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Abstract: The space of Lorentz metrics on a compact manifold is very different from its Riemannian analogue.
There are usually many connected components. We show that some of them turn out to be not simply
connected. We also show that, in dimension greater than 2, the distance between two components is always 0.

Keywords: Space of Lorentz metrics.

MS classification: 53C50; 57R22.

1. Introduction

It is well known (and trivial) that the space of Riemannian metrics on a compact manifold,
endowed with the compact open topology, is contractible. And so is the space of metrics with
given total volume, or with given volume element. Furthermore, the Gram–Schmidt process
tells us that, if the manifold is parallelisable, there exists for any Riemannian metric a global
orthonormal frame field.

In the present article, we shall see that the analogous properties completely fail in the
Lorentz case. Namely, we discuss “Lorentz-parallelisability” (cf. Section 3) and study the
topology of the space L(M) of Lorentz metrics. We will show (cf. Theorem 3.6) that, if M is a
2 or 3 dimensional compact orientable Lorentz manifold then L(M) has an infinite number of
connected components and we will compute the fundamental group of some of them (which
will not be trivial). Moreover, for a natural metric on L(M) (cf. Section 2.2), we study the
distance of these components in the space of metrics with prescribed volume element. We show
that, if dim M > 2, this distance is always zero and, if dim M = 2, it is always positive (cf.
Theorem 4.6).

2. General facts

First we introduce some notations, M will always be a n-dimensional compact manifold
and h a Lorentz metric, i.e., of signature (n − 1, 1). By a “planefield” we shall always mean a
vector subbundle of the tangent bundle; we will call it line field if it is 1-dimensional. Finally,
the vector fields we consider will be supposed everywhere nonzero.
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2.1. About the metrics

Definition 2.1. A tangent vector v �= 0 will be called negative, (respectively, positive) with
respect to h, if h(v, v) < 0 (respectively, h(v, v) > 0). We shall call time bundle (respectively,
space bundle) any line field (respectively, hyperplane field) composed of negative (respec-
tively, positive) vectors.

If we consider a decomposition of the tangent bundle into a line field and a hyperplane field, it is
easy to construct a metric h such that those spaces are time and space bundles of h. Conversely,
we have the following.

Lemma 2.2. 1. Any couple (M, h), possesses time bundles and space bundles.
2. Different time bundles (respectively, space bundles) associated to h are homotopic.

Proof. This is a property of fibre bundles with contractible fibre. But it is known that the
negative grassmannian is contractible. �

Remarks. This lemma gives us the well-known condition for a manifold to admit a Lorentz
structure: the Euler class of the manifold has to be zero. Hence, the only 2-dimensional manifolds
which possess such a structure are the torus and the Klein bottle and, on the other hand, any
odd dimensional compact manifold admits a Lorentz structure.

Furthermore, it is known (cf. [4, p. 29]) that two homotopic fibre bundles are isomorphic
(this property will be useful again later), hence time bundles (resp. space bundles) of a Lorentz
manifold are isomorphic.

Lemma 2.3. Two trivial line fields nowhere collinear are homotopic. Two line fields nowhere
orthogonal, for any Riemannian metric g, are homotopic.

Proof. The first point is evident. For the second, we translate the problem to the projective
tangent. We equip each fibre with the Riemannian metric defined by g, thereby obtaining a
distance. The two line fields are represented by a couple of points in each fibre. The hypothesis
implies that the distance between them is less than 1

2π . Consequently there exists a unique
geodesic between them. These geodesics give us the desired homotopy. �

Definition 2.4. We will say that h is temporally orientable if its time bundles are orientable.

Hence, on a manifold M such that H1(M, Z2) = 0, there exist only temporally orientable
metrics. But, as we will see soon with P3, there exist manifolds M such that H1(M, Z2) �= 0 and
which possess only trivial line fields. Indeed, we are talking about subbundles of the tangent
bundle. Anyway, we can easily find non-orientable line fields on T2 and so non-temporally
orientable metrics.

2.2. About the space of metrics

We are going to define a family of distances on the space, L(M), of Lorentz metrics. Thanks
to a Riemannian metric g, we can identify S2 M , the vector space of symmetric 2-tensors with
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the vector space of endomorphisms of the tangent to M which are symmetric with respect to g.
The endomorphism associated to a tensor h will be denoted h̃. If we choose a Riemannian
metric g, we have a distance on S2 M (since M is compact) given by

d∞
g (h, h′) = sup x∈M(tr((h̃x − h̃′

x)
2)

1
2 ).

One shows that L(M) is an open set of S2 M equipped with this distance. Since M is compact,
it is well known that if g1 and g2 are two Riemannian metrics, there exist positive constants a
and b such that a g1 < g2 < bg1. This means dg1 and dg2 are uniformly equivalent distances. In
particular the zero–non zero distance phenomena we study in Section 4.2 do not depend on g.
The topology induced on L(M) is the one we are going to use in the next paragraphs.

3. Lorentz-parallelism

3.1. Definition and examples

Definition 3.1. We will say that the couple (M, h) is Lorentz-parallelisable (or L-
parallelisable) if there exists, on M , a global h-orthogonal frame field.

It is, of course, necessary for the manifold to be parallelisable. Indeed, a non-temporally
orientable metric is not L-parallelisable and there exist such metrics on T2. We can reinterpret
the definition, (M, h) is L-parallelisable if and only if there exist space-time decompositions in
trivial subbundles. The Lemma 2.2 then says that all the space-time decompositions are trivial.
It is interesting to note that any 3-dimensional compact orientable manifold is parallelisable
(cf. [7]). On S2 × S1 the metric given by dS2 ⊕ (−dS1) is not L-parallelisable but is temporally
orientable.

Proposition 3.2. Any Lorentz metric on S3 or P3 is Lorentz-parallelisable.

Proof. It is well known that any vector bundle on S3 (see [5]) is trivial. Any tangent subbundle
of T P3 is orientable since the existence of a non-orientable subbundle implies the existence of
a map from S3 to S2 anti-invariant by antipodal map, and that is in contradiction with Bursuk–
Ulam Theorem (see [1, p. 240]). The only case left to prove is the case of orientable plane fields
of T P3. To this purpose, we consider the Euler class of such a vector bundle, if it vanishes, the
plane field is going to be trivial. We know that it lies in H 2(P3, Z) which is isomorphic to Z2.
On the other hand, we know that any transversal line field of a plane field is trivial and that TS3

is trivial. This together with the additivity of Stiefel–Whitney classes (cf. [6]) implies that its
second Stiefel–Whitney class vanishes. Furthermore we also know that this class is the reduce
modulo 2 of the Euler class and therefore the latter must be zero. �

We recall that L p,k (with (p, k) = 1) denotes the quotient manifold of S3 by the action of a
primitive pth root of unity, ρ. More precisely we put ρ · (z, z′) = (ρ z, ρk z′). Those spaces are
called lens spaces.

Proposition 3.3. There exist non-Lorentz-parallelisable temporally orientable metrics on Ln,1

for n > 2.
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Proof. We consider the following map (which is the classical covering) from S3 to SO(3). If
we interpret its column vectors as coordinates in a left invariant trivialisation of T S3, it defines
a frame field on S3,

(x, y, z, t) 
−−−→

 x2 + y2 − 1

2 yz + xt yt − xz
yz − xt x2 + z2 − 1

2 xy + zt
xz + yt zt − xy x2 + t2 − 1

2


.

This map defines an orientable plane field on all Ln,1 since the first column vector (which is
the Hopf map) is invariant under the action of roots of unity. We want to prove that this plane
field is not trivial, i.e., that the map from Ln,1 to S2 given by the first column vector can not be
lifted to SO(3) via the Hopf map. If n is odd, we use the fact that a map from Ln,1 to S2 can
be lifted to SO(3) if and only if it can be lifted to S3(since the fundamental group of Ln,1 is Zn).
The first column vector can be lifted to Ln,1 by the identity. If this map could be lifted to S3

it would imply that the identity on Ln,1 could be lifted to S3. But, in return, this would imply
that the covering of S3 on Ln,1 is trivial. If n is even, we can use the nontrivial covering of P3

on Ln,1 and repeat the above proof. We have an orientable nontrivial plane field and therefore
we can find temporally orientable non-Lorentz-parallelisable metrics. �

3.2. Lorentz-parallelism and homotopy

Proposition 3.4. The map which associates to a Lorentz metric its negative eigenspace (rela-
tively to a Riemannian metric g) is continuous.

Proof. It is standard. �

Lemma 3.5. Two Lorentz metrics on M are homotopic if and only if their time bundles are
homotopic into TM.

Proof. If h1 and h2 are two homotopic metrics Proposition 3.4 says that their time bundles are
homotopic. Let us show the converse.

Let g be a Riemannian metric. With g and a nowhere vanishing vector field X we define the
2-tensor X δ = X � ⊗ X �. We remark that X δ = (−X)δ. Hence we can define ζ δ for any line field
ζ , thanks to its elements of norm 1 (calculated with g). Next we compare h1 and g −2 ζ δ

1 where
ζ1 is the eigenspace field associated to the negative eigenvalue of h1. They are both Lorentz
metrics (that is why we chose elements of norm 1). The orthogonal bundle of ζ1 is the same
for both metrics, we denote it by ξ1. The set of symmetric definite positive 2-tensors on ξ1 is
convex. Therefore h1|ξ1 is homotopic to (g − 2 ζ δ

1 )|ξ1 . We rewrite the two metrics

h1 = h1|ξ1 ⊕ λ1 ζ δ
1 ,

where λ1 is the eigenvalue function associated to ζ1, and

g − 2 ζ δ
1 = g|ξ1 ⊕ (−ζ δ

1 ).

Now those metrics are clearly homotopic (λ1 is negative). We proceed in the same way for h2.
It only remains to compare g − 2 ζ δ

1 and g − 2 ζ δ
2 . By hypothesis, ζ1 is homotopic to ζ2 and so

g − 2 ζ δ
1 is homotopic to g − 2 ζ δ

2 . �
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The above lemma shows us that the time and space bundles of two homotopic metrics
are isomorphic. In particular, the Lorentz-parallelism is invariant by homotopy. In fact this
lemma give us the arcwise connected components of L(M), moreover the Proposition 3.4
and the Lemma 2.3 imply that the connected components are equal to the arcwise connected
components. By evaluating the number of line fields homotopy classes we thus get the number
of connected components of L(M).

Theorem 3.6. Let M be a compact, orientable 3-dimensional manifold and L(M) its space of
Lorentz metrics on M. Then L(M) possesses an infinite number of connected components.

Proof. Those manifolds are parallelisable. Hence, given a parallelism and an auxiliary Rie-
mannian metric, we can consider vector fields as maps from M to S2 (or rather R

3 −{0} but we
work up to homotopy). First we restrict ourself to connected components which are temporally
orientable (this means that any metric in it is temporally orientable). From the previous lemma,
we see that homotopy classes of such metrics are in one-to-one correspondence with homotopy
classes of orientable line fields. There is no such correspondence with the homotopy classes
of nonzero vector fields. Indeed, non-homotopic vector fields may be homotopic considered
as line fields. Consequently, we restrict ourself once more: we consider only L-parallelisable
metrics. We easily see that the situation we have to suppress is the case where a vector field
is not homotopic to its opposite. Since this is never the case for a negative vector field of a L-
parallelisable metric, we can work with homotopy classes of vector fields that can be extended
to a frame field of M , i.e., of maps from M to S2 that can be lifted to SO(3). We consider the
maps from M to S2 which can be lifted to S3 via the Hopf map (this is a particular case of
the latter one). Composing two non-homotopic maps from M to S3 with the Hopf map yields
two non-homotopic maps from M to S2 (cf. [3, p. 69]). Hence to show the result it suffices
to have an infinite set of maps from M to S3 pairwise non-homotopic. Hopf Classification
theorem (cf. [1, p. 300]) says that the homotopy classes of maps from M to S3 are in one-to-one
correspondence with H 3(M, Z). The manifolds being orientable, this group is infinite. �

Remarks. 1. In fact we have bounded from below the number of connected components com-
posed of L-parallelisable metrics. The theorem is false in greater dimension. Hence, knowing
that π7(S6) � Z2 and that S7 is simply connected and parallelisable, we see that L(S7) has only
two connected components. Nevertheless the result is still true for T2.

2. The referee pointed out that the correspondence between homotopy classes of Lorentz
metrics and homotopy classes of nowhere vanishing vector fields was known to Geroch (see
[2]). In this article, he posed the question: “which global properties of space times are invariants
of the homotopy class?”

4. The space of Lorentz metrics

4.1. Topology of the connected components

We denote by C(h) the connected component of the metric h in L(M).
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Lemma 4.1. If h and h′ have isomorphic space and time bundles then C(h) is homeomorphic
to C(h′).

Proof. Those isomorphisms extend to an automorphism A of the tangent space. We can
transport metrics thanks to this morphism by putting A∗(h)(u, v) = h(A(u), A(v)), Hence
obtaining a homeomorphism of L(M). It is clear that A∗(h) is homotopic to h′ and therefore
A∗(C(h)) = C(A∗(h)). �

In the particular case of L-parallelisable connected components, this lemma shows us that
two of them are always homeomorphic. Hence from Proposition 3.2 any two connected com-
ponents of L(S3) or of L(P3) are homeomorphic.

Proposition 4.2. 1. For any Lorentz-parallelisable connected component, CT , of L(T2), we
have π1(CT ) � Z.

2. For any connected component, CS , of the space L(S3), we have: π1(CS) � Z2.

Proof. Always from Lemma 3.5, and knowing that in the cases we are interested in, any vector
field will be homotopic to its opposite, we can work with loops of vector fields. According to
Proposition 4.1, it is sufficient to establish the result for one connected component.

Let us begin with the sphere. Let h be a metric in L(S3) and X a h-negative vector field. We
complete this vector field into a frame field (this is always possible on S3). We then identify
TS3 to S3×R

3 by means of this trivialisation, the expression of the field X is then a constant
map. This implies that the homotopy classes of loops of maps from S3 to S2, in the connected
component of the constant map, are in one-to-one correspondence with the homotopy classes
of loops of vector fields on S3 in the homotopy class of X . On the other hand, they are in
one-to-one correspondence with the homotopy classes of maps from “the” suspension of S3

to S2. We have to be careful about what we call suspension. Since the maps we study are
not pointed, the space we should consider as suspension should be the space S3 × [0, 1] with
both ends quotiented in one point. Nevertheless, S2 is simply connected and therefore we can
consider the usual suspension (unreduced), i.e., S3 × [0, 1] with each end quotiented in a point.
In this case the suspension of S3 is S4. The homotopy classes of maps from S4 to S2 are well
known, they define π4(S2) which is isomorphic to Z/2Z.

For the torus we proceed in the same way. However, the maps take values in S1 which is
not simply connected, and therefore we can not use the classical suspension (the double cone).
Consequently we are looking for homotopy classes of maps from (T2 × [0, 1])/(T2 × {0, 1}) to
S1. The Hopf Classification theorem tells us that they are in one-to-one correspondence with
the H1 of this space (cf. [1]). We compute the latter, thanks to a Mayer–Vietoris sequence, and
we find it isomorphic to Z. �

We wish to express a non-contractible loop of maps from S3 to S2 in order to see if it goes
down to some quotients of S3. We know a generator of π4(S2): the suspension of the Hopf map
composed with the Hopf map (noted H )(cf. [1, p. 464]). Let us find back the loop of maps
whose quotient gives this map. Let P2 be a map from S2 × [0, 1] to S3 which, when we
quotient, gives an homeomorphism between the suspension SS2 and S3 (cf. [8]). We can
write P2(x0, x1, x2, t) = (cos2 π t + x0 sin2 π t, x1 sin2 π t, x2 sin2 π t,

√
(1 − x0)/2 sin 2π t).
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The map H ◦ P2 ◦ (H × Id) from S3 × [0, 1] to S2 has the desired properties. So, from
any trivialisation of the tangent of S3, we realize a loop of vector fields Xt . Now, let g be a
Riemannian metric, we can realize a loop of Lorentz metrics: ht = g −2 X δ

t (with the condition
g(Xt , Xt) = 1). This loop is non-contractible.

Corollary 4.3. In any Lorentz-parallelisable connected component of L(L p,k), there exists a
non-contractible loop of Lorentz metrics.

Proof. We are looking for a map from S3 to S2 which is well defined on L(L p,k) and whose
suspension (from S4 to S3) is non-homotopic to 0. The latter is true if its Hopf invariant is odd
(cf. [1, p. 126]). Indeed, if we have a trivialisation of the tangent which is invariant under this
action, the path of vector fields defined thanks to the suspension of this map and the Hopf map
is also invariant. This path goes down on the lens space and is of course non-contractible. The
lens spaces are parallelisable, so there does exist an invariant basis. On the other hand, there
exists an odd integer l (by Bezout theorem) such that k · l ≡ 1 mod p. The degree of the map
fl defined by f (z, z′) = (z, z′l) is l. Knowing that the Hopf invariant of H ◦ fl is the Hopf
invariant of H times the degree of fl (see [3]) we can say that it is l. Finally, we check that it
is still well defined on L(L p,k). We conclude with 4.1. �

Instead of a left invariant trivialisation, we can take the trivialisation given by the matrix of
Proposition 3.3 and replace H ◦ P2 ◦ (H × Id) by H ◦ P2 ◦ ((H ◦ f3)× Id). We thereby obtain
a non-contractible loop of line fields on L4,1 and so a non-contractible loop of Lorentz metrics
through non-L-parallelisable metrics.

Proposition 4.4. Let N be a 2-dimensional compact orientable manifold and M = N × S1.
Any Lorentz-parallelisable connected component of L(M) has infinite fundamental group and
we can find a non-contractible loop through non-temporally orientable metrics.

Proof. The tangent being trivial, we suppose we have a global frame bundle on M . We are
going to construct maps from M × S1, i.e., N × T2 to S2. There exists an infinite number of
pairwise non-homotopic maps from T2 to S2. Considering them as maps from N × T2 to S2

they remain non-homotopic. At a given time, the vector fields they define are homotopic to each
component of the tangent trivialisation. Therefore the metrics defined thanks to them are going
to be L-parallelisable and all in the same connected component of L(M) (which depends only
on the choice of the trivialisation). Any two of those loops are clearly non-homotopic. That
proves the first part. To finish the proof it suffices to find a map from T2 to P2 whose restriction
to S1 cannot be lifted to T2 and which is not homotopic to this restriction (seen as a map from
T2). We have a natural set of maps from S1 to T2 which are given by the parameterization of half
great circles of S2 joining two given antipodal points (of course all those maps are homotopic).
We parameterize this set by the angle between the planes defining those loops. We thus obtain
a map from T2 to S2 which satisfies evidently the first property. It satisfies also the second one
because the restriction to S1 is not onto and the map above is one-to-one and therefore these
maps do not have the same degree modulo 2 and so are not homotopic. �
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4.2. Distances

Now, we are interested in distances between connected components of the space L(M). First,
we remark that in L(M) these distances will always be zero. Indeed, the zero tensor will be in
the closure of all connected components.

Definition 4.5. We denote by Lω(M), the subset of L(M) consisting of metrics which all
induce the same volume element, ω.

Remark. During the study of Lω(M), the Riemannian metric g, we use to define the distance
dg (see 2.2), will also be with associated volume element ω. Consequently, the condition
“h belongs to Lω(M)” will be equivalent to h̃x (the associated endomorphism to hx via g) has
determinant 1 for all x in M . It is interesting to note that when we go from L(M) to Lω(M) we
do not change the topology. Thanks to a Riemannian metric g, we can define a projection of
L(M) on Lω(M) by dividing h̃ by some power of the determinant. Actually, this projection
defines a deformation retract of L(M) on Lω(M). All this explains why we choose this space.

Theorem 4.6. 1. If M is 2-dimensional, any two connected components of Lω(M) are always
at nonzero distance.

2. If M is n-dimensional, with n > 2, then any two connected components of Lω(M) are
always at zero distance.

Proof. Let us take h and h′ two non-homotopic metrics. There is at least one point x such
that their negative eigenspaces (relatively to the Riemannian metric g used to define dg) are
orthogonal. At this point, we choose an h-orthogonal and g-orthonormal trivialisation of the
tangent. In such a basis the matrix of h̃(x) is diagonal and of determinant −1. The matrix of
h̃′(x) is orthogonally conjugated to such a matrix. We denote by a and −1/a (a > 0) the
coefficients of the first one and by b and −1/b (b > 0) those of the second one. The matrix of
conjugacy must be(

0 ±1
1 0

)
,

because it lies in O(2). We have

tr((h̃(x) − h̃′(x))2) = (1/b + a)2 + (1/a + b)2 � 8.

This is sufficient to show the first part, actually we can go further and show that the distance
between C(h) and C(h′) is effectively 8. Therefore any two connected components are equally
distant.

2. Before showing this result there is some work to do and some notations to be introduced.

Notations. Let g be a Riemannian metric with induced volume ω on a 3-dimensional manifold.
Let X and Y be vector fields such that g(X, X) = g(Y, Y ) = 1. We denote by π(Y ) (resp. π(X))
the vector field obtained by orthogonal projection of Y (resp. X ) on the orthogonal of X (resp. Y ).
That is π(Y ) = Y − g(X, Y )X . Let Z be the vector field obtained from π(Y ) by a π/2 rotation
in the orthogonal of X . As in Proposition 3.5, we denote by X δ the symmetric 2-form given
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by X δ(u, v) = g(X, u)g(X, v). Finally, �2 will denote g(π(Y ), π(Y )) = g(Z , Z). Now we can
state the following

Proposition 4.7. For any n ∈ N, we define

hn = ng −
(

n + 1

n2

)
X δ − n

(
1 − 1

n2

)
φn(π(Y ))δ + n(1 − 1/n2) φn

1 − (1 − 1/n2) φn �2 Z δ,

where φn is a positive function on M such that φn �2 � 1. Then we have hn ∈ Lω(M).

Proof. Clearly, hn is a smooth symmetric 2-tensor. Therefore there exists a g-symmetric en-
domorphism h̃n associated to it. We are going to find its eigenvalues at a point m of M in order
to compute its determinant. There are two cases: π(Y )(m) = 0 or π(Y )(m) �= 0. The first case
is obvious: the set of eigenvalues is {−1/n2, n, n} and their product is −1. If π(Y )(m) �= 0, we
have

h̃n(X) = −(1/n2) X,

h̃n(π(Y )) = n(1 − (1 − 1/n2) φn�
2) π(Y ),

h̃n(Z) = n
(

1 + (1 − 1/n2) φn �2

1 − (1 − 1/n2) φn �2

)
Z .

The determinant is still equal to −1. We see also that hn is Lorentzian. �

The vector field Z is actually orthogonal to X and Y and then to π(X). We deduce from this
that the tensor kn obtained by permuting X and Y in hn is also in Lω(M).

kn = ng −
(

n + 1

n2

)
Y δ − n

(
1 − 1

n2

)
φn(π(X))δ + n(1 − 1/n2) φn

1 − (1 − 1/n2) φn �2 Z δ.

Lemma 4.8. Let φn be such that if � � 1/n2 then φn = 1/�2 Then

0 � n(1 − (1 − 1/n2) φn �2)� � 1/n.

Proof. It comes directly from � � 1, 0 � φn �2 � 1 and the above condition on φn . �

Proposition 4.9. If we choose φn as in Lemma 4.8 then dg(hn, kn) goes to 0 when n goes to
infinity.

Proof. First it is obvious that if π(Y )(m) = 0 then tr((h̃n(m) − k̃n(m)) = 0. Let m be a point
such that π(Y )(m) �= 0. We have two g-orthonormal bases of Tm M : (X, π(Y )/�, Z/�) and
(Y, π(X)/�, Z/�). The matrix which expresses the second basis in the first one is

 (X, Y ) � 0
� −g(X, Y ) 0
0 0 1


.
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We compute thanks to it the matrix of k̃n(m) in the basis (X, π(Y )/�, Z/�):
−1/n2g(X, Y )2 + nWn�

2 �g(X, Y )(−1/n2 − nWn) 0
�g(X, Y )(−1/n2 − nWn) −1/n2 + ng(X, Y )2Wn 0

0 0 �n




where Wn = 1 − (1 − 1/n2)φn�
2 and �n = n(1 + ((1 − 1/n2)φn �2)/Wn).

Now, we are able to compute

tr ((h̃n(m) − k̃n(m))2) = (1/n2(1 − g(X, Y )2) + n(1 − (1 − 1/n2) φn�
2)�2)2

+ 2(�g(X, Y )(−1/n2 − n(1 − (1 − 1/n2) φn�
2)))2

+ (1/n2 + n(1 − g(X, Y )2)(1 − (1 − 1/n2) φn�
2))2 + (�n − �n)

2.

We remark that (1 − g(X, Y )2) = �2 and then we replace the first by the second in the third
line and use Lemma 4.8 to have an upper bound. We have

tr ((h̃n(m) − k̃n(m))2) � (1/n2 + 1/n)2 + 2(1/n2 + 1/n)2 + (1/n2 + 1/n)2.

This obviously implies that dg(hn, kn) = supm∈M(tr((h̃n(m)− k̃n(m))2)) goes to 0 when n goes
to infinity. �

Proof of Theorem 4.6. We first give the proof for the dimension 3. Let us consider two
temporally orientable connected components of Lω(M) : C1 and C2. Let X (resp. Y ) be a
negative vector field of a metric in C1 (resp. C2). We know that they are not homotopic. Anyway
thanks to them we can define the metrics hn and kn as before. It is clear that the hn belong to
C1 and the kn to C2. Furthermore, from 4.9, we have that d(hn, kn) goes to 0. We conclude that
d(C1, C2) = 0 for any two temporally orientable connected components. There is no difficulty to
extend this result to any connected component. In fact, as we have seen in 3.5, X δ = (−X)δ and
so our construction can be done in the same way for non-orientable line fields. Consequently,
the distance between two connected components is always 0.

The last thing to do is to say how we can manage in greater dimension. The main difference
is that there is no vector field to take place of Z . We define a kind of projection P on the
orthogonal of Vect(X, Y ). It is defined by P(u) = �2 u − g(u, X)�2 X − g(u, π(Y ))π(Y ).
Thanks to P , we define the following symmetric 2-tensor βX,Y (u, v) = g(P(u), P(v)). For a
3-dimensional manifold, we have βX,Y = Z δ. And, which is more important, βX,Y = β±X,±Y ,
and therefore it can be defined for any line field. Now we put

hn = ng −
(

n + 1

nl−1

)
X δ − n

(
1 − 1

n2

)
ψn�

2(l−3)π(Y )δ

+ n
l−2

√
(1 − 1/n2) ψn

1 − (1 − 1/n2)ψn�
2(l−2)

β

where l = dim M and ψn is a positive function verifying ψn �2(l−2) � 1 and ψn �2(l−2) = 1
if �2 � 1/n4. We define kn in the same way. Those metrics belong to Lω(M). And, with the
same computations as above, we have d(hn, kn) → 0. �
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