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INTRODUCTION

Let R be a commutative ring. R is called a regular ring if every finitely
generated ideal of R has finite projective dimension. This notion, which has
been extensively studied for Noetherian rings, was extended to coherent
rings with a considerable degree of success [1,12,14]. Let R be a
(coherent or Noetherian) regular ring and let S be an R algebra. The type
of question considered here is under what conditions will S be a coherent
regular ring. The algebras that are of special interest to us are: symmetric
algebras of flat modules, polynomial rings and group rings of abelian
groups.

The first difficulty encountered is to decide when is S a coherent ring. In
that direction, an account of the results known in case S is a polynomial
ring can be found in [15], and the case when S is a group ring of an
abelian group has been solved in [5]. In case S = Sg(M) is the symmetric
algebra of a flat R module M, very little is known. Carrig [3] proved that
if R is a Dedekind domain and M is a rank one flat R module then S.(M)
is a coherent ring. He also provided an example that this may not be the
case if rank M > 1 even if R=Z, the ring of integers. In Section 1 of this
paper we prove that if R is any Noetherian ring of finite Krull dimension
and M is a rank one flat R module than S4(M) is a coherent ring. The
finite dimensionality condition may be dropped in certain important cases
but the Noetherian hypothesis seems to be intrinsic. We conclude that sym-
metric algebras of rank one flat modules over Noetherian rings of finite
Krull dimension are stably coherent rings.

We next turn our attention to the homological property of the regularity
condition. In Section 2 of this paper we prove that if R is a Noetherian
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regular ring and M is a rank one flat R module then Sz(M) is a regular
ring. In the process we keep track of the exact relation between the weak
dimensions of R and Si(M). Next we prove that the polynomial ring in
any number of variables over a stably coherent ring is a regular ring.
Finally, we make use of this result to solve a conjecture posed in [5], as to
necessary and sufficient conditions for a group ring of an abelian group to
be a coherent regular ring.

1. COHERENCE

Let R be a ring and let M be a flat R module. We say that rank M =1 if
A*M =0, and that rank M =n if A"M has rank equal to 1; otherwise, we
put rank M = co. If M is a finitely generated projective R module for which
rank is defined in the classical sense, the numerical value of rank M and of
the classical rank of M coincide. If R is a domain this definition of rank
coincides with the usual definition of rank, that is, rank M is equal to the
cardinality of a basis of the free module M ® ; K, where K is the field of
quotients of R.

For a general ring denote by K the total ring of quotients of R. If Ris a
domain and M is a flat R module then rank M =1 if and only if
M® i K~K, if and only if M is isomorphic to an R submodule of K. In
general any flat R submodule of K, M, has rank M =1 since the flatness of
M over R guarantees that the injection M — K yields an injection
A’M = A*K=0 [9]. The converse is not necessarily true, but it is true in
certain important cases as we will see in this section.

Let M be an R module and denote by Sg(M) the symmetric algebra of
M over R.

LeMMA 1.1. Let R be a Noetherian ring and let M be a flat R module.
Let Min(R)={P,, .., P,} be the set of minimal prime ideals of R and
I=(\'_, P,; then Sg(M) is a coherent ring if and only if Sg,(M/IM) is a
coherent ring.

Proof. Sg(M/IM) > S(M)®r R/I~Sg(M)/ISg(M). Let ¢:Sx(M)
— Sp(M)/ISx(M) be the canonical map. ¢ is surjective. ¢ makes
Sk(M)/ISg(M) into a finitely presented S (M) module. ker ¢ = ISg(M) is
a nilpotent ideal and, since S4(M) is a flat R module [9], ker ¢ is a finitely
presented ideal as well. It follows from [7, 13] that Sg(M) is a coherent
ring if and only if Sg(M)/ISg(M) is a coherent ring.

THEOREM 1.2. Let R be a Noetherian ring of Krull dim R=n< o and
let M be a rank one flat R module, then S (M) is a coherent ring.
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Proof. By Lemma 1.1 we may assume that R is a reduced ring. We
prove our claim by induction on »=Krull dim R.

For n=0 we have that R is an Artinian reduced ring; therefore, R=
K, x --- xK,, where K, are ficlds. Then M,=M ® K;=0 or M,~ K, and

K, if M,=0
S"f(M")_{K,.[z,.] if M,~K/
where ¢, is an indeterminate over K,. It follows that S (M)=
SM)®r R=Sy(M,)x --- xSg(M,) is a Noetherian ring.

For n>1, set Min(R)={P, .., P,} and S=R—J’_, P, the set of non-
zero divisors of R, then K=Rg=Rp x --- xRp is the total ring of
quotients of R and Rp, are fields for 1 <i<n.

For each i either M, =0 or My~ R, and assume that M, #0 for
1<i<s and M, =0 for s<i<n and 1<s<n Then M;=M®@ K~
Rpx - xRp and Sy(M®gK) = SgM)®@r K = SRPI(Ml)x s X
Spp(M,) = Rp[t;]1x - xRp[t,] x Rp  x---xRp, where ¢, are
indeterminates over R, for 1<i<s. Since the map Si(M) - Sx(M)®r K
is injective we conclude that S 4(AM) is a reduced ring and that S (M ® ; K)
is contained in the total ring of quotients of S,(M).

Let 7 be an ideal of S4(M) then:

Is=I®r K=I(Rp[t;]x -+ xRp)
=IRp[t,]% - xIRp =1Ip X --- xX1p.

These equalities follow from the flatness of S R,,'_(M p) and S (M ®, K) over
Sr(M).

Assume that / is a finitely generated ideal of Sz(M). We aim to show
that / is a finitely presented ideal and, therefore, Sg(M) is a coherent ring.

Reduction to the case where 1, #0 for all 1 <i<n.

Assume that [, =0 for some 1<i<n Let P,,.. P,e Min(R) satisfy
Ip=0for 1 <i<k and that [, #0 for k <i<nand 1 <k <n. Since Ip,=0
for 1<i<k and I is a finitely generated ideal of S;(M) there exists an
element te R—{J7_, P, such that tI=0. Since S (M) is a reduced ring we
have that I 1Sx(M)=0. Set L=1@® tSx(M). L is a finitely generated ideal
of Sp(M), Ly #0 for all 1 <i<n and since tSg(M) is finitely presented, if
L is finitely presented so is 1.

Reduction to the case where I R=J contains a nonzero divisor.

Assume that I, #0 for all 1<i<n, then I, =R, for s<i<n and
Ip,=fiRp[t;1#0 for 1<i<s, where fieRp[t;]. Is=I®zK=
SiRp [t 3% - xf(Rp[t,] X Rp X -+ xRp = f(Rp[t;]% - xRp),
where f=(f},.»f1,.,1) and f is a nonzero divisor in
Rp[t,]x -« xRy . It follows that fSe(M) =~ S (M) and f ~ 'S (M) is an
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Sr(M) submodule of the ring of quotients of Sz(M). We also have
I¢=(fSr(M))s; therefore, there exist nonzero divisors a, be R such that
bf el and al = fSg(M). Set L =af ~'I, then L is a finitely generated ideal of
Sr(M), abe L~ R and fL = al implies that if L is finitely presented so is L

Final case.

Set J=InR As J contains a nonzero divisor we have that
Krull dim R/J < n. By the induction hypothesis Sg(M)/JSp (M) =
SrAMJJM) is a coherent ring and we have an exact sequence of Sr(M)
modules: 0 - JSg(M) — I - I/JS (M) - 0. Since R is a Noetherian ring we
have that JSg(M) is a finitely presented ideal of Sp(M). I/JSg(M) is a
finitely presented Sg(M)/JSR(M) module and, therefore, it is finitely
presented Sz(M) module. It follows that / is a finitely presented ideal.

COROLLARY 1.3. Let R be a Noetherian ring of finite Krull dimension
and let M be a rank one flat R module, then S z(M) is a stably coherent ring.

Proof. Let ¢, .., t, be indeterminates over Sz(M), then:

SR(M)[II’ ] tn] = SR(M)®R R[tl’ ey tn]
= SR[rl.“., r”](M®R R[tla ey tn])

We suspect the finite dimensionality condition in Theorem 1.2 to be
superfluous. Here is an instance in which this condition may be dropped:

THEOREM 1.4. Let R be a Noetherian ring, let M be a ring and let
¢: R —> M be an injective, unital, ring homomorphism making M a rank one
flat R module; then S (M) is a coherent ring.

Proof. Let Min(R)={P,, .., P,} and set I=\"_, P,. Note that the
ring homomorphism ¢ : R/I - M/IM defined by @(r)=¢(r)+ IM, re R, is
an injective unital ring homomorphism. By Lemma 1.1 we may therefore
assume that R is a reduced ring and that ¢ is the inclusion map.

Let S=R—{J7_, P;; then the total ring of quotients of R, K=
Rp x --- xRp and R, are fields. Since 1e M, M, #0 for 1<i<n and
Mp =R, ; therefore, Rc M c K as rings sharing the same identity. It
follows from [9] that the inclusion map R — M is a flat epimorphism. We,
therefore, have S (M)= R+ tM[t], where ¢ is an indeterminate, and we
can set the following cartesian square:

Se(M)=R+tM[t] —— M[(]

1 l

R—MmM M
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Since R is a Noetherian ring and M is a flat epimorphism of R, M and,
hence, M[t], are Noetherian rings. It follows from [6] that Sg(M) is a
coherent ring.

Carrig [3] provided the following example: Let R be a non-Noetherian
valuation domain with non-finitely generated maximal ideal m; then S g(m)
is not a coherent ring. This example shows that we are not likely to find
any significant cases in which the Noetherian hypothesis in Theorem 1.2
and Theorem 1.4 can be relaxed. Nevertheless, usually properties related to
coherence held by Noetherian rings are held by flat direct limits of
Noetherian rings. This way we can construct an example of an infinite
dimensional, non-Noetherian, coherent ring R and a rank one flat R
module M such that Sg(M) is a coherent ring: Let A be a Noetherian ring
of finite Krull dimension, let N be a rank one flat 4 module and let ¢, ¢,, ...
be indeterminates. Let R=1imA[z, .., 7,]. R is a non-Noetherian infinite
dimensional coherent ring, M = N® , R is a rank one flat R module and
Sp(M)=1mS (N)[t,, .., 1,] is a coherent ring.

2. REGULARITY

In this section we consider the homological property of the regularity
condition. Let R be a ring; we say that an R module M admits an infinite
finite presentation if there exists an exact sequence -+ > F, > F, > M -0
with F, finitely generated and free R modules. If R is a coherent ring any
finitely presented R module M admits an infinite finite presentation. In
order to be able to separate, in a sense, the coherence property and the
homological property of the regularity condition we prove the following
lemma, which is known in case R as a coherent ring.

LemMA 2.1. Let R be a ring and let M be an R module admitting an
infinite finite presentation, then:

(1) w.dimg M =proj. dim, M.

(2) If Ris a local ring with maximal ideal m, then proj. dim, M <n if
and only if Tor:* (M, R/IM)=0.

Proof. (1) We need on}y to slc}ow that if w.dimg; M =n < oo, then
proj.dimy M<n. Let ---—> F,— Fy—>M—0 be an infinite finite
presentation of M. Then K, _, =kerd,_, is a flat and finitely presented R
module and, therefore, a projective R module and proj. dim, M <n.

(2) We need only to show that if Tor%*!(M, R/m)=0 then
proj. dimz M <n. The claim is proved by irtxiductiorb on n. For n=0 the
result follows from [2]. For n>1, let ---— F, =% F,—~ M — 0 be an
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infinite finite presentation of M and let K, ,=kerd,_,; then
0=Tor%* (M, R/m)=Tork(K,_,, R/m). By the induction hypothesis
K, _, is projective and proj. dim, M < n.

We first consider the regularity of symmetric algebras.

PROPOSITION 2.2. Let R be a Noetherian regular local ring with maximal
ideal m and Krulldim R=n. Let M be a rank one flat R module. If M is
finitely generated, then w.dim Sg(M)=n+ 1. If M is not finitely generated
then w.dim S (M) =n.

Proof. We have two cases, either M #mM or M =mM.

If M #mM then M is a cyclic R module. To see this let K be the field of
quotients of R, let x=a/be M —mM and y=c/de M with a, b, c, de R and
b+#0, d#0. Then (ch)x — (ad) y=0. Since M is a flat R module there exist
elements b, b€ Rand y,e M, 1 < j<s, such that (cb) by;— (ad) b,; =0 for
all j,and x=3 b, y;,, y=2 b, y;. Since x ¢ mM there exist 1 < j, <s such
that 5, is a unit in R, then y=(b,;/b;;)x and M= Rx. It follows that
Sr(M)=R[t] and by [8] w.dimg Sg(M)=n+1.

If M=mM Nakayama’s Lemma guarantees that M is not finitely
generated. We identify Si(M) with the subring of K[1], Sx(M)=
R+ Mt+ M?**+ ... Let P be a maximal ideal of Sx(M) and set p= P R.
We distinguish between two cases p=m and p #m.

If p=m then mSx(M)=m+ Mt+M?*t*+ ... <P and P=mSg(M).
Pick x,, .., x, to be a regular system of parameters for m, then the Koszul
complexes K.(x,, .., x,, R) provide a finite free resolution of length n
for R/m, which is minimal [10]. Tensoring this resolution over R with
Sr(M) and then over Sp(M) with Sg(M), we obtain a minimal finite
free resolution of the S (M), module Si(M)p/PSg(M)p; thus,
proj. dimg, s, Sk(M)p/PSg(M)p=n and for every finitely generated ideal
I of Sp(M), we have that Tori!,, (Sx(M)p/l, Sg(M)p/PSg(M)p)=0.
As  Sg(M), is coherent we conclude by Lemma?2.1 that
proj. dimg, sy, Sr(M)p/I<n and w. dim Sg(M),=n.

If PnR=p#m then Krulldim R, <n. If M, is a finitely generated R,
module then w.dimg M,=w. dme +1<n If M, is not a ﬁnltely
generated R, module then by the abpve argument, w.dim(Sg(M)),=
w. dlm(SRp(M ))p < n. In either case, w. dim(Sg(M)), < n

We conclude that w. dim Sg(M)=n.

THEOREM 2.3. Let R be a Noetherian ring of finite Krull dimension and
let M be a rank one flat R module, then:

(1) If R is a regular ring then Sg(M) is a coherent regular ring, and
w.dim R< w. dim Sg(M)<w.dim R+ L.

(2) If Sg(M) is a coherent regular ring so is R.
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Proof. (1) Sg(M) is a flat R module and contains R as a direct sum-
mand; therefore, w. dim R < w. dim Sz(M). Now use Proposition 2.2 and
Theorem 1.2

(2) Note that Sg(M) is a faithfully flat R module. Now use [5].

We note that if R is not a local ring we may actually have
w.dim Sp(M)=w.dim R+ 1 even in case M is not finitely generated. To
see this let R=Z and M= {x/a / x, ae Z, 0#a is square free}  Q, the

rationals. Then for any prime peZ we have M,=Z,(1/p) and

S, (IMY=Z1T: 1 where ¢ is an indeterminate Thnc w, dlm S (M)Y=2.
S \Mp ) =4,01, vhere £, 1s an mceterminate. amm d M)

LEMMA 24. Let R be a ring, let M be a finitely presented R module and
let r be the smallest non-negative integer for which the r-Fitting ideai of M,
F(M)#0. If F(M)=R then M is a projective R module. If Spec(R) is
connected the converse is true as well.

Proof. Assume that F.(M)=R. Since Fo(M)c F,(M)< .--it follows
that at every localization by a prime ideal P of R F(M),=0 or R,, for
all i By [14] this implies that M is projective.

Conversely, assume that M is projective and that Spec(R) is connected.
Since M is finitely presented F(M) are finitely generated ideals of R. Since

M is locally free F,(M),=0 or R, for every prime ideal P of R. It follows
that F(M)=F,(M)* and F,(M) is generated by an idempotent e. Since

Cneci R ic connected =0 or 1 and F{ AN
S COIL

POV AN L Vvl © = U Ul 1 allu 1 \i¥1 ] = i1\,

PROPOSITION 2.5. Let R be a coherent regular ring and let I be an ideal
of the polynomial ring R[t] admiiting an infinite finite presentation; then
proj. dim g, I < 0.

Proof. We will first prove that for every maximal ideal P of R[¢],
proj. dimgp,q, Ip < 0. Let PN R=p. Since (L,)p=L, for every R[]
moduie L we may assume that R is local with maximal ideal p. In this case
P contains a monic polynomial fe R[¢]. I is a finitely presented R[¢]
module; therefore, I®z R[t]/fR[t]1=I/fT is a finitely presented
R[t]/fR[¢] and, hence, R module. Since R is a coherent regular ring
proj. dimg I/fI=n—2< oo and by [8] proj. dimg1//fT<n—1. We have
an exact sequence:

0— I,—L I, — I, /fl,— 0,
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which yields the long exact sequence:

-« — Torgf 1, (Ip/fIp, R[1]p/PR[1]p)
— Torj4,(Ip, R[11,/PR[1],)
—L> Tort A (I, RL11,/PR{1] )
—— Tot% 1, (Ip/fTp, R[11p/RP[t]p) —> ---.

Since proj. dimg(,q, Ip/fIp<n—1 multiplication by f in this exact
sequence is an isomorphism. On the other hand, f'e P, thus multiplication
by /, is the zero map. It follows that Tor%t,} (1, R[t]p/PR[],)=0 and
by Lemma 2.1 proj. dimg,, [, <n < .

Next we prove that if for every maximal ideal P of R[] we have that
proj. dim g7y, [, < co, then proj.dimg;,/<oco. First note that the
hypothesis implies thjit proj. dimg,q,/p< oo for every prime ideal P
of R Let ---—5% F, -2 F,— I -0 be an infinite finite presentation of 1.
Let P be a prime ideal of R[r] satisfying proj.dimg;;q, I, <n, and
let K, ,=kerd,_,. We have that (K,_,), is R[t], projective. As
Spec(R[¢],) is connected there exists an integer r such that F(K,_,),=0
for 0O<i<rand F.(K,_,)p=R[t]p. Since F(K, ) are finitely generated
ideals of R[] there exist a ge R[t]— P satisfying F(K, ,),=0 for
0<i<rand F (K, ,),=R[t],, where L, denotes the localization of an
R[] module L by the set consisting of all powers of g. It follows that for
every prime ideal Q c R[t] such that g¢ @ we have F(K, ,)p=0 for
0<i<r and F(K,_,)o=R[t],. Therefore, (K, ), is a projective
R[t], module and proj.dimg, ,/p <n. Let O, = {P e Spec R[1],
proj. dimg,,/,<n}. By the argument above the sets O, are open,
O,cO,c --- and U=, O, =Spec(R[]). Since Spec(R[1]) is quasi-com-
pact there is an integer »n such that Spec(R[t])=0,, and
proj. dim gy, I <n for every prime ideal P of R[¢]. Let N be an R[]
module. Since I admits an infinite finite presentation we have by [4] that
(Extit (L N))p=Extyf},(Ip, Np) =0 for all prime ideals P of R[¢];
therefore, Ext%f,j(/, N)=0 and proj. dim g3/ < 0.

THEOREM 2.6. Let R be a stably coherent regular ring; then the
polynomial ring in any number of variables over R is a coherent regular ring.

Proof. According to [11] we may assume that the number of variables
is finite. The theorem now follows from Proposition 2.5 by induction on the
number of variables.

As a corollary of Theorem 2.6 we obtain:

THEOREM 2.7. Let R be a ring and let G be an abelian group satisfying
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that the group ring RG is coherent, then RG is a regular ring if and only if R
is a coherent regular ring which is uniquely divisible by the order of every
element of G.

Proof. RG is a free R module; thus, if RG is a coherent ring so is R. In
[5] it was proved that if RG is a coherent regular ring then R is a coherent
regular ring which is uniquely divisible by the order of every element of G.

Conversely, write G=1imG,, where {G,} is the set of all finitely
generated subgroups of G, then RG =limRG, and if H< L are two sub-
groups of G then RL is free over RH. By [11] we may, therefore, assume
that G is finitely generated. We now prove our claim by induction on
n=rank G. If n=0 G is a finite group. This case was solved in [5]. For
nz1 write G =G’ x H, where H is infinite cyclic. As RG' is coherent by the
induction hypothesis RG’ is a regular ring. Now RG=(RG')H=
RG'[1,17'], where 1 is an indeterminate. According to [5], RG'[¢] is a
coherent ring and by Theorem 2.6 it is, therefore, regular. But
RG'[1,t ']=RG'[t],, where U is the set of all powers of 7; thus, RG is
regular.

In particular, if R is a stably coherent ring then RG is a coherent ring for
every abelian group G, [5], and the conclusion of Theorem 2.7 holds.
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