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1. Introduction

It iswell known (and trivial) that the space of Riemannian metrics on a compact manifold,
endowed with the compact open topology, is contractible. And so is the space of metrics with
given total volume, or with given volume element. Furthermore, the Gram—Schmidt process
tells us that, if the manifold is parallelisable, there exists for any Riemannian metric a global
orthonormal frame field.

In the present article, we shall see that the analogous properties completely fail in the
Lorentz case. Namely, we discuss “Lorentz-parallelisability” (cf. Section 3) and study the
topology of the space L (M) of Lorentz metrics. We will show (cf. Theorem 3.6) that, if M isa
2 or 3 dimensional compact orientable Lorentz manifold then £ (M) has an infinite number of
connected components and we will compute the fundamental group of some of them (which
will not be trivial). Moreover, for a natural metric on L(M) (cf. Section 2.2), we study the
distance of these componentsin the space of metricswith prescribed volume element. We show
that, if dim M > 2, this distance is always zero and, if dimM = 2, it is always positive (cf.
Theorem 4.6).

2. General facts

First we introduce some notations, M will aways be a n-dimensional compact manifold
and h aLorentz metric, i.e., of signature (n — 1, 1). By a“planefield” we shall always mean a
vector subbundle of the tangent bundle; we will call it line field if it is 1-dimensional. Finally,
the vector fields we consider will be supposed everywhere nonzero.
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2.1. About the metrics

Definition 2.1. A tangent vector v # 0 will be called negative, (respectively, positive) with
respect to h, if h(v, v) < 0 (respectively, h(v, v) > 0). We shall call time bundle (respectively,
space bundle) any line field (respectively, hyperplane field) composed of negative (respec-
tively, positive) vectors,

If we consider adecomposition of thetangent bundleinto alinefield and ahyperplanefield, itis
easy to construct ametric h such that those spaces are time and space bundles of h. Conversely,
we have the following.

Lemma 2.2. 1. Any couple (M, h), possesses time bundles and space bundles.
2. Different time bundles (respectively, space bundles) associated to h are homotopic.

Proof. Thisis a property of fibre bundles with contractible fibre. But it is known that the
negative grassmannian is contractible. [

Remarks. Thislemma gives us the well-known condition for a manifold to admit a Lorentz
structure: the Euler classof the manifold hasto be zero. Hence, the only 2-dimensional manifolds
which possess such a structure are the torus and the Klein bottle and, on the other hand, any
odd dimensional compact manifold admits a Lorentz structure.

Furthermore, it is known (cf. [4, p. 29]) that two homotopic fibre bundles are isomorphic
(this property will be useful again later), hence time bundles (resp. space bundles) of aLorentz
manifold are isomorphic.

Lemma 2.3. Two trivial line fields nowhere collinear are homotopic. Two line fields nowhere
orthogonal, for any Riemannian metric g, are homotopic.

Proof. The first point is evident. For the second, we trandate the problem to the projective
tangent. We equip each fibre with the Riemannian metric defined by g, thereby obtaining a
distance. Thetwo linefields are represented by a couple of pointsin each fibre. The hypothesis
implies that the distance between them is less than %n. Consequently there exists a unique
geodesic between them. These geodesics give us the desired homotopy. [

Definition 2.4. We will say that h istemporally orientable if its time bundles are orientable.

Hence, on a manifold M such that Hy(M, Z,) = 0, there exist only temporally orientable
metrics. But, aswewill see soon with P3, there exist manifolds M suchthat Hy (M, Z5) # Oand
which possess only trivia line fields. Indeed, we are talking about subbundles of the tangent
bundle. Anyway, we can easily find non-orientable line fields on T2 and so non-temporally
orientable metrics.

2.2. About the space of metrics

We are going to define afamily of distances on the space, £ (M), of Lorentz metrics. Thanks
to a Riemannian metric g, we can identify S°M, the vector space of symmetric 2-tensors with
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the vector space of endomorphisms of the tangent to M which are symmetric with respect to g.
The endomorphism associated to a tensor h will be denoted h. If we choose a Riemannian
metric g, we have adistance on S’M (since M is compact) given by

d(h, h') = sUpyem (tr((Ax — R})?)2).

One shows that £ (M) is an open set of S?M equipped with this distance. Since M is compact,
itiswell known that if g; and g, are two Riemannian metrics, there exist positive constants a
andbsuchthatag; < g» < bg:. Thismeansdg, and dy, are uniformly equivalent distances. In
particular the zero—non zero distance phenomena we study in Section 4.2 do not depend on g.
The topology induced on £ (M) isthe one we are going to use in the next paragraphs.

3. Lorentz-parallelism
3.1. Definition and examples

Definition 3.1. We will say that the couple (M, h) is Lorentz-parallelisable (or L-
paralelisable) if there exists, on M, aglobal h-orthogonal frame field.

It is, of course, necessary for the manifold to be parallelisable. Indeed, a non-temporally
orientable metric is not L-parallelisable and there exist such metrics on T2. We can reinterpret
the definition, (M, h) is L-paralelisableif and only if there exist space-time decompositionsin
trivial subbundles. The Lemma 2.2 then saysthat all the space-time decompositions aretrivial.
It is interesting to note that any 3-dimensional compact orientable manifold is parallelisable
(cf. [7]). On S? x St the metric given by dg @ (—dg) isnot L-parallelisable but istemporally
orientable.

Proposition 3.2. Any Lorentz metric on S° or P2 is Lorentz-parallelisable.

Proof. Itiswell known that any vector bundle on S® (see[5]) istrivial. Any tangent subbundle
of TP? isorientable since the existence of a non-orientable subbundle implies the existence of
amap from S® to S? anti-invariant by antipodal map, and that isin contradiction with Bursuk—
Ulam Theorem (see[1, p. 240]). The only caseleft to proveisthe case of orientable planefields
of TP3. To this purpose, we consider the Euler class of such avector bundle, if it vanishes, the
plane field is going to be trivial. We know that it liesin H2(P3, Z) which isisomorphic to Z,.
On the other hand, we know that any transversal linefield of aplanefield istrivia and that TS®
istrivial. This together with the additivity of Stiefel-Whitney classes (cf. [6]) implies that its
second Stiefel-Whitney class vanishes. Furthermore we also know that this classis the reduce
modulo 2 of the Euler class and therefore the latter must be zero. [

We recall that L, (with (p, k) = 1) denotes the quotient manifold of S® by the action of a
primitive pt" root of unity, p. More precisely we put p - (z, Z) = (p z, p¥Z). Those spaces are
called lens spaces.

Proposition 3.3. Thereexist non-Lorentz-parallelisable temporally orientablemetricson L 1
forn> 2.
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Proof. We consider the following map (which is the classical covering) from S° to SO(3). If
we interpret its column vectors as coordinates in aleft invariant trivialisation of T S?, it defines
aframefield on S°,

(X,Y,2,1) —> ( yz — xt X*+22-3  xy+zt

X2 +y? -1 yz+xt yt — Xz
XZ + yt zt—xy x4+t*-1

This map defines an orientable plane field on al L, 1 since the first column vector (which is
the Hopf map) is invariant under the action of roots of unity. We want to prove that this plane
field isnot trivial, i.e., that the map from L, 1 to S? given by the first column vector can not be
lifted to SO(3) via the Hopf map. If n is odd, we use the fact that a map from L, ; to S? can
belifted to SO(3) if and only if it can belifted to S*(since the fundamental group of Ly, 1 iSZy).
The first column vector can be lifted to L, 1 by the identity. If this map could be lifted to S°
it would imply that the identity on L, 1 could be lifted to S3. But, in return, this would imply
that the covering of S® on L1 istrivid. If niseven, we can use the nontrivia covering of p3
on L, 1 and repeat the above proof. We have an orientable nontrivial plane field and therefore
we can find temporally orientable non-L orentz-parallelisable metrics. [

3.2. Lorentz-parallelism and homotopy

Proposition 3.4. The map which associates to a Lorentz metric its negative eigenspace (rela-
tively to a Riemannian metric g) is continuous.

Proof. Itisstandard. O

Lemma 3.5. Two Lorentz metrics on M are homotopic if and only if their time bundles are
homotopic into TM.

Proof. If hy and h, are two homotopic metrics Proposition 3.4 saysthat their time bundles are
homotopic. Let us show the converse.

Let g be aRiemannian metric. With g and a nowhere vanishing vector field X we define the
2-tensor X? = X”® X". Weremark that X* = (— X)?. Hence we can define ¢ for any linefield
¢, thanksto its elements of norm 1 (calculated with g). Next we compare hy and g — 2 ¢ where
1 is the eigenspace field associated to the negative eigenvalue of hy. They are both Lorentz
metrics (that is why we chose elements of norm 1). The orthogonal bundle of ¢; isthe same
for both metrics, we denote it by &;. The set of symmetric definite positive 2-tensors on &1 is
convex. Therefore hy ¢, ishomotopicto (g — 2 {f)|g1. We rewrite the two metrics

hy = hyle, ® A1 2,
where 11 isthe eigenval ue function associated to 1, and
9—28 =glg @ (—1)).

Now those metrics are clearly homotopic (11 is hegative). We proceed in the same way for h,.
It only remains to compare g — 2¢; and g — 2¢5. By hypothesis, ¢; is homotopic to ¢, and so
g — 2¢{ ishomotopictog — 2¢5. O



Some properties of the space of Lorentz metrics 51

The above lemma shows us that the time and space bundles of two homotopic metrics
are isomorphic. In particular, the Lorentz-parallelism is invariant by homotopy. In fact this
lemma give us the arcwise connected components of £(M), moreover the Proposition 3.4
and the Lemma 2.3 imply that the connected components are equal to the arcwise connected
components. By evaluating the number of line fields homatopy classes we thus get the number
of connected components of L (M).

Theorem 3.6. Let M bea compact, orientable 3-dimensional manifold and £ (M) its space of
Lorentz metrics on M. Then £L(M) possesses an infinite number of connected components.

Proof. Those manifolds are parallelisable. Hence, given a parallelism and an auxiliary Rie-
mannian metric, we can consider vector fields as maps from M to S? (or rather R® — {0} but we
work up to homotopy). First we restrict ourself to connected components which are temporally
orientable (this meansthat any metricin it istemporally orientable). From the previous|lemma,
we see that homotopy classes of such metrics arein one-to-one correspondence with homotopy
classes of orientable line fields. There is no such correspondence with the homotopy classes
of nonzero vector fields. Indeed, non-homotopic vector fields may be homotopic considered
as line fields. Consequently, we restrict ourself once more: we consider only L-parallelisable
metrics. We easily see that the situation we have to suppress is the case where a vector field
is not homotopic to its opposite. Since thisis never the case for a negative vector field of a L-
parallelisable metric, we can work with homotopy classes of vector fields that can be extended
to aframefield of M, i.e., of mapsfrom M to S? that can be lifted to SO(3). We consider the
maps from M to S* which can be lifted to S® via the Hopf map (this is a particular case of
the latter one). Composing two non-homotopic maps from M to S® with the Hopf map yields
two non-homotopic maps from M to S (cf. [3, p. 69]). Hence to show the result it suffices
to have an infinite set of maps from M to S® pairwise non-homotopic. Hopf Classification
theorem (cf. [1, p. 300]) saysthat the homotopy classes of mapsfrom M to S® arein one-to-one
correspondence with H3(M, Z). The manifolds being orientable, this group isinfinite. [

Remarks. 1. Infact we have bounded from below the number of connected components com-
posed of L-parallelisable metrics. The theorem isfalsein greater dimension. Hence, knowing
that 777(S°) ~ 7Z, and that S’ issimply connected and parallelisable, we seethat £ (S') hasonly
two connected components. Neverthel ess the result is still true for T2.

2. The referee pointed out that the correspondence between homotopy classes of Lorentz
metrics and homotopy classes of nowhere vanishing vector fields was known to Geroch (see
[2]). Inthisarticle, he posed the question: “which global properties of spacetimesareinvariants
of the homotopy class?’

4. The space of Lorentz metrics
4.1. Topology of the connected components

We denote by €(h) the connected component of the metric h in L(M).
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Lemma4.1. If hand h’" have isomorphic space and time bundles then C(h) is homeomorphic
to C(h).

Proof. Those isomorphisms extend to an automorphism A of the tangent space. We can
transport metrics thanks to this morphism by putting A*(h)(u, v) = h(A), A(v)), Hence
obtaining a homeomorphism of £L(M). It is clear that A*(h) is homotopic to h" and therefore
A*C(h) = C(A*(h). O

In the particular case of L-parallelisable connected components, this lemma shows us that
two of them are always homeomorphic. Hence from Proposition 3.2 any two connected com-
ponents of £ (S3) or of L (P?) are homeomorphic.

Proposition 4.2. 1. For any Lorentz-parallelisable connected component, Ct, of L(T?), we
havenl(GT) ~ 7.
2. For any connected component, Cs, of the space £(S3), we have: 71(Cs) ~ Zo,.

Proof. Alwaysfrom Lemma3.5, and knowing that inthe caseswe areinterested in, any vector
field will be homotopic to its opposite, we can work with loops of vector fields. According to
Proposition 4.1, it is sufficient to establish the result for one connected component.

L et us begin with the sphere. Let h be ametricin £(S%) and X ah-negative vector field. We
complete this vector field into a frame field (this is always possible on S°). We then identify
TS® to S®xIR® by means of this trivialisation, the expression of the field X is then a constant
map. This implies that the homotopy classes of loops of maps from S° to S?, in the connected
component of the constant map, are in one-to-one correspondence with the homotopy classes
of loops of vector fields on S? in the homotopy class of X. On the other hand, they are in
one-to-one correspondence with the homotopy classes of maps from “the” suspension of S°
to S°. We have to be careful about what we call suspension. Since the maps we study are
not pointed, the space we should consider as suspension should be the space S* x [0, 1] with
both ends quotiented in one point. Nevertheless, S? is simply connected and therefore we can
consider the usual suspension (unreduced), i.e., S® x [0, 1] with each end quotiented in apoint.
In this case the suspension of S® is S*. The homotopy classes of maps from S* to S? are well
known, they define 4(S?) which isisomorphic to Z/27.

For the torus we proceed in the same way. However, the maps take values in St which is
not simply connected, and therefore we can not use the classical suspension (the double cone).
Consequently we are looking for homotopy classes of maps from (T2 x [0, 1])/(T? x {0, 1}) to
St. The Hopf Classification theorem tells us that they are in one-to-one correspondence with
the H? of this space (cf. [1]). We compute the latter, thanks to a Mayer—Vietoris sequence, and
wefind it isomorphicto Z. O

We wish to express a non-contractible loop of maps from S® to S? in order to see if it goes
down to some quotients of S3. We know a generator of 74(S?): the suspension of the Hopf map
composed with the Hopf map (noted H)(cf. [1, p. 464]). Let us find back the loop of maps
whose quotient gives this map. Let P, be a map from S? x [0, 1] to S* which, when we
quotient, gives an homeomorphism between the suspension $S? and S® (cf. [8]). We can
write Po(Xo, X1, X2, 1) = (€Ot + Xg SiN?7t, X1 Sin®xt, X, sin®xt, v/ (1 — Xg)/2 sin2rt).
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The map H o P, o (H x Id) from S* x [0, 1] to S has the desired properties. So, from
any trivialisation of the tangent of S°, we realize a loop of vector fields X;. Now, let g be a
Riemannian metric, we can realizealoop of Lorentz metrics: hy = g— 2 X (with the condition
g(X;, X¢) = 1). Thisloop is non-contractible.

Corollary 4.3. In any Lorentz-parallelisable connected component of L(L ), there exists a
non-contractible loop of Lorentz metrics.

Proof. We are looking for amap from S® to S* which is well defined on £(L k) and whose
suspension (from S* to S%) is non-homotopic to 0. The latter istrueif its Hopf invariant is odd
(cf. [1, p. 126]). Indeed, if we have atrividisation of the tangent which isinvariant under this
action, the path of vector fields defined thanks to the suspension of this map and the Hopf map
isaso invariant. This path goes down on the lens space and is of course non-contractible. The
lens spaces are parallelisable, so there does exist an invariant basis. On the other hand, there
exists an odd integer | (by Bezout theorem) such that k -1 = 1 mod p. The degree of the map
fi defined by f(z,Z) = (z, Z') is|. Knowing that the Hopf invariant of H o f; is the Hopf
invariant of H times the degree of f, (see[3]) we can say that it isl. Finally, we check that it
isstill well defined on L(L p x). We concludewith 4.1.  [J

Instead of a left invariant trivialisation, we can take the trivialisation given by the matrix of
Proposition 3.3 and replace H o P, o (H x Id) by H o P> o (H o f3) x Id). We thereby obtain
anon-contractible loop of linefields on L4 ; and so anon-contractible loop of Lorentz metrics
through non-L -parallelisable metrics.

Proposition 4.4. Let N be a 2-dimensional compact orientable manifoldand M = N x S'.
Any Lorentz-parall€elisable connected component of £ (M) has infinite fundamental group and
we can find a non-contractible loop through non-temporally orientable metrics.

Proof. The tangent being trivial, we suppose we have a global frame bundle on M. We are
going to construct maps from M x S, i.e, N x T2 to S%. There exists an infinite number of
pairwise non-homotopic maps from T2 to S?. Considering them as maps from N x T2 to
they remain non-homotopic. At agiven time, the vector fieldsthey define are homotopic to each
component of the tangent trivialisation. Therefore the metrics defined thanks to them are going
to be L-parallelisable and all in the same connected component of £ (M) (which depends only
on the choice of the trivialisation). Any two of those loops are clearly non-homotopic. That
provesthefirst part. To finish the proof it suffices to find amap from T2 to P?> whose restriction
to St cannot be lifted to T2 and which is not homotopic to this restriction (seen as a map from
T?). Wehave anatural set of mapsfrom St to T2 which are given by the parameterization of half
great circlesof S? joining two given antipodal points (of course all those maps are homotopic).
We parameterize this set by the angle between the planes defining those loops. We thus obtain
amap from T2 to S? which satisfies evidently the first property. It satisfies also the second one
because the restriction to St is not onto and the map above is one-to-one and therefore these
maps do not have the same degree modulo 2 and so are not homotopic. [
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4.2. Distances

Now, weareinterested in distances between connected components of the space L(M). First,
we remark that in £ (M) these distances will aways be zero. Indeed, the zero tensor will bein
the closure of al connected components.

Definition 4.5. We denote by £,(M), the subset of £(M) consisting of metrics which all
induce the same volume e ement, w.

Remark. During the study of £,,(M), the Riemannian metric g, we use to define the distance
dg (see 2.2), will also be with associated volume element ». Consequently, the condition
“h belongs to L,,(M)” will be equivalent to hy (the associated endomorphism to hy via g) has
determinant 1 for all x in M. Itisinteresting to note that when we go from £L(M) to £, (M) we
do not change the topology. Thanks to a Riemannian metric g, we can define a projection of
L(M) on L, (M) by dividing h by some power of the determinant. Actually, this projection
defines adeformation retract of £ (M) on £,(M). All this explains why we choose this space.

Theorem 4.6. 1. If M is2-dimensional, any two connected components of £, (M) are always
at nonzero distance.

2. If M isn-dimensional, with n > 2, then any two connected components of £, (M) are
always at zero distance.

Proof. Let ustake h and h’ two non-homotopic metrics. There is at least one point x such
that their negative eigenspaces (relatively to the Riemannian metric g used to define dg) are
orthogonal. At this point, we choose an h-orthogonal and g-orthonormal triviaisation of the
tangent. In such a basis the matrix of h(x) is diagonal and of determinant —1. The matrix of
H (x) is orthogonally conjugated to such a matrix. We denote by a and —1/a (a > 0) the
coefficients of thefirst one and by b and —1/b (b > 0) those of the second one. The matrix of
conjugacy must be

0 +1
1 0)
because it liesin O(2). We have

tr((h(x) — '(x))? = (1/b+a)* + (1/a+b)? > 8.

Thisis sufficient to show the first part, actually we can go further and show that the distance
between C(h) and C(h") is effectively 8. Therefore any two connected components are equally
distant.

2. Before showing this result there is some work to do and some notations to be introduced.

Notations. Let g beaRiemannian metricwithinduced volumew ona3-dimensiona manifold.
Let X and Y bevector fieldssuch that g(X, X) = g(Y, Y) = 1. Wedenote by 7 (Y) (resp. 7 (X))
thevector field obtained by orthogonal projectionof Y (resp. X) ontheorthogonal of X (resp. Y).
Thatismt(Y) =Y — g(X, Y)X. Let Z bethe vector field obtained from 7 (Y) by ax /2 rotation
in the orthogonal of X. Asin Proposition 3.5, we denote by X° the symmetric 2-form given
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by X?(u, v) = g(X, u)g(X, v). Finaly, I1? will denote g(z (Y), 7 (Y)) = g(Z, Z). Now we can
state the following

Proposition 4.7. For any n € N, we define

nA—1/M) ¢y,
V4
1—(1—1/n? ¢, 112

’

1Y s 1 5
hn = ng — n+¥ X®—=n 1—¥ dn((Y))° +
where ¢, is a positive function on M such that ¢, I1? < 1. Thenwe have h,, € £, (M).

Proof. Clearly, h, isasmooth symmetric 2-tensor. Therefore there exists a g-symmetric en-
domorphism h, associated to it. We are going to find its eigenvalues at a point m of M in order
to compute its determinant. There are two cases: 7 (Y)(m) = 0 or 7 (Y)(m) # 0. Thefirst case
isobvious: the set of eigenvaluesis {—1/n?, n, n} and their product is —1. If 7 (Y)(m) # 0, we
have

ha(X) = —=(1/n?) X,

(7 (Y)) = n(1 — (1 - 1/n?) ¢aI1?) 7 (Y),

(1-1/n?) ¢, I1?
Z
1—(1-1/n ¢n HZ)

hn(2) = n(1+
The determinant is still equal to —1. We see dso that h,, is Lorentzian. [

The vector field Z isactually orthogonal to X and Y and then to 7z (X). We deduce from this
that the tensor k,, obtained by permuting X and Y in h, isasoin L,(M).

nl—-1/n¢n _;
Z°.
1—(1—1/n?) ¢, 12

kn =ng — <n+ n—lz)Y‘S - n(l— n_12> P (X))° +

Lemma4.8. Let ¢, besuchthat if IT > 1/n? then ¢, = 1/T1% Then
0<n(l—(1-1/n% ¢, 1% < 1/n.
Proof. It comesdirectly from IT < 1, 0 < ¢, I1? < 1 and the above condition on ¢,. [

Proposition 4.9. If we choose ¢, as in Lemma 4.8 then dg(hy, ki) goes to 0 when n goes to
infinity.

Proof. First it is obvious that if 7z (Y)(m) = 0 then tr((h,(m) — k,(m)) = 0. Let m be a point
such that 7 (Y)(m) # 0. We have two g-orthonormal bases of T,M: (X, 7= (Y)/I1, Z/I1) and
(Y, 7 (X)/I1, Z/I1). The matrix which expresses the second basisin the first oneis

(X,Yy 1m0
m -gX,Y) 0].
0 0o 1
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We compute thanks to it the matrix of k,(m) in the basis (X, 7 (Y)/I1, Z/T1):

—1/n’g(X, )2+ nW,IT1?  TIg(X,Y)(=1/n> —nW,) O
g(X, Y)(=1/n* —nWy)  —1/n”+ng(X,Y)’W, 0
0 0 An

whereW, =1 — (1 — 1/n?)¢,12and A, = n(L+ (L — 1/n?) ¢ T12)/Wp).
Now, we are able to compute

tr ((hn(M) — ka(M)?) = (1/n%(1 - g(X, Y)?) +n(1— (1 - 1/n? ¢ [1H)1%)?
+ 2(TIg(X, Y) (—=1/n* — n(1 — (1 — 1/n?) ¢nI1%)))?
+(1/n?+n1—g(X, V)L - (1—1/n? ¢al1D))? + (An — An)>.

We remark that (1 — g(X, Y)?) = IT? and then we replace the first by the second in the third
line and use Lemma 4.8 to have an upper bound. We have

tr ((hn(M) — ka(M))?) < (1/n% 4+ 1/m)% + 2(1/n* + 1/n)? + (1/n* + 1/n)2.

This obviously implies that dg(hn, kn) = SUPmem (tr((Fn(M) — ka(M))?)) goes to 0 when n goes
toinfinity. O

Proof of Theorem 4.6. We first give the proof for the dimension 3. Let us consider two
temporally orientable connected components of £,(M) : €1 and C,. Let X (resp. Y) be a
negative vector field of ametricin G4 (resp. ). We know that they are not homotopic. Anyway
thanks to them we can define the metrics h, and k,, as before. It is clear that the h, belong to
C; and the k, to ©,. Furthermore, from 4.9, we have that d(h,,, k,) goesto 0. We conclude that
d(Cy, C2) = Ofor any twotemporally orientable connected components. Thereisno difficulty to
extend thisresult to any connected component. In fact, aswe have seenin 3.5, X* = (—X)® and
S0 our construction can be done in the same way for non-orientable line fields. Consequently,
the distance between two connected componentsis always 0.

The last thing to do isto say how we can manage in greater dimension. The main difference
is that there is no vector field to take place of Z. We define a kind of projection P on the
orthogonal of Vect(X, Y). It is defined by P(u) = IT2u — g(u, X)IT2 X — g(u, 7 (Y)) 7 (Y).
Thanks to P, we define the following symmetric 2-tensor Bx vy (u, v) = g(P(u), P(v)). For a
3-dimensional manifold, we have Bx y = Z°. And, which is moreimportant, Bx.v = B+x +v,
and therefore it can be defined for any line field. Now we put

1 1
hn = ng — (n + F) P n<1 - ?)wnnzﬂ—%(v)ﬁ

(1—1/n% ¥
+n \/1 — (1-1/n?y, 122 P

where| = dim M and v, is a positive function verifying v, 1202 < 1and ¢, [120-2 = 1
if T1? < 1/n*. We define k, in the same way. Those metrics belong to £,,(M). And, with the
same computations as above, we haved(hp, ky) — 0. O
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