure 4A). An oligonucleotide probe com-

plementary to the RRV ENE sequence revealed a 1.3 kb tran-

script in RRV-infected (lanes 3–6) but not uninfected (lane 2)
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BJAB cells. Transcript levels increased dramat-

ically one day after lytic reactivation of the virus

(compare lane 3 with 4 and 5 with 6). The 1.3 kb

RNA was retained on oligo(dT) cellulose as

efficiently as GAPDH mRNA (lanes 7 and 8),

consistent with two overlapping AAUAAA poly-

adenylation signals 3 and 7 nt downstream of

the ENE (see Figure 2A). 30 RACE analysis

mapped a poly(A) tail beginning 27 nt 30 to the

ENE (data not shown). Primer extension analy-

sis (Figure S2) mapped the 50 end 1157 nt

upstream of the polyadenylation site.

The 1.3 kb RRV polyadenylated RNA exhibits

little sequence similarity to KSHV PAN RNA and

appears to be likewise noncoding (Figure S3).

The longest open reading frame (ORF) encodes
only 34 amino acids and is preceded by multiple AUG codons

(data not shown). The 1.3 kb sequence is strikingly repetitive;

in its 30 portion, about 40 nt upstream of the ENE, 26 nt are

repeated ten times to form a perfect array (schematized in Fig-

ure 4B). In its 50 portion, shorter more dispersed AU-rich repeats

appear.

We tested the 1.3 kb RRVRNA for three hallmarks of the KSHV

PAN RNA: nuclear localization (Sun et al., 1996), dependence on

viral ORF50/Rta for expression (Chang et al., 2002) and upregu-

lation by the viral SOX protein (Borah et al., 2011). BJAB-RRV-

GFP cells, which spontaneously reactivate the virus at low

frequency and give a strong GFP signal, react with the probe

for the 1.3 kb RNA and show relocalization of the normally

cytoplasmic poly(A)-binding protein C1 (PABPC1) to the nucleus

(Figure 4C). The 1.3 kb RNA and nuclear PABPC1 signals largely

coincide, as previously observed for KSHV PAN RNA (Borah

et al., 2011). To test for dependence on ORF50/Rta and for up-

regulation by SOX, we transiently expressed the 1.3 kb RNA in

HEK293T cells in the absence or presence of either RRV

ORF50/Rta or both ORF50/Rta and the KSHV SOX protein (Fig-

ure S4). As for KSHV PAN RNA, expression is completely



Figure 3. ENEs Increase the Levels of a Heterologous Intronless

Transcript

b-globin constructs (bD1,2-ENE) containing either one or two copies of the

KSHV, RRV, EHV2, C. congregata bracovirus (CcBraco) or PSIV ENE were

transiently expressed in HEK293T cells. ENE inserts were in either forward or

reverse orientation.

(A) Northern blot analysis of b-globin mRNA using a full-size RNA probe. The

same blot was probed with the SB180 oligonucleotide for GFP mRNA ex-

pressed from a cotransfected plasmid. The band above b-globin mRNA may

represent a nonpolyadenylated precursor.

(B) Quantification of northern blot signals. To control for transfection efficiency

and loading, the levels of b-globin transcripts were normalized to those of GFP

mRNA. The bD1,2 signal (lanes 1 and 13) was set to 1. Bars depict the average

values from three experiments; error bars show SD.
dependent on ORF50/Rta (compare lane 2 to 1) and is upregu-

lated 3-fold by the SOX protein (lane 3). We conclude that the

RRV 1.3 kb RNA exhibits features of KSHV PANRNA and is likely

to be a homolog.

RRV ENE Is Required for Accumulation of RRV PAN RNA
Since the effect of the RRV ENE on b-globinmRNA accumulation

is about 3-fold less than that of its KSHV counterpart (Figure 3),

we assessed its importance for the accumulation of its host RNA,

RRV PAN. We expressed WT PAN RNA, the ENE deletion, and

ENE point mutants (indicated in Figures 1A and 2A) from both

viruses in HEK293T cells (Figure 4D), along with control GFP

mRNA. Deletion of the entire ENE (lane 2) or substitution of

a single U residue by C in the U-rich loop (U1084C mutant,

lane 3) resulted in a 4-fold reduction in RRV PAN expression,

comparable to that observed for the KSHV PAN RNA with anal-

ogous changes (lanes 5 and 6). Thus, an ENE is as important for

cellular accumulation of RRV PAN RNA as it is for its KSHV

counterpart.

A Putative PAN RNA Homolog in EHV2
Despite little overall sequence conservation of KSHV and RRV

PANRNAs (Figure S3 and data not shown), their first 25 nt exhibit
similarity that extends into the PAN RNA promoters. Using these

conserved sequences as a query, we searched the EHV2

genome and identified promoter and transcription start site

signals for the EHV2 PAN RNA 1,708 nt upstream of the ENE.

On the 30 side, the EHV2 ENE abuts an AAUAAA polyadenylation

signal (see Figure 2A). Because of downstream homology to

KSHV and RRV, we predict a polyadenylation site 19 nt 30 to
the EHV2 ENE. Thus, the putative EHV2 PAN RNA is 1,789 nt

long, with the longest ORF (20 amino acids) preceded bymultiple

AUG codons and not significantly conserved in RRV or KSHV

(data not shown).

DISCUSSION

Despite identification of numerous abundant lncRNAs from both

cellular (Hogan et al., 1994; Hutchinson et al., 2007; Jolly et al.,

2004; Pontier and Gribnau, 2011) and viral (Bermudez-Cruz

et al., 1997; Sun et al., 1996) sources, little is known about mech-

anisms underlying their cellular accumulation. For KSHV PAN

lncRNA, not only high levels of transcription, but also increased

stability via two RNA elements, the ORE and the ENE, contribute

(Conrad et al., 2006; Conrad and Steitz, 2005; Sahin et al., 2010).

For 7 years, KSHV PAN RNA has been the only lncRNA known to

possess an ENE (Conrad and Steitz, 2005). Here, we identified

six ENEs in diverse viral genomes, including one ssRNA and

five dsDNA viruses (Figure 2A). Four tested ENEs all increased

the levels of an intronless b-globin transcript, demonstrating

stabilization activity (Figure 3). We also showed that the RRV

ENE is required for high accumulation of a novel RRV transcript

(Figure 4), the first homolog of KSHV PAN RNA to be identified.

The other five ENEs are elements that likely contribute to the

stability of their host RNAs since they share with KSHV and

RRV features not selected in our bioinformatics screen (Figures

1A and 2A). First, they are located either near polyadenylation

signals (EHV2, bracoviruses, and mimivirus) or near a genetically

encoded poly(A) stretch (PSIV). Second, they possess common

characteristics of unknown function within the stems of the ENE

itself: (1) a conserved U-A base pair (A-U in the inverted ENEs) in

stem I, and (2) a biased nucleotide distribution in stem II, which is

pyrimidine-rich close to the U-rich loop at the 50 side (30 side in

the inverted ENEs). A third feature, suggesting functional conser-

vation of bracovirus ENEs, is compensatory mutations that

ensure stem integrity (Figure 2A).

Although some ENEs increase the levels of the b-globin

reporter only marginally (Figure 3), they may be more potent in

their natural contexts. Specifically, the RRV ENE is 3 times less

stabilizing in a heterologous b-globin mRNA than the KSHV

ENE (Figure 3), but comparably upregulates its host transcript

(4-fold) relative to the DENE construct (Figure 4D). Perhaps the

short distance between the ENE and the poly(A) tail (26 nt

compared to 117 nt for RRV versus KSHV) is critical for efficient

upregulation, although the influence of surrounding sequences

cannot be excluded. At least in herpesviruses, the weaker the

ENE in reporter upregulation, the closer to the polyadenylation

signal it resides (see Figures 1A, 2A, and 3). The importance of

distance from the poly(A) tail requires further investigation.

Discovery of an ENE in PSIV argues for a cytoplasmic func-

tion, presumably in RNA stabilization, contrary to previous
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Figure 4. RRV Expresses an ENE-Containing

Polyadenylated RNA

(A) To probe for an ENE-containing transcript(s), total

cellular (lanes 3-6) or poly(A)+ (lanes 7 and 8) RNA from

BJAB-RRV-GFP cells, either untreated or treatedwith TSA

as indicated, was analyzed by northern blot hybridization

using oligonucleotide KT492, complementary to a portion

of the RRV ENE. Lane 2 shows total RNA from uninfected

BJAB cells. The same blot was reprobed for GAPDH

mRNA and 18S rRNA using a mixture of the SB71 and

SB87 probes, and the SB231 probe, respectively. DPI,

days postinduction.

(B) Schematic of 1.3 kb RRVPANRNA; not drawn to scale.

(C) Subcellular localization of 1.3 kb RRV PAN RNA (red)

and nuclear PABPC1 (blue) in BJAB-RRV-GFP cells with

the reactivated virus (green). Three different fields are

shown.

(D) The ENE is required for high accumulation of the RRV

PAN RNA. The DENE and D79 (Conrad and Steitz, 2005)

deletion mutations encompass the entire ENE structures

in RRV and KSHV PAN RNAs, respectively. Positions of

the U903C and U1084C point mutations are indicated in

Figures 1A and 2A, respectively. The WT or mutant PAN

RNA gene derived from either RRV or KSHV was tran-

siently expressed in HEK293T cells as indicated. The

KSHV and RRV PAN RNAs were detected by northern

blotting using the SB2 and KT493 probes, respectively.

The same blot was reprobed with the SB180 oligonucle-

otide for GFP mRNA expressed from a cotransfected

plasmid. The bar graph shows average values from three

experiments; error bars represent SD. Levels of b-globin

transcripts were normalized to those of GFPmRNA; levels

of the WT RNAs were set to 1.

See also Figures S2, S3, and S4.
conclusions about ENE effectiveness in the cytoplasm (Conrad

and Steitz, 2005). The genomic RNAs of positive-strand RNA

viruses commonly harbor other stabilization elements (Garneau

et al., 2008; Sharma et al., 2009), and the ENE may add to this

list. Alternatively, the putative interaction between the ENE and

the poly(A) tail could serve a distinct role, such as contributing

to a network of RNA/RNA interactions found in the 30 UTRs of

positive-strand RNA viruses (Liu et al., 2009). In related picorna-

viruses (e.g., poliovirus) such assemblies involve the poly(A) tail

and are essential for genome replication (Liu et al., 2009; Zoll

et al., 2009).

Structural characterization of the KSHV ENE (Mitton-Fry et al.,

2010) enabled identification of a PAN RNA homolog in RRV and

a putative homolog in EHV2. A long, apparently noncoding,

polyadenylated transcript, L1.7 RNA, is abundantly expressed

from the syntenic region of yet another gammaherpesvirus,

bovine herpesvirus 4 (BHV4) (Bermudez-Cruz et al., 1997).

Although the KSHV and RRV PAN RNAs, as well as their putative

EHV2 homolog, exhibit little sequence similarity to L1.7 RNA,

their promoters and the sequences surrounding their transcrip-

tion start and polyadenylation sites are significantly conserved

(Figure S3). Another common feature is the presence of repeti-

tive sequences. Thus, L1.7 RNA may be a BHV4 PAN RNA

homolog, although neither our bioinformatic screen nor careful

inspection revealed an ENE-like structure. If some gammaher-

pesviruses produce ENE-less PAN RNA homologs, then our

observations argue that PAN RNAs are widely expressed among
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gammaherpesviruses. The identification of homologs in RRV and

EHV2 will aid in elucidating why PAN RNA is essential for the

expression of late viral proteins (Borah et al., 2011; Rossetto

and Pari, 2012). Genetic manipulation of the KSHV PAN RNA

locus has been difficult because of the overlap with an important

protein-coding gene, K7 (Wang et al., 2002). Since PAN RNA

genes in RRV and EHV2 do not overlap predicted ORFs, this

problem can be circumvented allowing mechanistic studies.

Although ENEs are relatively rare, their occurrence in evolu-

tionarily divergent viruses raises the question of their presence

in cellular RNAs. Six additional ENE structures will facilitate

derivation of more defined consensus features for searching

larger sequence datasets, e.g., vertebrate genomes. Impor-

tantly, this work demonstrates that structural elements can be

effectively used for the rapid identification of homologous and

possibly unrelated lncRNAs, even in the absence of sequence

conservation.
EXPERIMENTAL PROCEDURES

Bioinformatics

The viral genomic RefSeq database (NCBI, release 43) was queried for ENEs

using RNAMotif (Macke et al., 2001). We reasoned that if the ENE’s functional

core is embedded within a larger nonconserved sequence, it might be more

easily detected with a descriptor-based algorithm rather than probabilistic

model-based tools like RSEARCH or Infernal (Eddy, 2006). The ENE descrip-

tors were based on the models shown in Figure 1B, with lengths of the stems

and loops chosen arbitrarily. Each descriptor required that (1) both stems be at



least 4 bp longwith stem I capped by twoG-C base pairs, (2) the U-rich internal

loop contain symmetrical numbers (4–10) of Us on each side, and (3) the

U-rich loop linker be 1 to 4 nt long. The sequence closing the upper stem varied

between 3 and 80 nt. Each stemwas permitted to possess a maximum of 25%

wobble base pairs and 20% mispairs. Only hits with DG % �5 kcal/mol were

accepted. Because of the high background of false-positive hits, additional

selection was required. Thus, the RNAMotif hits were foldedwith Mfold (Zuker,

2003) and only those that could assume ENE-like structures withDG% theDG

of alternative folds were accepted. Successful hits were used to query viral

sequences in the NCBI nonredundant database using BLAST.

The currently available genomes of 50 herpesviruses (NCBI) were similarly

scanned for ENEs with one or more single-nucleotide bulge(s) in their stems.

No additional ENEs were identified.
Cell Culture, Transfections, and RNA Analyses

HEK293T cells were grown in DMEM medium with 10% fetal bovine serum

(FBS) and transfections were performed using TransIT-293 (Mirus) according

to the manufacturer’s protocol. BJAB and BJAB-RRV-GFP (DeWire and

Damania, 2005) cells were cultured in RPMI 1640 medium with 10% FBS.

For viral reactivation, BJAB-RRV-GFP cells were grown in the presence of

100 nM TSA (Sigma). For northern blot analyses and 50 end mapping, RNA

was isolated using Trizol (Life Technologies). To detect b-globin RNAs, a

uniformly 32P-labeled full-length RNA probe was used. Other RNAs were

detected with 50-32P-labeled DNA oligonucleotides.
Immunofluorescence and In Situ Hybridization

BJAB-RRV-GFP cells (DeWire and Damania, 2005) were immobilized on glass

slides coated with poly-L-lysine (Sigma-Aldrich), and IF and FISH were per-

formed as described (Pawlicki and Steitz, 2008). RRV PAN RNA was detected

with a mixture of KT492 and KT493 probes (Supplemental Information) labeled

with digoxigenin-dUTP and visualized with rhodamine-conjugated anti-digox-

igenin antibody (Jackson Lab Immunologicals). PABPC1 was detected with

rabbit polyclonal antibody (Abcam) and Alexafluor 660-conjugated anti-rabbit

secondary antibody (Invitrogen). Images were collected on a Leica TCS SP5

confocal microscope.
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