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Abstract 

The paper concerns the estimation of facial attributes—namely, age and gender—from images of faces acquired in 

challenging, in the wild conditions. This problem has received far less attention than the related problem of face recognition, 

and in particular, has not enjoyed the same dramatic improvement in capabilities demonstrated by contemporary face 

recognition systems. Here, this problem is addressed by making the following contributions. First, in answer to one of the 

key problems of age estimation research—absence of data—a unique data set of face images, labelled for age and gender is 

offered, acquired by smart-phones and other mobile devices, and uploaded without manual filtering to online image 

repositories. The images in this collection are more challenging than those offered by other face-photo benchmarks. Second, 

a dropout-support vector machine approach is described used by this system for face attribute estimation, in order to avoid 

overfitting. Inorder to make classification of age using kNN more easy, texture features are extracted. Finally, a robust face 

alignment technique is presented, which explicitly considers the uncertainties of facial feature detectors. 
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1.  Introduction 
 

1.1 Age and gender estimation  

Among several faces that come across our lives, some might be familiar and the rest unfamiliar. While 

addressing these faces, probably “Sir/Madam” is used based on their gender. Similarly age classification is also 
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an important factor in formal addressing of a person. An elder one would be more formally addressed than the 

younger ones. Recently, there has been growing interest in human age estimation due to its potential 

applications, such as human-computer interaction and electronic customer relationship management (ECRM). 

The task of human age estimation is to estimate a person’s exact age or age-group based on face images. If these 

tasks of age and gender estimation get computerized with similar accuracy and effortlessness as humans, it 

would be more easy and convenient, since role of computers grow in our lives. Many efforts have been executed 

previously in this area. But most of the works were done using images from Public figures dataset and group 

photos which purposefully posed for the click. Compared to this, considering images from wild conditions has 

been a challenging task. As it may possess poor lighting, sideways facing subjects, motion blur etc, it could 

reflect the challenges of real-world age and gender estimation tasks. Such images can be obtained from online 

image albums captured by smart-phones and automatically uploaded to Flickr before being manually filtered or 

curated.  

 

 The issue of over-fitting i.e., when predictor is too complex or it fits ‘noise’ in the training data or it 

makes more mistakes in the training data, could be avoided by training the classifier. In short, dropout training 

for Support Vector machine (SVM) washes out the problem of over-fitting. 

 

Fig.. 1. Example images from two existing relevant collections and Adience set. Left: PubFig benchmark images. Despite being considered 
“in the wild”, these images are often clean in terms of viewing conditions, and enjoy participation from the subjects being photographed. 
Mid: The Gallagher collection provides images with an intentional bias towards groups of people, typically facing the camera and posing for 
their shots. Right: Images from our collection automatically uploaded to Flickr, without manual pre-filtering by their owners. Consequently, 
they include sideways facing subjects, motion blur, poor lighting and more, all of which present additional challenges to automated face 
analysis systems. 
 
 

2. Literature review 
 

Estimating the age and gender of a person appearing in a photo from that person’s facial features, has been 

studied at length in the past though, far less than the related problem of age-gender recognition. 

Face detection: Performing face detection and facial trait in realistic scenarios presents significant challenges[2] 

particularly in terms of achieving robustness over large changes in a person’s viewpoint (head pose), various 

face scales, non-uniform illumination conditions, partial occlusion and overcoming potentially noisy images or 

false face detection. Age appearances and variations can be modeled using example images. In particular, [3] 

used local binary patterns (LBP) [4] which is a powerful feature for texture classification. Gabor features were 

used by [5], both Gabor and LBP features were recently used. Face alignment is another technique used in order 

to detect faces more clearly. Affine transformation, which contributes geometric transformations such as 

scaling, translation, rotation is used for this alignment purpose.  



1351 Aswathy Unnikrishnan et al.  /  Procedia Technology   24  ( 2016 )  1349 – 1357 

Face discrimination: Some of the most basic classifications regarding humans are gender and age. There is an 

important difference between age and gender in classification: for gender, there are two clearly distinguished 

classes (male and female), while for age estimation, the values to predict are continuous, thus the estimation 

method needs to be different. For this reason, the gender is estimated with a classification method and the age 

with a regression method. Age estimation, depending on the application domain, can be a regression problem or 

a multi-label classification task. 

Earlier works concentrated on neural networks for classification. Deep neural networks contain 

multiple non-linear hidden layers and this makes them very expressive models that can learn very complicated 

relationships between their inputs and outputs. Support vector machines were used to classify in [7], where rank 

relationship of ages is learned. When a test image given to ranking SVM a weight vector is obtained and 

projects images with that weight vector to get ranking value. More recently, some have suggested different ways 

of partitioning the space of face images based on age like the ordinal subspaces approach of [8], which uses a 

flat partitioning scheme. Finally, others have proposed hierarchical partitioning models, including [9], which use 

an “AND-OR” graph partitioning of age progression. An exemplar aging sequence represented with a parse 

graph and face aging is modelled as Markov model.  

All methods go through the difficulty of dealing with over-fitting. To tackle the problem, ‘Dropout’ 

technique was defined in [10] where the idea was to randomly drop units from neural networks during training 

so as to prevent units from co-adapting too much. Then the technique was tried for SVM in [11] in which 

IRLS(Iteratively reweighted least square) algorithm was used which minimize variational bounds. It was proved 

that dropout training can significantly boost the classification performance for simple linear SVM.  

 

Gender classification: Gender is an important demographic attribute of people. Gender classification has 

received considerable attention over the years. For a rigorous survey of the methods developed for this problem 

over the years, refer to [12] or the more recent [13]. Face image intensities were directly classified using SVM 

in [14] and later again using AdaBoost in [15] where Adaptive boosting (Adaboost) select only those features 

which are relevant but is sensitive to noise and outliers. Also using AdaBoost, [16] used local binary patterns 

(LBP) [4] rather than intensities. Real-time performance when classifying gender in real-world images was the 

emphasis in [17]. Somewhat related to the work here, LBP was used along with SVM classifiers in [18].  

 

Benchmarks: As mentioned earlier several works have been executed on estimation of age and gender. They all 

experimented with different sort of datasets, but mostly camera-posed images. Possibly the most well-used 

benchmark for age estimation has been FG-NET aging set [19]. It consists of about 1,000 images of 82 subjects, 

labeled for accurate age. It reflected a fewer challenges than those expected of modern face recognition systems.  

Another popular benchmark used by many in the past is the MORPH set [20], collected by the Face 

Aging Group at the University of North Carolina at Wilmington. It contains over 55,000 images of 13,000 

individuals. It too contains images under highly controlled viewing conditions. Over the years, performance on 

this set has also saturated, with systems demonstrating performances reaching near-perfect scores. 

The UIUC-IFP-Y Internal Aging extensively used by the SMILE lab at Northeastern University, is not 

publicly available due to intellectual property limitations. It offers 8,000 images of 1,600 voluntary Asian 
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subjects (half male, half female) in outdoor settings. This set too, was produced under lab-controlled conditions 

and so unsurprisingly, performance measured by mean average age prediction error on this set has been reported 

to be near perfect.  

Recently, following the shift towards face recognition “in the wild” (e.g., the LFW set [21]), 

benchmarks for age and gender estimation have also been assembled using unconstrained images. The first, 

originally designed for face recognition, is the Public Figures benchmark (PubFig). It includes images from 

news and media websites which are typically of high quality, with subjects collaborating with the camera, 

posing for the shot [22]. Its construction emphasized many images for each individual, and so it includes nearly 

60,000 photos of only 200 celebrity faces.  

In [23], Gallagher and Chen proposed a benchmark for the study of groups of people, posing for the 

camera (e.g., family photos). Photos in this collection therefore typically present multiple subjects, in forward 

facing (towards the camera) poses, each face in relatively low resolution. The age labels provided in this set 

make it a convenient choice for studying age estimation.  

Finally, the VADANA set was recently proposed in [24]. With 2,298 images of 43 subjects, it is 

substantially smaller than its recent predecessors, but unlike them, provides multiple images of the same 

subjects in different ages, allowing for the study of age progression of the same face. 

 

3. Existing system 

In the work done in [1], the system for age and gender estimation follows a pipeline consisting of detection, 

alignment and identification. For detection and alignment purposes the standard Viola and Jones face detector 

[25] and affine transformation are applied respectively. The representation method holds with encoding the 

aligned faces using several popular global image representations specifically, local binary patterns (LBP) and 

Four Patch LBP codes (FPLBP). Classification is performed using the feature vector representations and each 

descriptor is examined either independently or by combining multiple descriptors by concatenating them into 

single long feature vectors. Training is performed using dropping out many of the values from the training 

instances thus, reducing the risk of over-fitting. Simpler classifiers have shown well for these problems in the 

past [26]. Classification of gender is performed using a single linear SVM classifier, for the multi-label age 

classification, a one-vs-one linear SVM arrangement is used. 

 

4. Proposed System 

 

4.1 Overview of the approach 

In the proposed system too it follows a pipeline which consists of detection, alignment, and identification which 

include representation and classification. As a key design choice, the system is modelled after similar systems 

successfully applied for face recognition. 

Detection and alignment- Given a photo, the process begins by applying the standard Viola and Jones face 

detector [25]. Detected faces are then aligned to a single reference coordinate frame using Affine 

transformation. 

Face segmentation-Active contour model face segmentation is applied to the training images of dataset as well 

as on the test image. Using active contour based segmentation the 2-D grayscale image is segmented into 
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foreground (object) and background regions. The output image is a binary image where the foreground is white 

(logical true) and the background is black (logical false). It provides a binary image that specifies the initial state 

of the active contour. The boundaries of the object region(s) (white) in this image define the initial contour 

position used for contour evolution to segment the image.  

Representation-In this step, aligned faces are encoded using several popular global image representations. This 

system applies local binary patterns (LBP) of [27] the related Four Patch LBP codes (FPLBP). These were 

selected due to their successful application to face recognition problems, as well as their efficient computation 

and representation requirements.  

Addition of texture features- Gray level co-occurrence matrices (GLCM), which have been used very 

successfully for texture classifications in evaluations is been used here. It is used to extract second order 

statistics from an image. It is a matrix of frequencies at which two pixels, separated by a certain vector, occur in 

the image. Once the GLCM has been created, various features can be computed from it. Here following features 

can be calculated from this co-occurrence matrix. 

 Contrast -Measures the local variations in the gray-level co-occurrence matrix. 

 Correlation-Measures the joint probability occurrence of the specified pixel pairs. 

 Energy- Provides the sum of squared elements in the GLCM. Also known as uniformity. 

 Homogeneity-Measures the closeness of the distribution of elements in the GLCM to the GLCM 

diagonal. 

 

Classification- Since gender has only two distinguished classes, it is better to choose standard linear SVM 

trained using the feature vector representations. Here, each descriptor is examined independently or multiple 

descriptors are combined by concatenating them into single long feature vectors. Training is performed in order 

to avoid over-fitting, using the dropout scheme. Age classification, since it is a multi-class problem, k-nearest 

neighbor classification method is used. When given an unknown tuple, a k-nearest neighbor (k-NN) classifier 

searches the pattern space for the k training tuples which are closest to the unknown tuple. These k training 

tuples are the k-nearest neighbours of the unknown tuple. Here, since k>1 and dropout mechanism is applied, 

the system is less prone to over-fitting. The results show that excellent results may be obtained without apparent 

over-fitting by training these classifiers by dropout SVM.  

 

4.2Face Alignment with Uncertainty 

Here, the robust facial detector proposed by Zhu and Ramanan [28] is employed. It detects 68 specific facial 

features, including the corners of the eyes and mouth, the nose and more. By selecting ideal coordinates for each 

of these points an affine transformation can presumably be obtained and the images aligned. In practice, however, 

errors in point localizations as well as the variability of face shapes can often result in unstable alignment results. 

To address this, it is noted that some detections are more reliable than others: The corners of the eyes, for 

examples, are easier to localize than, say, the cheekbones. In order to accurately align faces, these uncertainties 

should be accounted for. Doing so requires knowledge of the uncertainty associated with each of the 68 features, 

but this information can only be estimated once the faces are already aligned. In order to resolve this chicken-

and-egg problem, we take an Iterative Re-weighted Least Squares (IRLS) approach [29]. 
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Fig. 2. Visualization of the uncertainties associated with the 68 facial feature detections. Left: Uncertainties on the reference coordinate 

frame. Mid: Uncertainties on a sample face image. Note that ellipses are aligned with the image axes, as we assume variance along the axes is 

uncorrelated. In both images color codes the amount of uncertainty; color-bar provided on the right. 

 

Specifically we assume facial feature points {ri} i  =1..68={(x ͬi ,y ͬI )}=1..68 in a frontal-facing face. Given 

corresponding feature points, {q i,j}i=1..68,j=1..N = {(xq 
i,j , y

q 
i,j)} i=1..68,j=1..N (for training N photos), detected on a query 

photo. First Hj
0, an initial time-0 affine transformation, relating facial feature points qi,j  is detected in the j’th 

query photo with their corresponding reference points, ri, by using standard least squares. Feature points in all 

queries are then projected using the standard 

q’i,j = H0 
jqi,j 

For a given facial feature i , for all images j , we consider the variance along the x axis and the variance along the 

y axis of these projected points as the uncertainty values associated with this feature. These are used to estimate a 

new aligning transformation, H1
j at time-1, this time, by weighted least squares. This process is repeated until 

convergence.  

 

4.3Dropout-SVM 

The issue of over-fitting i.e., when predictor is too complex or it fits ‘noise’ in the training data or it makes more 

mistakes in the training data, could be avoided by training the classifier. In short, dropout training for Support 

Vector machine (SVM) [11] washes out the problem of over-fitting. This approach was inspired after the recent 

success of dropout learning for deep neural networks [10]. The idea was to randomly drop units from neural 

networks during training so as to prevent units from co-adapting too much. While training, dropout essentially 

omits neurons from the network with some probability pdrop for each feature, in each sample, to be dropped. By 

doing so, it was claimed that neurons must better adapt to the input data, relying less on other neurons in the 

network and the representations thus obtained are distributed and better generalized. 

 

Then the technique was tried for SVM, in which IRLS (Iteratively reweighted least square) algorithm was used 

which minimize variational bounds. Since SVM can be considered as a single-layer neural network, a similar 

dropout procedure can be conceivably applied to train SVM classifiers. It was proved that dropout training can 

significantly boost the classification performance for simple linear SVM.  

Here, each training features are applied with the value zero at random. This random selection is applied to each 

training instance separately; different features are randomly selected and set to zero for different training 

instances. Dropping out many of the values from the training instances requires that the obtained model be 

modified accordingly. Specifically, following training with a dropout of rate of pdrop, we divide all the 
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coefficients of the resulting linear SVM model by (1 − pdrop). This compensates for the dropped-out values, and 

provides a model suitable for test instances which include all their values. 

 

4.4The Adience benchmark 

To facilitate the study of age and gender recognition, the key design principle is to use the data which is as true as 

possible to challenging real-world conditions. As such, it should present all the variations in appearance, noise, 

pose, lighting and more, that can be expected of images taken without careful preparation or posing. The database 

collection process and testing protocols can be discussed as follows:- 

Database Preparation and Contents: Photos from challenging real-world conditions could be collected from Flickr 

albums produced by automatic upload from iPhone 5 or later smart-phones. The following steps are included in 

image collection.  Photos downloaded from Flickr albums were processed by first running Viola and Jones face 

detector and then detecting facial feature points. Presumably due to the recent “selfie” trend, many faces in these 

albums appear at different roll angles. To avoid missing these faces, the face detection process was applied to 

each image, rotated 360° degrees in 5° increments.  

Benchmark Protocols: Some test protocols are defined to benchmark the performance of gender and age 

estimation techniques, using Adience collection. Two variations of data set can be used: the frontal and the 

complete sets. The frontal set includes only roughly frontal facing faces; that is, faces which were determined to 

be within ±5° yaw angle from a forward facing face. The complete set includes faces with up to ±45° degrees of 

yaw. Training and testing is performed using 5-fold cross validation with splits pre-selected to eliminate cases of 

images from the same Flickr album appearing in both training and testing sets in the same fold. Same splits for 

both the gender and the age classification tasks are used. Results therefore include both mean classification 

accuracy (age or gender), including, ± standard error over the five folds. 

5. Conclusion 

This paper addresses the problem of automatic age, gender, and estimation from real-life face images acquired in 

unconstrained conditions. A new and extensive data set and benchmark for the study of age and gender 

estimation and a classification pipeline is contributed in this paper. The pipeline consists of detection, alignment, 

segmentation, texture feature addition and identification. In addition a novel, a robust face alignment technique 

based on iterative estimation of the uncertainties of facial feature localizations is described. Here face 

segmentation is performed using active contour based segmentation which makes classification easier. Along 

with this, texture features, the GLCM features are added which contributes to age estimation. Age and gender 

classification is performed using dropout trained KNN and SVM respectively.  

 

 

 

Appendix 
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                Screenshot 1: Input image                     Screenshot 2: Face detected   Screenshot 3: Segmented image                                                 

 

  

Screenshot 4: Gender detected  Screenshot 5: Age detected 
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