An Erdős-Ko-Rado theorem for the derangement graph of $\operatorname{PGL}(2, q)$ acting on the projective line

Karen Meagher ${ }^{\text {a, } 1}$, Pablo Spiga ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Regina, 3737 Wascana Parkway, S4S OA4 Regina SK, Canada
${ }^{\text {b }}$ Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, via Trieste 63, 35121 Padova, Italy

ARTICLE INFO

Article history:

Received 23 October 2009
Available online 12 November 2010

Keywords:

Derangement graph
Independent sets
Erdős-Ko-Rado theorem

Abstract

Let $G=\operatorname{PGL}(2, q)$ be the projective general linear group acting on the projective line \mathbb{P}_{q}. A subset S of G is intersecting if for any pair of permutations π, σ in S, there is a projective point $p \in \mathbb{P}_{q}$ such that $p^{\pi}=p^{\sigma}$. We prove that if S is intersecting, then $|S| \leqslant$ $q(q-1)$. Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of \mathbb{P}_{q}.

© 2010 Published by Elsevier Inc.

1. Introduction

The Erdős-Ko-Rado theorem [5] is a very important result in extremal combinatorics. There are many different proofs and extensions of this theorem and we refer the reader to [4] for a full account. There are also many applications of the Erdős-Ko-Rado theorem, for example to qualitatively independent sets [12,13], problems in geometry [6] and in statistics [16].

In this paper, we are concerned with an extension of the Erdős-Ko-Rado theorem to permutation groups. Let G be a permutation group on Ω. We let fix (g) denote the number of fixed points of the permutation g of G. A subset S of G is said to be intersecting if fix $\left(g^{-1} h\right) \neq 0$, for every $g, h \in S$. As with the Erdős-Ko-Rado theorem, we are interested in finding the size of the largest intersecting set of G and classifying the sets that attain this bound. This problem can be formulated in a graphtheoretic terminology. We denote by Γ_{G} the derangement graph of G, the vertices of this graph are the elements of G and the edges are the pairs $\{g, h\}$ such that fix $\left(g^{-1} h\right)=0$. An intersecting set of G is simply an independent set of Γ_{G}. In $[3,15]$ the natural extension of the Erdős-Ko-Rado theorem for the symmetric group $\operatorname{Sym}(n)$ was independently proven. Indeed, it was shown that every independent set of permutations in $\Gamma_{\operatorname{Sym}(n)}$ has size at most $(n-1)$!. Also, the only sets that meet this bound are

[^0]the cosets of the stabilizer of a point. The same result was also proved in [8] using the character theory of $\operatorname{Sym}(n)$.

In this paper, inspired by the approach used in [8], we prove a similar result for the permutation group $G=\operatorname{PGL}(2, q)$ acting on the projective line \mathbb{P}_{q}. We show that an independent set S in Γ_{G} has size at most $q(q-1)$. Also, we prove that the sets S that meet this bound are the cosets of the stabilizer of a point of \mathbb{P}_{q}. In particular, these results are a natural q-analogue of the result for the symmetric group $\operatorname{Sym}(n)$. Here we report the main theorem.

Theorem 1. Every independent set S of the derangement graph of $\operatorname{PGL}(2, q)$ acting on the projective line \mathbb{P}_{q} has size at most $q(q-1)$. Equality is met if and only if S is the coset of the stabilizer of a point.

Theorem 1 indicates that the argument described in [8] will likely be particularly fruitful for studying the derangement graph of a permutation group G whose character theory is well understood.

In Section 2 we recall some general results on the eigenvalues and the independent sets of the graph Γ_{G} that will be used throughout the paper. In Section 3 the character table of $\operatorname{PGL}(2, q)$ is described. Section 4 includes technical lemmas that are used in Section 5 to prove Theorem 1. Finally, in Section 6, we conclude with some general remarks on the derangement graphs of 2 -transitive and 3 -transitive groups.

2. General results

Let G be a permutation group on Ω and Γ_{G} its derangement graph. Since the right regular representation of G is a subgroup of $\operatorname{Aut}\left(\Gamma_{G}\right)$, we see that Γ_{G} is a Cayley graph. Namely, if D is the set of derangements of G (i.e. the fixed-point-free permutations of G), then Γ_{G} is the Cayley graph on G with connection set D, i.e. $\Gamma_{G}=\operatorname{Cay}(G, D)$. Clearly, D is a union of G-conjugacy classes, so Γ_{G} is a normal Cayley graph.

As usual, we simply say that the complex number ξ is an eigenvalue of the graph Γ if ξ is an eigenvalue of the adjacency matrix of Γ.

In this paper, we use $\operatorname{Irr}(G)$ to denote the irreducible complex characters of a group G and given $\chi \in \operatorname{Irr}(G)$ and a subset S of G we write $\chi(S)$ for $\sum_{s \in S} \chi(s)$. In the following lemma we recall that the eigenvalues of Γ_{G} are determined by the irreducible complex characters of the group G.

Lemma 2. Let G be a permutation group on Ω and D the set of derangements of G. The spectrum of the graph Γ_{G} is $\{\chi(D) / \chi(1) \mid \chi \in \operatorname{Irr}(G)\}$. Also, if τ is an eigenvalue of Γ_{G} and $\chi_{1}, \ldots, \chi_{s}$ are the irreducible characters of G such that $\tau=\chi_{i}(D) / \chi_{i}(1)$, then the dimension of the τ eigenspace of Γ_{G} is $\sum_{i=1}^{s} \chi_{i}(1)^{2}$.

Proof. Since Γ_{G} is a normal Cayley graph, the result follows from [1].
Since Γ_{G} is a Cayley graph, the \mathbb{C}-vector space with basis elements labelled by the vertices of Γ_{G} is the \mathbb{C}-vector space underlying the group algebra $\mathbb{C} G$. If S is a subset of G, we simply write v_{S} for the vector $\sum_{g \in S} g$ of $\mathbb{C} G$ (so v_{S} is the characteristic vector for the set S). In particular, v_{G} is the all-1 vector of $\mathbb{C} G$. Finally, we recall Hoffman's bound for the size of an independent set of Γ_{G} and a consequence for when equality holds in this bound.

Lemma 3. Let G be a permutation group on Ω. Let S be an independent set of Γ_{G} and τ be the minimum eigenvalue of Γ_{G}. Assume that the valency of Γ_{G} is d. Then $|S| \leqslant|G| /\left(1-\frac{d}{\tau}\right)$. If the equality is met, then $v_{S}-\frac{|S|}{|G|} v_{G}$ is an eigenvector of Γ_{G} with eigenvalue τ.

Proof. Set $v=|G|$, and $M=A-\tau I-(d-\tau) / v J$, where A is the adjacency matrix of Γ_{G} and J is the all-1 matrix. By definition of τ and by construction, M is a positive semidefinite symmetric matrix.

Hence, given a set $S \subseteq G$ of size s, it is true that

$$
0 \leqslant v_{S}^{T} M v_{S}=v_{S}^{T} A v_{S}-\tau v_{S}^{T} v_{S}-\frac{d-\tau}{v} v_{S}^{T} J v_{S}=v_{S}^{T} A v_{S}-\tau s-\frac{d-\tau}{v} s^{2}
$$

If S is an independent set of Γ_{G}, then $v_{S}^{T} A v_{S}=0$ and the previous inequality yields the first part of the lemma.

Now, suppose that equality holds. Then $v_{S}^{T} M v_{S}=0$. Since M is positive semidefinite, we obtain $M v_{S}=0$. Therefore

$$
A\left(v_{S}-\frac{s}{v} v_{G}\right)=\tau\left(v_{S}-\frac{s}{v} v_{G}\right)
$$

and the proof is completed.

3. $\operatorname{PGL}(2, q)$

We recall that the character table of $\operatorname{PGL}(2, q)$ was computed by Jordan and Schur in 1907 and can be found in many textbooks, see [11]. Also, the character tables of $\operatorname{PGL}(3, q)$ and $\operatorname{PGL}(4, q)$ were found by R. Steinberg and the character table of $\operatorname{PGL}(n, q)$ was finally determined by J. Green in 1955 in the celebrated paper [9].

We give the character table of $\operatorname{PGL}(2, q)$, first for q even and second for q odd. We note that by abuse of terminology we often refer to the elements of $\operatorname{PGL}(2, q)$ as matrices.

We briefly explain the notation used, but refer the reader to [11] for full details. We start by describing the conjugacy classes. The elements of $\operatorname{PGL}(2, q)$ can be collected in four sets: the set consisting only of the identity element, the set consisting of the non-scalar matrices with only one eigenvalue, the set consisting of the matrices with two distinct eigenvalues in \mathbb{F}_{q} and the set of matrices with no eigenvalues in \mathbb{F}_{q}. The non-scalar matrices with only one eigenvalue form a conjugacy class of size $q^{2}-1$ and are represented by a unipotent matrix u. Every matrix with two distinct eigenvalues in \mathbb{F}_{q} is conjugate to a diagonal matrix d_{x}, with x and 1 along the main diagonal. Now, d_{x} and d_{y} are conjugate if and only if $y=x$ or $y=x^{-1}$. So, the label x in the character table of $\operatorname{PGL}(2, q)$ for d_{x} represents an element of $\mathbb{F}_{q} \backslash\{0,1\}$ up to inversion. Now, for q odd, let $i \in \mathbb{F}_{q^{2}}$ be an element of order 2 in $\mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*}$. The matrices with no eigenvalues in \mathbb{F}_{q} are conjugate in $\operatorname{PGL}\left(2, q^{2}\right)$ to a diagonal matrix, with r and r^{q} along the main diagonal (for $r \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$). Each of these matrices is conjugate in $\operatorname{PGL}(2, q)$ to the matrix v_{r} depicted below. Also, v_{x} and v_{y} are conjugate if and only if $y \mathbb{F}_{q}^{*}=x \mathbb{F}_{q}^{*}$ or $y \mathbb{F}_{q}^{*}=x^{-1} \mathbb{F}_{q}^{*}$. So, the label r in the character table of $\operatorname{PGL}(2, q)$ for v_{r} represents an element of $\mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*}$ up to inversion. So,

$$
u=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad d_{x}=\left[\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right], \quad v_{r}=\left[\begin{array}{cc}
0 & 1 \\
-r^{1+q} & r+r^{q}
\end{array}\right] .
$$

We note here that in the permutation group $\operatorname{PGL}(2, q)$ acting on the projective line \mathbb{P}_{q}, the permutations in the conjugacy class represented by u fix exactly one point, the permutations in the conjugacy classes represented by d_{x} fix exactly 2 points while the permutations in the conjugacy classes represented by v_{r} fix no point.

Next we describe the characters of $\operatorname{PGL}(2, q)$ by describing the maps ε, γ and η. The map ε is defined by $\varepsilon(x)=1$ if $d_{x} \in \operatorname{PSL}(2, q)$ and $\varepsilon(x)=-1$ otherwise. Similarly, $\varepsilon(r)=1$ if $v_{r} \in \operatorname{PSL}(2, q)$ and $\varepsilon(r)=-1$ otherwise. So, $\lambda_{-1}: \operatorname{PGL}(2, q) \rightarrow\{ \pm 1\}$ is the non-principal linear character. The letter γ represents a group homomorphism $\gamma: \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}$ of order greater than 2. Also, $\nu_{\gamma_{1}}=v_{\gamma_{2}}$ if and only if $\gamma_{2}=\gamma_{1}$ or $\gamma_{2}=\gamma_{1}^{-1}$. So, the label γ runs through the homomorphisms $\gamma: \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}$ of order greater than 2 up to inversion. The letter β stands for a group homomorphism $\beta: \mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}$ of order greater than 2. Also, $\eta_{\beta_{1}}=\eta_{\beta_{2}}$ if and only if $\beta_{2}=\beta_{1}$ or $\beta_{2}=\beta_{1}^{-1}$. So, the label β runs through the homomorphisms $\beta: \mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}$ of order greater than 2 up to inversion. Note that given a nonprincipal linear character $\psi: C \rightarrow \mathbb{C}$ of a cyclic group C, we get $\sum_{c \in C} \psi(c)=0$. In particular, given γ and β as in Tables 1 and 2, we obtain $\sum_{x \in \mathbb{F}_{q}^{*}} \gamma(x)=0$ and $\sum_{r \mathbb{F}_{q}^{*} \in \mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*}} \beta(r)=0$.

Table 1
Character table of $\operatorname{PGL}(2, q)$, for q even.

	Name	1	u	d_{x}	v_{r}
	No.	1	1	$\frac{q}{2}-1$	$\frac{q}{2}$
	Size	1	$q^{2}-1$	$q(q+1)$	$q(q-1)$
Name	No.				
λ_{1}	1	1	1	1	1
ψ_{1}	1	q	0	1	-1
η_{β}	$\frac{q}{2}$	$q-1$	-1	0	$-\beta(r)-\beta\left(r^{-1}\right)$
ν_{γ}	$\frac{q}{2}-1$	$q+1$	1	$\gamma(x)+\gamma\left(x^{-1}\right)$	0

Table 2
Character table of $\operatorname{PGL}(2, q)$, for q odd.

	Name	1	u	d_{x}	d_{-1}	v_{r}	v_{i}
	No.	1	1	$\frac{q-3}{2}$	1	$\frac{q-1}{2}$	1
	Size	1	$q^{2}-1$	$q(q+1)$	$\frac{q(q+1)}{2}$	$q(q-1)$	$\frac{q(q-1)}{2}$
Name	No.				1	1	1
λ_{1}	1	1	1	1	$\varepsilon(x)$	1	$\varepsilon(-1)$
λ_{-1}	1	1	1	1	$\varepsilon(-1)$	-1	$-\varepsilon(r)$
ψ_{1}	1	q	0	0	$-\beta(x)$	$-\beta\left(r^{-1}\right)$	$-2 \beta(i)$
ψ_{-1}	1	q	0	$\gamma(x)+\gamma\left(x^{-1}\right)$	$2 \gamma(-1)$	0	0
η_{β}	$\frac{q-1}{2}$	$q-1$	-1	1			
v_{γ}	$\frac{q-3}{2}$	$q+1$					

In the following we simply denote by G_{q} the permutation group $\operatorname{PGL}(2, q)$ acting on the projective line \mathbb{P}_{q}, and D the set of derangements of G_{q}.

Using Table 1 (for q even), Table 2 (for q odd) and the fact that the elements in the conjugacy classes labelled by v_{r} are the derangements of G_{q}, it is possible to compute $\chi(D) / \chi(1)$, for all $\chi \in$ $\operatorname{Irr}\left(G_{q}\right)$. For example, if $\chi=\lambda_{1}$ then we easily see that

$$
\frac{\lambda_{1}(D)}{\lambda_{1}(1)}=\frac{q(q-1)(q-1)}{2}+\frac{q(q-1)}{2}=\frac{q^{2}(q-1)}{2},
$$

which is equal to $|D|$, is an eigenvalue of $\Gamma_{G_{q}}$. The only cases where this is not trivial are when $\chi=\eta_{\beta}$ and when $\chi=\lambda_{-1}$. If $\chi=\eta_{\beta}$, then we have

$$
\frac{\chi(D)}{\chi(1)}=\frac{q(q-1)}{q-1}\left(\sum_{\substack{r \mathbb{F}_{q}^{*} \in \mathbb{F}_{q^{*}}^{*} / \mathbb{F}_{q}^{*} \\ r \notin \mathbb{F}_{q}^{*}}}-\beta(r)\right)=-q\left(\sum_{\substack{r \mathbb{F}_{q}^{*} \in \mathbb{F}_{q^{*}}^{*} / \mathbb{F}_{q}^{*} \\ r \notin \mathbb{F}_{q}^{*}}} \beta(r)\right)=q
$$

since $\mathbb{F}_{q^{2}}^{*} / \mathbb{F}_{q}^{*}$ is a cyclic group. By direct calculation or using the description of the conjugacy classes of $\operatorname{PSL}(2, q)$ given in [11], we see that $\operatorname{PSL}(2, q)$ contains $q(q-1)^{2} / 4$ derangements. As $|D|=q^{2}(q-1) / 2$, we get that $\operatorname{PGL}(2, q) \backslash \operatorname{PSL}(2, q)$ contains $q\left(q^{2}-1\right) / 4$ derangements. So, if $\chi=\lambda_{-1}$, we have

$$
\frac{\lambda_{-1}(D)}{\lambda_{-1}(1)}=\frac{q(q-1)^{2}}{4}-\frac{q\left(q^{2}-1\right)}{4}=-\frac{q(q-1)}{2} .
$$

In particular, we obtain Table 3.
In summary, the valency of the graph $\Gamma_{G_{q}}$ is $q^{2}(q-1) / 2$ and the minimum eigenvalue τ is $-q(q-1) / 2$. If q is even, then ψ_{1} is the only character χ such that $\tau=\chi(D) / \chi(1)$. If q is odd, then λ_{-1} and ψ_{1} are the only characters χ such that $\tau=\chi(D) / \chi(1)$.

Table 3

Eigenvalues of $\Gamma_{G_{q}}$.						
Character	λ_{1}	λ_{-1}	ψ_{1}	ψ_{-1}	η_{β}	v_{γ}
Eigenvalue	$\frac{q^{2}(q-1)}{2}$	$\frac{-q(q-1)}{2}$	$\frac{-q(q-1)}{2}$	$\frac{q-1}{2}$	q	0
Dimension (if q even)	1	-	q^{2}	-	$\frac{q(q-1)^{2}}{2}$	$\frac{(q+1)^{2}(q-2)}{2}$
Dimension (if q odd)	1	1	q^{2}	q^{2}	$\frac{(q-1)^{3}}{2}$	$\frac{(q+1)^{2}(q-3)}{2}$

Lemma 4. An independent set of maximal size in $\Gamma_{G_{q}}$ has size $q(q-1)$.
Proof. The coset of the stabilizer of a point of G_{q} is an independent set in $\Gamma_{G_{q}}$ of size $\left|G_{q}\right| /(q+1)=$ $q(q-1)$. From the eigenvalues of $\Gamma_{G_{q}}$ and Lemma 3 we see that such an independent set is an independent set of maximal size.

Similar to the case of the symmetric group (and also the standard Erdős-Ko-Rado theorem for sets), finding the bound in Theorem 1 is not difficult, but it is in the characterization of the sets that meet this bound that the difficulty lies. Indeed, it is not difficult to also establish a similar bound on the size of the independent sets in the derangement graph for the group $\operatorname{PSL}(2, q)$.

Lemma 5. An independent set of maximal size in $\Gamma_{\mathrm{PSL}(2, q)}$ has size $q(q-1) / 2$.
Proof. This can be proved using Lemma 3 with the information on the character table of $\operatorname{PSL}(2, q)$ in [11] and the fact that a point-stabilizer in $\operatorname{PSL}(2, q)$ has size $q(q-1) / 2$.

The next lemma will be used in Lemma 7 to limit the search of independent sets of maximal size in $\Gamma_{G_{q}}$.

Lemma 6. Assume q odd. If S is an independent set of maximal size of $\Gamma_{G_{q}}$, then $\lambda_{-1}(S)=0$.
Proof. By Lemma 4, we have $|S|=q(q-1)$. Consider the two sets $S_{+}=S \cap \operatorname{PSL}(2, q)$ and $S_{-}=$ $S \backslash S_{+}$. Clearly S_{+}is an independent set in $\Gamma_{\mathrm{PSL}(2, q)}$ and, for $g \in G_{q} \backslash \operatorname{PSL}(2, q)$, the set $g S_{-}$is also an independent set in $\Gamma_{\mathrm{PSL}(2, q)}$. Thus we obtain that $\left|S_{+}\right|=\left|S_{-}\right|=q(q-1) / 2$ and in particular $\lambda_{-1}(S)=$ $\left|S_{+}\right|-\left|S_{-}\right|=0$.

4. Auxiliary lemmas

Consider the $\{0,1\}$-matrix A, where the rows are indexed by the elements of G_{q}, the columns are indexed by the ordered pairs of points of \mathbb{P}_{q} and $A_{g,\left(p_{1}, p_{2}\right)}=1$ if and only if $p_{1}^{g}=p_{2}$. In particular, A has $\left|G_{q}\right|=q\left(q^{2}-1\right)$ rows and $\left|\mathbb{P}_{q}\right|^{2}=(q+1)^{2}$ columns.

The entry $\left(A^{T} A\right)_{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)}$ equals the number of permutations of G_{q} mapping p_{1} into q_{1} and p_{2} into q_{2}. Since G_{q} is 2 -transitive, we get by a simple counting argument that

$$
\left(A^{T} A\right)_{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)}= \begin{cases}q(q-1) & \text { if } p_{1}=p_{2} \text { and } q_{1}=q_{2} \\ q-1 & \text { if } p_{1} \neq p_{2} \text { and } q_{1} \neq q_{2} \\ 0 & \text { otherwise }\end{cases}
$$

This shows that with the proper ordering of the columns of A,

$$
A^{T} A=q(q-1) I_{(q+1)^{2}}+(q-1)\left(J_{q+1}-I_{q+1}\right) \otimes\left(J_{q+1}-I_{q+1}\right)
$$

(in here I_{q+1}, J_{q+1} denote the identity matrix and the all- 1 matrix of size $q+1$, respectively). The matrix J_{q+1} has eigenvalue 0 (with multiplicity q) and $q+1$ (with multiplicity 1). Hence $\left(J_{q+1}-I_{q+1}\right) \otimes\left(J_{q+1}-I_{q+1}\right)$ has eigenvalue 1 (with multiplicity q^{2}), $-q$ (with multiplicity $2 q$), and
q^{2} (with multiplicity 1). So, $A^{T} A$ is diagonalizable with eigenvalues $q(q-1)+(q-1) q^{2}=\left|G_{q}\right|$ (with multiplicity 1), $q(q-1)+(q-1)=q^{2}-1$ (with multiplicity q^{2}) and $q(q-1)-(q-1) q=0$ (with multiplicity $2 q$). This shows that the kernel of $A^{T} A$ has dimension $2 q$. We now determine the kernel of A.

Let V be the \mathbb{C}-vector space whose basis consists of all $e_{(x, y)}$, where (x, y) is an ordered pair of elements of \mathbb{P}_{q}. Consider the following two subspaces of V

$$
\begin{aligned}
& V_{1}=\left\langle\sum_{x \in \mathbb{P}_{q}}\left(e_{\left(p_{1}, x\right)}-e_{\left(p_{2}, x\right)}\right) \mid p_{1}, p_{2} \in \mathbb{P}_{q}\right\rangle, \\
& V_{2}=\left\langle\sum_{x \in \mathbb{P}_{q}}\left(e_{\left(x, p_{1}\right)}-e_{\left(x, p_{2}\right)}\right) \mid p_{1}, p_{2} \in \mathbb{P}_{q}\right\rangle .
\end{aligned}
$$

Note that by construction, V_{1} and V_{2} have dimension q and are G_{q}-modules. As V_{1} and V_{2} are orthogonal, we have $V_{1} \cap V_{2}=0$. Using the definition of A, it is easy to check that $V_{1} \oplus V_{2}$ is contained in the kernel of A. Since the kernel of $A^{T} A$ has dimension $2 q$, we obtain that $V_{1} \oplus V_{2}$ is the kernel of A. In particular, we proved the first part of the following lemma.

Lemma 7. The matrix A has rank $q^{2}+1$ and the kernel of A is $V_{1} \oplus V_{2}$. Also, the vector space spanned by the columns of A equals the vector space spanned by the characteristic vectors of the independent sets of size $q(q-1)$ of $\Gamma_{G_{q}}$.

Proof. The claims on the rank and on the kernel follow from the previous discussion.
Note that the columns of A are the characteristic vectors of cosets of stabilizers of points of G_{q}. In particular, these columns are characteristic vectors of independent sets of size $q(q-1)$ in $\Gamma_{G_{q}}$. By taking the sum of all the columns in A, we see that the all- 1 vector is also in the column space of A.

Let S be any independent set of $\Gamma_{G_{q}}$ of size $q(q-1)$. By Lemmas 3 and 4 the characteristic vector of S is in the direct sum of the $q^{2}(q-1) / 2$-eigenspace and the $-q(q-1) / 2$-eigenspace.

If q is even, from the multiplicities of the eigenvalues in Table 3 it is clear that the vector space spanned by the characteristic vectors of independent sets of size $q(q-1)$ has dimension at most $q^{2}+1$. So the lemma follows.

If q is odd then Lemma 6 yields that v_{S} is orthogonal to the eigenspace arising from the character λ_{-1}. So v_{S} must lie in the direct sum of the eigenspaces arising from λ_{1} and ψ_{1}. Again, the multiplicities of the eigenvalues in Table 3 show that the vector space spanned by the characteristic vectors of independent sets of size $q(q-1)$ has dimension at most $q^{2}+1$ and the lemma follows.

Now we fix a particular ordering of the rows of A so that the first row is labelled by the identity element of G_{q}, then we label the next $q^{2}(q-1) / 2$ rows by the derangements of G_{q} and the final $\left(q^{2}-2\right)(q+1) / 2$ rows are labelled by the remaining permutations. Similarly, we fix a particular ordering of the columns of A so that the first $q+1$ columns are labelled by the ordered pairs of the form (p, p) and then the last $q(q+1)$ columns are labelled by the ordered pairs of the form (p_{1}, p_{2}), with $p_{1} \neq p_{2}$. With this ordering, we get that the matrix A is a block matrix. Namely,

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & M \\
B & C
\end{array}\right)
$$

In particular, the rows of the submatrix M are labelled by the derangements of G_{q} and the columns of M are labelled by the ordered pairs of distinct elements of \mathbb{P}_{q}.

Now, set $N=M^{T} M$. In particular, N is a square $(q+1) q$ matrix whose rows and columns are indexed by the ordered pairs of distinct points.

From now on, we identify the elements of \mathbb{P}_{q} with the elements of the set $\mathbb{F}_{q} \cup\{\infty\}$. Namely, the point $[1, a]$ corresponds to the element a of \mathbb{F}_{q} and the point $[0,1]$ corresponds to the element ∞.

Now, given four distinct points α, β, γ, δ, we recall that the cross-ratio, denoted by $\operatorname{crr}(\alpha, \delta, \gamma, \beta)$, is defined by

$$
\frac{\alpha-\gamma}{\alpha-\beta} \frac{\delta-\beta}{\delta-\gamma}
$$

We recall that the cross-ratio is G_{q}-invariant, i.e. if $g \in G_{q}$ and $\alpha, \beta, \gamma, \delta \in \mathbb{P}_{q}$, then $\operatorname{crr}\left(\alpha^{g}, \delta^{g}\right.$, $\left.\gamma^{g}, \beta^{g}\right)=\operatorname{crr}(\alpha, \delta, \gamma, \beta)$.

In the following proposition we prove that the entries of the matrix N are determined by the cross-ratio.

Proposition 8. If q is even, then

$$
N_{(\alpha, \beta),(\gamma, \delta)}= \begin{cases}q(q-1) / 2 & \text { if } \alpha=\gamma \text { and } \beta=\delta, \\ 0 & \text { if } \alpha=\gamma \text { and } \beta \neq \delta, \\ 0 & \text { if } \alpha \neq \gamma \text { and } \beta=\delta, \\ 0 & \text { if } \alpha=\delta \text { and } \beta=\gamma, \\ q / 2 & \text { otherwise }\end{cases}
$$

If q is odd, then

$$
N_{(\alpha, \beta),(\gamma, \delta)}= \begin{cases}q(q-1) / 2 & \text { if } \alpha=\gamma \text { and } \beta=\delta, \\ 0 & \text { if } \alpha=\gamma \text { and } \beta \neq \delta, \\ 0 & \text { if } \alpha \neq \gamma \text { and } \beta=\delta, \\ (q-1) / 2 & \text { if } \operatorname{crr}(\alpha, \delta, \gamma, \beta) \text { is a square in } \mathbb{F}_{q}, \\ (q+1) / 2 & \text { if } \operatorname{crr}(\alpha, \delta, \gamma, \beta) \text { is not a square in } \mathbb{F}_{q} .\end{cases}
$$

Proof. Note that $N_{(\alpha, \beta),(\gamma, \delta)}$ is the number of derangements mapping α to β and γ to δ. Write n for $N_{(\alpha, \beta),(\gamma, \delta)}$. If $\alpha=\gamma$ and $\beta=\delta$, then n is the number of derangements mapping α to β. Since G_{q} is transitive of degree $q+1$ and since G_{q} contains $q^{2}(q-1) / 2$ derangements, we have $n=q^{2}(q-1) / 2 q=$ $q(q-1) / 2$.

If $\alpha=\gamma$ and $\beta \neq \delta$ or if $\alpha \neq \gamma$ and $\beta=\delta$, then clearly $n=0$.
From now on we can assume that $\alpha \neq \gamma$ and $\beta \neq \delta$. Assume $\alpha=\delta$ and $\beta=\gamma$. Since G_{q} is 2transitive, without loss of generality, we can assume that $\alpha=0$ and $\beta=\infty$. In this case, the elements g such that $0^{g}=\infty$ and $\infty^{g}=0$ are the matrices of the form

$$
g=\left[\begin{array}{ll}
0 & \lambda \\
1 & 0
\end{array}\right] \quad \text { with } \lambda \in \mathbb{F}_{q}^{*} .
$$

Further, g is a derangement if and only if g has no eigenvalue in \mathbb{F}_{q}, i.e. the characteristic polynomial $p_{\lambda}(t)=t^{2}-\lambda$ of g is irreducible over \mathbb{F}_{q}. If q is even, then $p_{\lambda}(t)$ is reducible for every value of λ, and so $n=0$. If q is odd, then \mathbb{F}_{q}^{*} has $(q-1) / 2$ non-square elements. Thence there exist $(q-1) / 2$ values of λ such that $p_{\lambda}(t)$ is irreducible over \mathbb{F}_{q}, and so $n=(q-1) / 2$. Note that $\operatorname{crr}(\alpha, \delta, \gamma, \beta)=$ $\operatorname{crr}(0,0, \infty, \infty)=1$ is a square in \mathbb{F}_{q}.

From now on we can assume that $|\{\alpha, \beta, \gamma, \delta\}| \geqslant 3$.
As N is symmetric, up to interchanging the pairs $(\alpha, \beta),(\gamma, \delta)$, we may assume that $\beta \neq \gamma$. Since G_{q} is 3 -transitive, without loss of generality, we may assume that $\alpha=0, \beta=1, \gamma=\infty$ and $\delta=d$, for some $d \in \mathbb{F}_{q} \backslash\{1\}$. The elements g such that $0^{g}=1$ and $\infty^{g}=d$ are the matrices of the form

$$
\left[\begin{array}{cc}
1 & 1 \\
\lambda & \lambda d
\end{array}\right] \quad \text { with } \lambda \in \mathbb{F}_{q}^{*} \text {. }
$$

The permutation g is a derangement if and only if g has no eigenvalue in \mathbb{F}_{q}, i.e. the characteristic polynomial $p_{\lambda}(t)=t^{2}-(1+\lambda d) t+\lambda d-\lambda$ of g is irreducible over \mathbb{F}_{q}. Now, we determine
the number of values of λ such that $p_{\lambda}(t)$ is irreducible. Assume that $p_{\lambda}(t)$ is reducible over \mathbb{F}_{q} with roots $a, b \in \mathbb{F}_{q}$. So, $p_{\lambda}(t)=(t-a)(t-b)$. This yields $a+b=1+\lambda d$ and $a b=\lambda d-\lambda$. We get $b=(1+\lambda-a) /(1-a)$ (note that a cannot be 1 , because otherwise $\lambda d-\lambda=b=\lambda d$, which yields $\lambda=0$). From this we obtain $\lambda=\left(a-a^{2}\right) /(d-1-a d)$ (note that $d-1-a d \neq 0$, because otherwise $a \in\{0,1\}$, which yields $\lambda=0$). Consider the function $\varphi: \mathbb{F}_{q} \backslash X \rightarrow \mathbb{F}_{q}$, where $\varphi(a)=\left(a-a^{2}\right) /(d-1-a d)$ and $X=\{a \mid d-1-a d=0\}$. Note that $X=\left\{1-d^{-1}\right\}$ if $d \neq 0$, and $X=\emptyset$ if $d=0$.

We have proved so far that $p_{\lambda}(t)$ is reducible if and only if λ lies in the image of φ. We now compute the size of $\operatorname{Im} \varphi$. It is easy to check that $\varphi\left(a_{1}\right)=\varphi\left(a_{2}\right)$ if and only if $a_{2}=a_{1}$ or $a_{2}=$ $\left(1-a_{1}\right)(d-1) /\left(d-1-a_{1} d\right)$. This shows that the fiber of $\varphi\left(a_{1}\right)$ contains two points if $a_{1} \neq$ $\left(1-a_{1}\right)(d-1) /\left(d-1-a_{1} d\right)$ and only one point if $a_{1}=\left(1-a_{1}\right)(d-1) /\left(d-1-a_{1} d\right)$. Note that $a_{1}=\left(1-a_{1}\right)(d-1) /\left(d-1-a_{1} d\right)$ if and only if $a_{1}^{2} d-2(d-1) a_{1}+(d-1)=0$.

If q is even and $d \neq 0$, then this happens if $a_{1}^{2}=d^{-1}-1$ (i.e. for a unique value of a_{1}). Thence the image of φ contains $(q-1-1) / 2+1=q / 2$ elements, and $n=\left|\mathbb{F}_{q} \backslash \operatorname{Im} \varphi\right|=q / 2$. Similarly, if q is even and $d=0$, the image of φ contains $q / 2$ elements, and $n=\left|\mathbb{F}_{q} \backslash \operatorname{Im} \varphi\right|=q / 2$.

If q is odd, then $a_{1}^{2} d-2(d-1) a_{1}+(d-1)=0$ if the discriminant $(d-1)^{2}-d(d-1)=(1-d)$ is a square (in this case there are two distinct solutions for a_{1}). So, if $1-d$ is a square, then the image of φ contains $(q-1-2) / 2+2=(q+1) / 2$ elements and so $n=\left|\mathbb{F}_{q} \backslash \operatorname{Im} \varphi\right|=(q-1) / 2$. But, if $1-d$ is not a square, then the image of φ contains $(q-1) / 2$ elements and so $n=\left|\mathbb{F}_{q} \backslash \operatorname{Im} \varphi\right|=(q+1) / 2$. Finally, we note that $\operatorname{crr}(0, d, \infty, 1)=1-d$.

In the next proposition we use the character table of G_{q} to find the rank of M.

Proposition 9. The matrix M has $\operatorname{rank} q(q-1)$.

Proof. Let Ω be the set of ordered pairs of distinct elements of \mathbb{P}_{q} and V be the vector space with basis $\left\{e_{\omega}\right\}_{\omega \in \Omega}$. Clearly, V is a G_{q}-module. Namely, V is the permutation module of the action of G_{q} on Ω. Let π be the character afforded by V, so

$$
\pi(g)=\left|\left\{\omega \in \Omega \mid \omega^{g}=\omega\right\}\right|
$$

We have $\pi\left(1_{G_{q}}\right)=q(q+1), \pi(g)=2$ for every element g conjugate to d_{x} (for some x) and $\pi(g)=0$ otherwise. As $\pi=\sum_{\chi \in \operatorname{Irr}\left(G_{q}\right)}\langle\chi, \pi\rangle \chi$, by direct calculation of $\langle\chi, \pi\rangle$ with Tables 1 and 2 , we get that

$$
\begin{aligned}
& \pi=\lambda_{1}+2 \psi_{1}+\sum_{\beta} \eta_{\beta}+\sum_{\gamma} v_{\gamma}, \quad \text { for } q \text { even, } \\
& \pi=\lambda_{1}+2 \psi_{1}+\psi_{-1}+\sum_{\beta} \eta_{\beta}+\sum_{\gamma} v_{\gamma}, \quad \text { for } q \text { odd. }
\end{aligned}
$$

Let $C \subseteq \operatorname{Irr}\left(G_{q}\right)$ be the set of constituents of π. Then $V=\bigoplus_{\chi \in C} V_{\chi}$, where V_{χ} is an irreducible G_{q} submodule of V, unless $\chi=\psi_{1}$, and $V_{\psi_{1}}$ is the sum of two isomorphic irreducible G_{q}-submodules of V of dimension q. Clearly, $V_{\psi_{1}} \cong V_{1} \oplus V_{2}$ (see Lemma 7).

Again we use the matrix $N=M^{T} M$ and in order to prove that M has rank $q(q-1)$ it suffices to prove that N has rank $q(q-1)$. By Lemma 7 , we get that $V_{\psi_{1}}$ is contained in the kernel of N. Also, as $N_{\omega_{1}^{g}, \omega_{2}^{g}}=N_{\omega_{1}, \omega_{2}}$ for every $g \in G_{q}$, we obtain that every eigenspace of N is a G_{q}-submodule of V. Therefore, since for $\chi \neq \psi_{1}$ the module V_{χ} is irreducible, we get that V_{χ} is an eigenspace of N. Thus, to conclude the proof it suffices to show that the eigenvalue s_{χ} of the eigenspace V_{χ} is not zero, for all $\chi \neq \psi_{1}$.

By Wedderburn's theorem [10], we get that $\mathbb{C} G_{q}=\bigoplus_{\chi \in \operatorname{Irr}(G)} I_{\chi}$, where I_{χ} are minimal two-sided ideals of the semisimple algebra $\mathbb{C} G_{q}$. Also, each I_{χ} is generated (as an ideal) by the idempotent $E_{\chi}=$ $\frac{\chi(1)}{\left|G_{q}\right|} \sum_{g \in G} \chi\left(g^{-1}\right) g$. Set $v_{\chi}=\sum_{g \in G_{q}} \chi\left(g^{-1}\right) e_{\left(0^{g}, \infty^{g}\right)}$. As $V_{\chi}=V I_{\chi}$ and $v_{\chi}=\frac{\left|G_{q}\right|}{\chi(1)} e_{(0, \infty)} E_{\chi} \in V_{\chi}$, we obtain that v_{χ} is an eigenvector of N with eigenvalue s_{χ}. Note that, given $\chi \in C$, we have

$$
\begin{align*}
& \left(N v_{\chi}\right)_{(0, \infty)}=\sum_{(a, b) \in \Omega} N_{(0, \infty),(a, b)}\left(v_{\chi}\right)_{(a, b)}=\sum_{(a, b) \in \Omega} \sum_{\substack{g \text { s.t. } \\
0^{g}=a, \infty^{g}=b}} \chi\left(g^{-1}\right) N_{(0, \infty),(a, b)}, \\
& \left(v_{\chi}\right)_{(0, \infty)}=\sum_{\substack{g \\
0^{g} \text { s.t. } \\
0^{g}=0, \infty^{g}=\infty}} \chi\left(g^{-1}\right)=(q-1)\left\langle\operatorname{Res}_{T}(\chi), 1\right\rangle=(q-1)\langle\chi, \pi\rangle=q-1,
\end{align*}
$$

(\ddagger
where T is the stabilizer in G_{q} of $0, \infty$ and $\operatorname{Res}_{T}(\chi)$ is the restriction of χ to T (note that in the fourth equality in (\ddagger) we are using Frobenius Reciprocity).

In the rest of the proof, we do not determine (for q odd) the eigenvalue s_{χ} of v_{χ}, but we simply prove that $s_{\chi}>0$, for $\chi \neq \psi_{1}$. If $\chi=\lambda_{1}$, then by (\ddagger) the vector v_{χ} is ($q-1$) times the all- 1 vector. By Proposition $8, N$ is a stochastic matrix with row sum $q\left(q^{2}-1\right) / 2$, so $s_{\lambda_{1}}=q\left(q^{2}-1\right) / 2$. Now, for the remaining characters in C we distinguish two cases depending on whether q is even or q is odd.

Assume q even. Let $\chi \in C$, with $\chi \neq \lambda_{1}, \psi_{1}$. Now, as

$$
\sum_{g \in G_{q}} \chi\left(g^{-1}\right)=0,
$$

subtracting $q / 2 \sum_{g \in G_{q}} \chi\left(g^{-1}\right)$ from (\dagger) and using Proposition 8 , we get

$$
\begin{equation*}
\left(N v_{\chi}\right)_{(0, \infty)}=\frac{q^{2}}{2} \sum_{g \in T} \chi\left(g^{-1}\right)-\frac{q}{2}\left(\sum_{\substack{g \text { s.t. } \\ 0^{g}=0}} \chi\left(g^{-1}\right)+\sum_{\substack{g \text { s.t. } \\ \infty^{g}=\infty}} \chi\left(g^{-1}\right)+\sum_{\substack{g \text { s.t. } \\ 0^{g} \overline{\bar{g}}=\\ \infty^{g}=0}} \chi\left(g^{-1}\right)\right) . \tag{1}
\end{equation*}
$$

On the right-hand side of Eq. (1), the first, the second and the third summands are

$$
\begin{aligned}
& \frac{q^{2}}{2}(q-1)\left\langle\operatorname{Res}_{T}(\chi), 1\right\rangle=\frac{q^{2}(q-1)}{2}\langle\chi, \pi\rangle=\frac{q^{2}(q-1)}{2}, \\
& \frac{q}{2} q(q-1)\left\langle\operatorname{Res}_{\left(G_{q}\right)_{0}}(\chi), 1\right\rangle=\frac{q^{2}(q-1)}{2}\left\langle\chi, \lambda_{1}+\psi_{1}\right\rangle=0, \\
& \frac{q}{2} q(q-1)\left\langle\operatorname{Res}_{\left(G_{q}\right)_{\infty}}(\chi), 1\right\rangle=\frac{q^{2}(q-1)}{2}\left\langle\chi, \lambda_{1}+\psi_{1}\right\rangle=0 .
\end{aligned}
$$

Also, if g is a permutation such that $0^{g}=\infty$ and $\infty^{g}=0$, then g has order 2. Therefore g is conjugate to u and so the fourth summand in Eq. (1) is $\frac{q(q-1)}{2} \chi(u)$. Summing up, we obtain

$$
\left(N_{v_{\chi}}\right)_{(0, \infty)}= \begin{cases}\frac{\left(q^{2}-1\right) q}{2} & \text { if } \chi=\eta_{\beta} \\ \frac{(q-1)^{2} q}{2} & \text { if } \chi=v_{\gamma}\end{cases}
$$

Hence, (\ddagger) yields $s_{v_{\gamma}}=q(q-1) / 2>0$ (for every γ) and $s_{\eta_{\beta}}=q(q+1) / 2>0$ (for every β).
We point out that the matrix N has only 4 eigenvalues and actually N is the matrix of an association scheme of rank 4, see [17] for more details.

Assume q odd. Let $\chi \in C$, with $\chi \neq \lambda_{1}, \psi_{1}$. Now, as $\sum_{g \in G_{q}} \chi\left(g^{-1}\right)=0$, subtracting $(q-1) /$ $2 \sum_{g \in G_{q}} \chi\left(g^{-1}\right)$ from (\dagger) and using Proposition 8 , we get

$$
\begin{align*}
\left(N v_{\chi}\right)_{(0, \infty)}= & \frac{q^{2}-1}{2} \sum_{g \in T} \chi\left(g^{-1}\right)-\frac{q-1}{2}\left(\sum_{\substack{g \text { s.t. } \\
0^{s}=0}} \chi\left(g^{-1}\right)+\sum_{\substack{g \text { s.t. } \\
\infty^{g}=\infty}} \chi\left(g^{-1}\right)\right) \\
& +\sum_{\substack{(a, b) \in \Omega \\
\operatorname{crr}(0, b, a, \infty) \text { not square }}} \sum_{\substack{g \text { s.t. } \\
0^{g}=a, \infty^{g}=b}} \chi\left(g^{-1}\right) . \tag{2}
\end{align*}
$$

Arguing as in the case of q even, we get that the first three summands in Eq. (2) are $\left(q^{2}-1\right)(q-1) / 2$, 0 and 0 . Now, consider the subset $\Delta=\{(a, b) \in \Omega \mid \operatorname{crr}(0, b, a, \infty)$ not a square $\}$ of Ω and the subset $S=\left\{g \in G_{q} \mid(0, \infty)^{g} \in \Delta\right\}$ of G_{q}. Since there are $(q-1)^{2} / 2$ elements in Δ we have that $|S|=$ $(q-1)^{3} / 2$.

If $\chi=\psi_{-1}$, then $\left|\chi\left(g^{-1}\right)\right| \in\{0,1\}$, for every $g \in S$. From Eq. (2) and the previous paragraph, we have $\left(N v_{\chi}\right)_{(0, \infty)} \geqslant\left(q^{2}-1\right)(q-1) / 2-|S|>0$, so $s_{\psi_{-1}}>0$.

If (a, b) is in Δ and $g_{a b}$ is in G_{q} such that $(0, \infty)^{g_{a b}}=(a, b)$, then the set of elements of G_{q} mapping $(0, \infty)$ to (a, b) is the coset $T g_{a b}$. Since, $\operatorname{crr}(0, b, \infty, a)=\operatorname{crr}(0, b, a, \infty)^{-1}$ and $(a, b) \in \Delta$, we see that $\operatorname{crr}(0, b, \infty, a)$ is not a square. So, by Proposition 8 , we get that $T g_{a b}$ contains exactly $(q+1) / 2$ elements conjugate to v_{r}, for some r. Therefore $T g_{a b}$ contains at most $(q-3) / 2$ elements conjugate to d_{x}, for some x.

Assume $\chi=v_{\gamma}$. Since $\chi(g)=0$ if g is conjugate to v_{r} (for some r), $|\chi(g)| \leqslant 2$ if g is conjugate to d_{x} (for some x) and $|\Delta|=(q-1)^{2} / 2$, we obtain that the last summand on the right-hand side of Eq. (2) is greater than or equal to

$$
\frac{(q-1)^{2}}{2} \cdot \frac{q-3}{2} \cdot(-2)=-\frac{(q-1)^{2}(q-3)}{2}>-\frac{\left(q^{2}-1\right)(q-1)}{2}
$$

Hence $s_{v_{\gamma}}>0$.
Assume $\chi=\eta_{\beta}$. Now $|\chi(g)| \leqslant 2$ if g is conjugate to v_{r} (for some r), $\chi(g)=0$ if g is conjugate to d_{χ} (for some x) and $|\Delta|=(q-1)^{2} / 2$. Checking Table 2 , we see that $-2=\chi\left(v_{r}\right)=-\beta(r)-\beta\left(r^{-1}\right)$ if and only if $r \mathbb{F}_{q}^{*} \in \operatorname{Ker} \beta$. Since β has order greater than 2 , we get $|\operatorname{Ker} \beta|<(q+1) / 2$. Hence the last summand on the right-hand side of Eq. (2) is greater than

$$
\frac{(q-1)^{2}}{2} \cdot \frac{q+1}{2} \cdot(-2)=-\frac{\left(q^{2}-1\right)(q-1)}{2}
$$

So, $s_{\eta_{\beta}}>0$.
Now, we construct a submatrix \bar{A} of A. In the submatrix \bar{A}, we keep all the rows of A and we delete the columns indexed by the ordered pairs $(\infty, t),(t, \infty)$, for every $t \in \mathbb{F}_{q}$. In particular, we get

$$
\bar{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & \bar{M} \\
B & \bar{C}
\end{array}\right),
$$

where the matrix \bar{M} and \bar{C} are obtained by deleting the appropriate columns of M and C. The matrix \bar{A} has $q^{2}+1$ columns and \bar{M} has $q(q-1)$ columns.

Proposition 10. We have $\operatorname{rank}(A)=\operatorname{rank}(\bar{A})$ and \bar{M} has full column rank.
Proof. We start by proving that the columns indexed by $(\infty, t),(t, \infty)$ (for $\left.t \in \mathbb{F}_{q}\right)$ of A are a linear combination of the columns of \bar{A}. We denote by $a_{x y}$ the column of A indexed by the ordered pair (x, y), for $x, y \in \mathbb{P}_{q}$. Since G_{q} is 2 -transitive, it suffices to prove that $a_{0 \infty}$ is a linear combination of the columns of \bar{A}. Set $v=\sum_{x \neq 0, \infty} \sum_{y \neq \infty} a_{x y}$ and $w=(q-2) \sum_{x \neq \infty} a_{0 x}+a_{\infty \infty}$. By construction, v and w are a linear combination of the columns of \bar{A}. Also, it is easy to check that

$$
v_{g}=\left\{\begin{array}{ll}
q-1 & \text { if } 0^{g}=\infty \text { or } \infty^{g}=\infty, \\
q-2 & \text { otherwise }
\end{array} \quad w_{g}= \begin{cases}0 & \text { if } 0^{g}=\infty \\
q-1 & \text { if } \infty^{g}=\infty \\
q-2 & \text { otherwise }\end{cases}\right.
$$

Hence $(q-1) a_{0 \infty}=v-w$ and we get that $a_{0 \infty}$ is a linear combination of the columns of \bar{A}. Thence $\operatorname{rank}(A)=\operatorname{rank}(\bar{A})$.

Since \bar{M} has $q(q-1)$ columns, Proposition 9 shows that \bar{M} has full column rank.

5. Proof of Theorem 1

At this point, we have all the tools to conclude the proof of Theorem 1. By Lemma 4, it remains to prove that if S is an independent set of maximal size of $\Gamma_{G_{q}}$, then S is the coset of the stabilizer of a point. Up to multiplication of S by a suitable element of G_{q}, we may assume that the identity element of G_{q} is in S. In particular, we have to prove that S is the stabilizer of a point. By Lemma 7 and Proposition 10, we have that the characteristic vector v_{S} of S is a linear combination of the columns of \bar{A}. Hence

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \bar{M} \\
B & \bar{C}
\end{array}\right)\binom{v}{w}=v_{S},
$$

for some vectors v, w. As the identity element of G_{q} is in S and by the ordering of the rows of \bar{A}, we get

$$
v_{S}=\left(\begin{array}{l}
1 \\
0 \\
t
\end{array}\right)
$$

So, $1^{T} v=1, \bar{M} w=0$ and $B v+\bar{C} w=t$. By Proposition 10 , the matrix \bar{M} has full column rank. Thence $w=0$ and $B v=t$.

Now, for every point x of \mathbb{P}_{q}, there exists a permutation g_{x} of G_{q} fixing x and acting fixed-pointfreely on $\mathbb{P}_{q} \backslash\{x\}$ (indeed, g_{x} can be chosen any non-identity unipotent matrix of G_{q} fixing x). Order the rows of B so that the first $q+1$ rows are labelled by the permutations $\left\{g_{x}\right\}_{x}$. In particular, up to permuting the rows of B, we get

$$
B=\binom{I_{q+1}}{B^{\prime}} \quad \text { and } \quad B v=\binom{v}{B^{\prime} v}
$$

Since $B v$ is equal to the $\{0,1\}$-vector t, we obtain that v is a $\{0,1\}$-vector. But $1^{T} v=1$ and so v must be the characteristic vector of a point p of \mathbb{P}_{q}. This shows that v_{S} is the stabilizer of the point p and the proof is complete.

6. Comments

Theorem 1 proves that in the derangement graph Γ_{G}, where G is the group $\operatorname{PGL}(2, q)$, the independent sets of maximal size are the cosets of the stabilizer of a point. The same result holds if G is the symmetric group [3,15] or if G is the alternating group [14]. It is interesting to ask for which other permutation groups does this result hold, and is there a way to characterize the permutation groups that have this property?

In Lemma 5, we saw that the cosets of the stabilizer of a point are independent sets of maximal size in the derangement graph of $\operatorname{PSL}(2, q)$. We further conjecture that, similar to the case for $\operatorname{PGL}(2, q), \operatorname{Sym}(n)$ and $\operatorname{Alt}(n)$, all independent sets of maximal size in $\Gamma_{\operatorname{PSL}(2, q)}$ are cosets of the stabilizer of a point.

Conjecture 1. Every independent set S of the derangement graph of $\operatorname{PSL}(2, q)$ acting on the projective line \mathbb{P}_{q} has size at most $q(q-1) / 2$. Equality is met if and only if S is the coset of the stabilizer of a point.

It seems likely that the methods used in this paper could be applied to $\operatorname{PSL}(2, q)$, since the character table of this group is well understood.

In our proof of Theorem 1, we used the fact that the group $\operatorname{PGL}(2, q)$ is 2 -transitive (for example, in the proofs of Propositions 8 and 10). It is a reasonable question to ask if this (being 2 -transitive) could be a characterization of the groups that have the property that the independent sets of maximal size in the derangement graph are the cosets of the stabilizer of a point. It is not hard to show that

Table 4
Socle of an almost simple 3-transitive group.

Group	M_{11}	M_{11}	M_{12}	M_{22}	M_{23}	M_{24}	$\operatorname{PSL}(2, q)$	Alt (n)
Degree	11	12	12	22	23	24	$q+1$	n

Table 5
Point stabilizer of an affine 3-transitive group.

Group	$\mathrm{SL}(n, 2) \leqslant H \leqslant \Gamma \mathrm{~L}(n, 2)$	$\mathrm{GL}(1,3)$	$\Gamma \mathrm{L}(1,4)$	$\operatorname{Alt}(7)$
Degree	2^{n}	3	4	16

this is not a characterization, and it is further interesting to see how this property can fail to hold for some 2-transitive groups.

If G is a 2-transitive group, then the permutation character of G is the sum of the trivial character and an irreducible character that we will call ψ. The eigenvalue of the derangement graph Γ_{G} arising from ψ is $-\frac{d}{\psi(1)}$, where d is the valency of Γ_{G}. If this eigenvalue is indeed the least eigenvalue of Γ_{G}, then by Lemma 3, we have that the size of an independent set is no bigger than the size of the stabilizer of a point in G. Thus, if it were true that the eigenvalue arising from the character ψ is the least eigenvalue, then we would have the bound like in Theorem 1. But the characterization of the sets that meet this bound is another question entirely. In fact, there are examples of 2 -transitive groups in which there are independent sets of maximal size that are not cosets of the stabilizer of a point.

For example, let $G_{n, q}$ be the 2-transitive group $\operatorname{PGL}(n+1, q)$ in its action on the projective space \mathbb{P}_{q}^{n}, with $n \geqslant 1$. Since $G_{n, q}$ contains a Singer cycle of length $\left(q^{n+1}-1\right) /(q-1)$, the graph $\Gamma_{G_{n, q}}$ has a clique of size $\left|\mathbb{P}_{q}^{n}\right|=\left(q^{n+1}-1\right) /(q-1)$. Thus, any independent set of $\Gamma_{G_{n, q}}$ has size at most $\left|G_{n, q}\right| /\left|\mathbb{P}_{q}^{n}\right|$. Naturally, the stabilizer of a point is an independent set for $\Gamma_{G_{n, q}}$ of size $\left|G_{n, q}\right| /\left|\mathbb{P}_{q}^{n}\right|$ and so it is an independent set of maximal size. But for $G_{n, q}$ with $n \geqslant 2$, the cosets of the stabilizer of a point are not the only independent sets of maximal size. Indeed, it is not hard to see that the stabilizer of a hyperplane of \mathbb{P}_{q}^{n} in $G_{n, q}$ is also an independent set of maximal size for $\Gamma_{G_{n, q}}$. Moreover, if $n \geqslant 2$, then the stabilizer of a point and of a hyperplane are not conjugate subgroups of $G_{n, q}$. Therefore, for $n \geqslant 2$, the graph $\Gamma_{G_{n, q}}$ contains at least $2\left(\left|G_{n, q}\right| / / \mathbb{P}_{q}^{n} \mid\right)^{2}$ independent sets of maximal size. We make the following conjecture.

Conjecture 2. Any independent set of maximal size in the derangement graph of $\operatorname{PGL}(n+1, q)$ acting on the projective space \mathbb{P}_{q}^{n} is either the coset of the stabilizer of a point or the coset of the stabilizer of a hyperplane.

It is not clear that the method in this paper could be used to prove this conjecture. In particular, even if the character table of $\operatorname{PGL}(n+1, q)$ is known [9], it would still be challenging to obtain the minimum eigenvalue of $\Gamma_{G_{n, q}}$ as in Lemma 4.

Further, there exist 2-transitive groups of degree n where the number of independent sets of maximal size is n^{n-1}. Clearly, this means that there are many independent sets of maximal size which are not cosets of the stabilizer of a point. For example, let n be a power of a prime and \mathbb{F}_{n} the field with n elements. The affine general linear group G on \mathbb{F}_{n} (i.e. the group generated by the permutations of \mathbb{F}_{n} of the form $f_{a, b}: \xi \mapsto a \xi+b$, for $a, b \in \mathbb{F}_{n}$ and $a \neq 0$) is a 2-transitive group. Since G is a Frobenius group with kernel of size n and complement of size $n-1$, we obtain that Γ_{G} is the disjoint union of $n-1$ complete graphs K_{n}. In particular, we get that Γ_{G} has n^{n-1} independent sets of maximal size.

From the above comments it is clear that a result similar to Theorem 1 does not hold for all 2 -transitive groups, but perhaps we do better to consider 3 -transitive groups. In particular, some information on the 3 -transitive groups is listed in Tables 4 and 5 , see [2, pp. 195, 197]. Table 4 lists all possible socles of an almost simple 3-transitive group and Table 5 gives all possible point stabilizers of an affine 3-transitive group.

Using GAP [7], it is straight-forward to build the derangement graph for each of the 3-transitive groups of degree $11,12,22,23,24$ and 16 and to then find all the independent sets of maximal size. Indeed, for every one of these groups, every independent set of maximal size of Γ_{G} is the coset of the stabilizer of a point. Thus we conclude with the following conjecture.

Conjecture 3. Let G be a 3-transitive group of degree n. Every independent set S of the derangement graph of G acting on Ω has size at most $|G| / n$. Equality is met if and only if S is the coset of the stabilizer of a point.

References

[1] L. Babai, Spectra of Cayley graphs, J. Combin. Theory Ser. B 2 (1979) 180-189.
[2] P.J. Cameron, Permutation groups, London Math. Soc. Stud. Texts 45 (1999).
[3] P.J. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (7) (2003) 881-890.
[4] M. Deza, P. Frankl, Erdős-Ko-Rado theorem - 22 years later, SIAM J. Algebraic Discrete Methods 4 (4) (1983) 419-431.
[5] P. Erdỏs, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (2) (1961) 313-320.
[6] P. Frankl, Intersection theorems for finite sets and geometric applications, Proc. Internat. Congress Math. 1 (2) (1986) 14191430.
[7] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org, 2008.
[8] C. Godsil, K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009) 404-414.
[9] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955) 402-447.
[10] M.I. Isaacs, Character Theory of Finite Groups, AMS Chelsea Publishing, 2006.
[11] G. James, M. Liebeck, Representations and Characters of Groups, Cambridge University Press, 2001.
[12] G. Katona, Two applications (for search theory and truth functions) of Sperner type theorems, Period. Math. Hungar. 3 (1973) 19-26.
[13] D.J. Kleitman, J. Spencer, Families of k-independent sets, Discrete Math. 6 (1973) 255-262.
[14] C.Y. Ku, T.W. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007) 15 pp .
[15] B. Larose, C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (5) (2004) 657-673.
[16] T.M. Liggett, Extensions of the Erdős-Ko-Rado theorem and a statistical application, J. Combin. Theory Ser. A 23 (1977) 15-21.
[17] Q. Xiang, Association schemes from ovoids in PG(3, q), J. Geom. 76 (2003) 294-301.

[^0]: E-mail addresses: karen.meagher@uregina.ca (K. Meagher), spiga@math.unipd.it (P. Spiga).
 1 Research supported by NSERC.

