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Let R be a commutative ring. R is called n rpguiar ring if every finitely 
generated ideal of R has finite projective dimension. This notion, which has 
been extensively studied for Noetherian rings, was extended to coherent 
rings with a considerable degree of success [l, 12, 141. Let R be a 
(coherent or Noetherian) regular ring and let S be an R algebra. The type 
of question considered here is under what conditions will S be a coherent 
regular ring. The algebras that are of special interest to us are: symmetric 
algebras of flat modules, polynomial rings and group rings of abelian 
groups. 

The first difficulty encountered is to decide when is S a coherent ring. In 
that direction, an account of the results known in case S is a polynomial 
ring can be found in [15], and the case when S is a group ring of an 
abelian group has been solved in [S]. In case S = S,(M) is the symmetric 
algebra of a flat R module M, very little is known. Carrig [3] proved that 
if R is a Dedekind domain and A4 is a rank one flat R module then S,(M) 
is a coherent ring. He also provided an example that this may not be the 
case if rank A4 > 1 even if R = 2, the ring of integers. In Section 1 of this 
paper we prove that if R is any Noetherian ring of finite Krull dimension 
and M is a rank one flat R module than S,(M) is a coherent ring. The 
finite dimensionality condition may be dropped in certain important cases 
but the Noetherian hypothesis seems to be intrinsic. We conclude that sym- 
metric algebras of rank one flat modules over Noetherian rings of finite 
Krull dimension are stably coherent rings. 

We next turn our attention to the homological property of the regularity 
condition. In Section 2 of this paper we prove that if R is a Noetherian 
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regular ring and M is a rank one flat R module then S,(M) is a regular 
ring. In the process we keep track of the exact relation between the weak 
dimensions of R and S,(M). Next we prove that the polynomial ring in 
any number of variables over a stably coherent ring is a regular ring. 
Finally, we make use of this result to solve a conjecture posed in [S], as to 
necessary and sufficient conditions for a group ring of an abelian group to 
be a coherent regular ring. 

1. COHERENCE 

Let R be a ring and let A4 be a flat R module. We say that rank A4 = 1 if 
A*iU = 0, and that rank M = n if A”M has rank equal to 1; otherwise, we 
put rank A4 = co. If M is a finitely generated projective R module for which 
rank is defined in the classical sense, the numerical value of rank M and of 
the classical rank of A4 coincide. If R is a domain this definition of rank 
coincides with the usual definition of rank, that is, rank A4 is equal to the 
cardinality of a basis of the free module MOR K, where K is the field of 
quotients of R. 

For a general ring denote by K the total ring of quotients of R. If R is a 
domain and M is a flat R module then rank M= 1 if and only if 
MQR K 2: K, if and only if A4 is isomorphic to an R submodule of K. In 
general any flat R submodule of K, M, has rank M= 1 since the flatness of 
M over R guarantees that the injection M+ K yields an injection 
A*M+ A2K= 0 [9]. The converse is not necessarily true, but it is true in 
certain important cases as we will see in this section. 

Let A4 be an R module and denote by S,(M) the symmetric algebra of 
A4 over R. 

LEMMA 1.1. Let R be a Noetherian ring and let A4 be a ji’at R module. 
Let Min( R) = {P, , . . . . P,> be the set of minimal prime ideals of R and 
I= fly=, Pi; then S,(M) is a coherent ring if and only if S,,,(M/ZM) is a 
coherent ring. 

Proof: S,,,(M/ZM) N S,(M) OR R/Z- S,(M)/ZS,(M). Let 4: S,(M) 
-+ S,(M)/ZS,(M) be the canonical map. 4 is surjective. 4 makes 
S,(M)/ZS,(M) into a finitely presented S,(M) module. ker 4 = IS,(M) is 
a nilpotent ideal and, since S,(M) is a flat R module [9], ker 4 is a finitely 
presented ideal as well. It follows from [7, 133 that S,(M) is a coherent 
ring if and only if S,(M)/ZS,(M) is a coherent ring. 

THEOREM 1.2. Let R be a Noetherian ring of Krull dim R = n < co and 
let M be a rank oneJat R module, then S,(M) is a coherent ring. 
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Proof By Lemma 1.1 we may assume that R is a reduced ring. We 
prove our claim by induction on n = Krull dim R. 

For n = 0 we have that R is an Artinian reduced ring; therefore, R = 
K,x...~K,,whereK,arefields.ThenM,=MO,K~=OorM~-K~and 

S,(M,) = Ki if M,=O 

KiLti if Mi=Ki’ 

where t, is an indeterminate over Ki. It follows that S,(M) = 
S,(M)@.R=SK,(MI)x ... x S,(M,) is a Noetherian ring. 

For n > 1, set Min(R) = {P, , . . . . P,}andS=R-U;=,Pithesetofnon- 
zero divisors of R, then K = R, = R,, x . .’ x R, is the total ring of 
quotients of R and R,, are fields for 1 < i 6 n. 

For each i either M,, = 0 or M,, N R, and assume that M,, #O for 
l<i<s and M,,=O for s<i<n and l<s<n. Then M,=MQ,K= 
R,, x ... x R, and S,(M@, K) = S,(M)@, K = S,,,(M,) x . . x 
SRpn(Mn) = RP,[t,] x ... x Rp,[t,] x RPS+,x ... x RP,, where ti are 
indeterminates over R, for 1 < i 6 s. Since the map S,(M) + S,(M) OR K 
is injective we conclude that S,(M) is a reduced ring and that S,(M@, K) 
is contained in the total ring of quotients of S,(M). 

Let I be an ideal of S,(M) then: 

Z,=Z@, K=Z(R,,[t,] x ... xR,) 

=ZR,,[t,] x ... xZR,“=Z,, x ... xl,. 

These equalities follow from the flatness of S,,(M,) and S,(M@, K) over 
Sl?(W 

Assume that Z is a finitely generated ideal of S,(M). We aim to show 
that Z is a finitely presented ideal and, therefore, S,(M) is a coherent ring. 

Reduction to the case where I, # 0 for all 1 6 i 6 n. 
Assume that I,, = 0 for some 1 d id n. Let P,, . . . . P, E Min(R) satisfy 

I,,=0 for 1 <i<k and that I,#0 for k<i<n and 1 <k<n. Since Zp,=O 
for 1 d i 6 k and Z is a finitely generated ideal of S,(M) there exists an 
element t E R - U:= 1 Pi such that tZ= 0. Since S,(M) is a reduced ring we 
have that In G,(M) = 0. Set L = Z@ tS,(M). L is a finitely generated ideal 
of S,(M), L, # 0 for all 1 < i 6 n and since S,(M) is finitely presented, if 
L is finitely presented so is Z. 

Reduction to the case where In R = J contains a nonzero divisor. 
Assume that I,, # 0 for all 1~ i< n, then I,, = R, for s < i< n and 

zp, =fiRp,[ti] # 0 for 1 <ids, where fiE Rp,[tj]. Z,=Z@, K= 
fiRP,Cf,l x ... xfsRdt,l x &,+I x ... x&n = fUb,Ct,l x ... x&J, 
where f = (f,, . . . . f,, 1, . . . . 1) and f is a nonzero divisor in 
RP,Cf,l x ... x R,. It follows that fS,(M) N S,(M) and f-IS,(M) is an 
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S,(M) submodule of the ring of quotients of S,(M). We also have 
I,= (fS,(M)),; therefore, there exist nonzero divisors a, bE R such that 
bf E Z and ale fS,(M). Set L = af -‘I, then L is a finitely generated ideal of 
S,(M), ab E L n R and fL = al implies that if L is finitely presented so is I. 

Final case. 
Set J = Z n R. As J contains a nonzero divisor we have that 

Krull dim R/J < n. By the induction hypothesis S,(M)/JS,(M) = 
S&M/JM) is a coherent ring and we have an exact sequence of S,(M) 
modules: 0 + JS,(M) -+ I+ Z/JS,(M) -+ 0. Since R is a Noetherian ring we 
have that JS,(M) is a finitely presented ideal of S,(M). Z/JS,(M) is a 
finitely presented S,(M)/JS,(M) module and, therefore, it is finitely 
presented S,(M) module. It follows that Z is a finitely presented ideal. 

COROLLARY 1.3. Let R be a Noetherian ring of finite Krull dimension 
and let M be a rank one flat R module, then S,(M) is a stably coherent ring. 

Proof. Let t,, . . . . t, be indeterminates over S,(M), then: 

S,(WCt,, . . . . t,l = S,(M)@. RCt,, . . . . t,,l 
=s R[r,. . . . . r,,(MOR RCt,, ..., t,l). 

We suspect the finite dimensionality condition in Theorem 1.2 to be 
superfluous. Here is an instance in which this condition may be dropped: 

THEOREM 1.4. Let R be a Noetherian ring, let M be a ring and let 
4: R + M be an injective, unital, ring homomorphism making M a rank one 
jlat R module; then S,(M) is a coherent ring. 

Proof Let Min( R) = {P, , . . . . P, ) and set I= n;=, Pi. Note that the 
ring homomorphism $ : R/Z + M/ZM defined by 6(r) = i(r) + ZM, r E R, is 
an injective unital ring homomorphism. By Lemma 1.1 we may therefore 
assume that R is a reduced ring and that 4 is the inclusion map. 

Let S= R - U;= 1 P,; then the total ring of quotients of R, K= 
R,, x . . . x R, and Rp, are fields. Since 1 EM, M,, # 0 for 1 < id n and 
M,< = R,, ; therefore, R c MC K as rings sharing the same identity. It 
follows from [9] that the inclusion map R + M is a flat epimorphism. We, 
therefore, have S,(M) = R + tM[t], where t is an indeterminate, and we 
can set the following Cartesian square: 

S,(M) = R + tM[t] - MCtl 

I I 
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Since R is a Noetherian ring and M is a flat epimorphism of R, M and, 
hence, M[t], are Noetherian rings. It follows from [6] that S,(M) is a 
coherent ring. 

Carrig [3] provided the following example: Let R be a non-Noetherian 
valuation domain with non-finitely generated maximal ideal m; then S,(m) 
is not a coherent ring. This example shows that we are not likely to find 
any significant cases in which the Noetherian hypothesis in Theorem 1.2 
and Theorem 1.4 can be relaxed. Nevertheless, usually properties related to 
coherence held by Noetherian rings are held by flat direct limits of 
Noetherian rings. This way we can construct an example of an infinite 
dimensional, non-Noetherian, coherent ring R and a rank one flat R 
module M such that S,(M) is a coherent ring: Let A be a Noetherian ring 
of finite Krull dimension, let N be a rank one flat A module and let f, , t,, . . 
be indeterminates. Let R = l&4 [t, , . . . . t,]. R is a non-Noetherian infinite 
dimensional coherent ring, M = NOa R is a rank one flat R module and 
S,(M) = l&S,(N)[t,, . . . . t,,] is a coherent ring. 

2. REGULARITY 

In this section we consider the homological property of the regularity 
condition. Let R be a ring; we say that an R module M admits an infinite 
Jinite presentation if there exists an exact sequence . + F, + F, + M + 0 
with F, finitely generated and free R modules. If R is a coherent ring any 
finitely presented R module M admits an infinite finite presentation. In 
order to be able to separate, in a sense, the coherence property and the 
homological property of the regularity condition we prove the following 
lemma, which is known in case R as a coherent ring. 

LEMMA 2.1. Let R be a ring and let M be an R module admitting an 
infinite finite presentation, then: 

(1) w. dim, M=proj. dim, M, 
(2) If R is a local ring with maximal ideal m, then proj. dim R M < n if 

and only if Tor”,+ ‘(M, R/M) = 0. 

Proof: (1) We need on?y to show that if w. dim. M=n < 00, then 
proj. dim, MQ n. Let ...--!+ F, 2 F0 + M + 0 be an infinite finite 
presentation of M. Then K, ~ , = ker d,, _ I is a flat and finitely presented R 
module and, therefore, a projective R module and proj. dim. M < n. 

(2) We need only to show that if Tor”,+‘(M, R/m)=0 then 
proj. dim, M d n. The claim is proved by induction on n. For n = 0 the 
result follows from [2]. For n 3 1, let . .--!% F, 2 F0 -+M+O be an 
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infinite finite presentation of M and let K,- I = ker d,- i ; then 
0 = Tori+ ‘(M, R/m) = TorX( K, ~ i, R/m). By the induction hypothesis 
K n-1 is projective and proj. dim, M < n. 

We first consider the regularity of symmetric algebras. 

PROPOSITION 2.2. Let R be a Noetherian regular local ring with maximal 
ideal m and Krull dim R = n. Let M be a rank one flat R module. Zf M is 
finitely generated, then w. dim S,(M) = n + 1. Zf M is not finitely generated 
then w. dim S,(M) = n. 

Proof. We have two cases, either M # mM or M = mM. 
If M # mM then M is a cyclic R module. To see this let K be the field of 

quotients of R, let x = a/b E M - mM and y = c/d E M with a, 6, c, d E R and 
b # 0, d # 0. Then (cb)x - (ad) y = 0. Since M is a flat R module there exist 
elements b,, bzjE R and yj~ M, 1 < j< s, such that (cb) b,- (ad) b, = 0 for 
allj, and x=Cb?,y,, y=Cbvyj. Since x$mM there exist 16j0<s such 
that b, is a unit in R, then y = (b,/b,)x and M= Rx. It follows that 
S,(M) = R[t] and by [8] w. dim. S,(M) = n + 1. 

If M= mM Nakayama’s Lemma guarantees that M is not finitely 
generated. We identify S,(M) with the subring of K[t], S,(M) = 
R + Mt + M=t= + . . . . Let P be a maximal ideal of S,(M) and set p = P n R. 
We distinguish between two cases p = m and p # m. 

If p = m then mS,(M) = m + Mt + M2t2 + . . . c P and P = mS,(M). 
Pick xi, . . . . X, to be a regular system of parameters for m, then the Koszul 
complexes K. (x,, . . . . x,, R) provide a finite free resolution of length n 
for R/m, which is minimal [lo]. Tensoring this resolution over R with 
S,(M) and then over S,(M) with S,(M), we obtain a minimal finite 
free resolution of the S,(M), module S,(M),/PS,(M),; thus, 
proi dimSRcMjp SR(WpIPSRW)p = n and for every finitely generated ideal 
Z of S,(M), we have that Tor’&$,,(S,(M),/Z, S,(M),/PS,(M),) =O. 
As S,(M), is coherent we conclude by Lemma 2.1 that 
proj. dim,,(,,, S,(M)r/ZQ n and w. dim S,(M), = n. 

If P n R = p # m then Krull dim R, < n. If M, is a finitely generated R, 
module then w. dim, M, = w. dim R, + 1 dn. If M, is not a finitely 
generated R, module then, by the above argument, w. dim(S,(M)), = 
w. dim(SRp(M,)), < n. In either case, w. dim(S,(M)), < n. 

We conclude that w. dim S,(M) = n. 

THEOREM 2.3. Let R be a Noetherian ring of finite Krull dimension and 
let M be a rank one pat R module, then: 

(1) Zf R is a regular ring then S,(M) is a coherent regular ring, and 
w. dim R Q w. dim S,(M) < w. dim R + 1. 

(2) Zf S,(M) is a coherent regular ring so is R. 
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Proof (1) S,(M) is a flat R module and contains R as a direct sum- 
mand; therefore, w. dim R < w. dim S,(M). Now use Proposition 2.2 and 
Theorem 1.2. 

(2) Note that S,(M) is a faithfully flat R module. Now use [S]. 

We note that if R is not a local ring we may actually have 
w. dim S,(M) = w. dim R + I even in case M is not finitely generated. To 
see this let R=Z and M= (x/a / x, aEZ, Ofa is square free}cQ, the 
rationals. Then for any prime p E Z we have Mp = Z,,(l/p) and 
S,(M,) = Z,[t,], where t, is an indeterminate. Thus, w. dim S,(M) = 2. 

We next turn our attention to the regularity of polynomial rings over 
coherent rings. 

LEMMA 2.4. Let R be a ring, let A4 be a finitely presented R module and 
let Y be the smallest non-negative integer for which the r-Fitting ideal of M, 
F,(M) # 0. Zf F,(M) = R then A4 is a projective R module. Zf Spec( R) is 
connected the converse is true as well. 

Proof: Assume that F,(M) = R. Since F,(M) c F,(M) c . . . it follows 
that at every localization by a prime ideal P of R F,(M), = 0 or R,, for 
all i. By [ 141 this implies that M is projective. 

Conversely, assume that M is projective and that Spec(R) is connected. 
Since M is finitely presented F,(M) are finitely generated ideals of R. Since 
M is locally free F,(A4)p = 0 or R, for every prime ideal P of R. It follows 
that F,(M) = F,(M)* and F;(M) is generated by an idempotent e. Since 
Spec( R) is connected e = 0 or 1 and F,(M) = R. 

PROPOSITION 2.5. Let R be a coherent regular ring and let Z be an ideal 
of the polynomial ring R[t] admitting an infinite finite presentation; then 
proj. dimRrt, I< cc. 

Proof We will first prove that for every maximal ideal P of R[t], 
proj. dimRCrlpZP< cc. Let Pn R= p. Since (Lp)p= L, for every R[t] 
module L we may assume that R is local with maximal ideal p. In this case 
P contains a manic polynomial f o R[t]. Z is a finitely presented R[t] 
module; therefore, ZOR R[t]/fR[t] = Z/fl is a finitely presented 
R[t]/fR[t] and, hence, R module. Since R is a coherent regular ring 
proj.dim,Z/fl=n-2<cc and by [8] proj.dim,r,,Z/‘<n- 1. We have 
an exact sequence: 

o- IpA I,- Z,lfZ,- 0, 
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which yields the long exact sequence: 

- Tor”,~,jp(Zp, ~[~l./~~C~l~) 

Since proj. dim R[t]p zP/!!P G n - 1 multiplication by f in this exact 
sequence is an isomorphism. On the other hand, fe P, thus multiplication 
by f, is the zero map. It follows that Tor>T,jlp(ZP, R[t] p/PR[t]p) = 0 and 
by Lemma 2.1 proj. dimRCf,p I, < IZ < co. 

Next we prove that if for every maximal ideal P of R[t] we have that 
proj. dimRCTlp I, < co, then proj. dimRCr,Z< co. First note that the 
hypothesis implies that proj. dim RC,lpZP < 00 for every prime ideal P 
of R. Let ...A F, --% F, -+ I-+ 0 be an infinite finite presentation of I. 
Let P be a prime ideal of R[ t] satisfying proj. dimRCTlp I, < n, and 
let K,~,=kerd,~,. We have that (K,- ,)p is R[tlP projective. As 
Spec(R[t],) is connected there exists an integer r such that F,(K, _ ,)p = 0 
for Odi<r and F,(IY+,)~= R[c]~. Since F,(K,_ ,) are finitely generated 
ideals of R[ t] there exist a g E R[ t] - P satisfying F,(K, ~ , )R = 0 for 
0 < i < r and FJK,-~ ,)R = R[ t],, where L, denotes the localization of an 
R[t] module L by the set consisting of all powers of g. It follows that for 
every prime ideal Q c R[t] such that g $ Q we have F,(K, ~ ,)a = 0 for 
06i<r and F,(K,-,),=R[t],. Therefore, (K, ~, )o is a projective 
RC& module and proj. dim R[,]& < n. Let 0, = {P E Spec R[t], 
pd. dimRCtlpZP <n}. By the argument above the sets 0, are open, 
o,co,c ... and lJ y= 0 Oi = Spec( R [ t] ). Since Spec( R[ t ] ) is quasi-com- 
pact there is an integer n such that Spec(R[t])= O,, and 
proj. dimRC,7P Z,<n for every prime ideal P of R[t]. Let N be an R[t] 
module. Since Z admits an infinite finite presentation we have by [4] that 
(Ext”,&jU, N))p = Exf:;,& (I,, NP) =0 for all prime ideals P of R[t]; 
therefore, Ext”,Ft;(Z, N) = 0 and proj. dim.r,,Z< co. 

THEOREM 2.6, Let R be a stkbly coherent regular ring; then the 
polynomial ring in any number of variables over R is a coherent regular ring. 

Proof According to [ 111 we may assume that the number of variables 
is finite. The theorem now follows from Proposition 2.5 by induction on the 
number of variables. 

As a corollary of Theorem 2.6 we obtain: 

THEOREM 2.7. Let R be a ring and let G be an abelian group satisfying 
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that the group ring RG is coherent, then RG is a regular ring if and onIy if R 
is a coherent regular ring which is uniquely divisible by the order of every 
element of G. 

Proof: RG is a free R module; thus, if RG is a coherent ring so is R. In 
[S] it was proved that if RG is a coherent regular ring then R is a coherent 
regular ring which is uniquely divisible by the order of every element of G. 

Conversely, write G = UG,, where {G,} is the set of all finitely 
generated subgroups of G, then RG = bRG, and if H c L are two sub- 
groups of G then RL is free over RH. By [ 111 we may, therefore, assume 
that G is finitely generated. We now prove our claim by induction on 
n = rank G. If n = 0 G is a finite group. This case was solved in [S]. For 
n > 1 write G = G’ x H, where H is infinite cyclic. As RG’ is coherent by the 
induction hypothesis RG’ is a regular ring. Now RG = (RG’) H = 
RG’[t, t -‘I, where t is an indeterminate. According to [S], RG’[t] is a 
coherent ring and by Theorem 2.6 it is, therefore, regular. But 
RG’[t, t ‘]= RG’[t][,, where U is the set of all powers of t; thus, RG is 
regular. 

In particular, if R is a stably coherent ring then RG is a coherent ring for 
every abelian group G, [S], and the conclusion of Theorem 2.7 holds. 
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