
Discrete Applied Mathematics 157 (2009) 464–475

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the tiling by translation problemI

S. Brlek a,∗, X. Provençal a, Jean-Marc Fédou b
a LaCIM, Université du Québec à Montréal, C. P. 8888 Succursale ‘‘Centre-Ville’’, Montréal (QC), Canada H3C 3P8
b Laboratoire I3S - CNRS - UMR 6070, Université de Nice, Les Algorithmes - bt. Euclide B, BP.121, 06903 Sophia Antipolis - Cedex, France

a r t i c l e i n f o

Article history:
Received 27 April 2007
Received in revised form 26 October 2007
Accepted 15 May 2008
Available online 30 July 2008

Keywords:
Tiling polyominoes
Plane tesselation
Longest common extensions

a b s t r a c t

On square or hexagonal lattices, tiles or polyominoes are coded bywords. The polyominoes
that tile the plane by translation are characterized by the Beauquier-Nivat condition. By
using the constant time algorithms for computing the longest common extensions in two
words, we provide a linear time algorithm in the case of pseudo-square polyominoes,
improving the previous quadratic algorithm of Gambini and Vuillon. We also have a linear
algorithm for pseudo-hexagon polyominoes not containing arbitrarily large square factors.
The results are extended to more general tiles.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In discrete geometry many results are based on an arithmetic approach for characterizing and recognizing patterns
having a certain shape. Here we take a combinatorics based on words that provides us with new tools for analyzing a shape
in discrete planes.We consider the problem of determining if a givenword, which encodes the boundary of a discrete figure,
tiles the plane by translation.
The way of tiling planar surfaces has its roots in the ancient times for decorative purposes. More recently, connections

were established with computational theory, mathematical logic and discrete geometry, where tilings are often regarded
as basic objects for proving undecidability results for planar problems. Tilings have also been used in physics as powerful
tools for studying quasi-crystal structures; in particular these structures can be better understood by representing them as
rigid tilings decorated by atoms in a uniform fashion. Their long-range order can consequently be investigated in a purely
geometrical framework, after assigning to every tiling a structural energy. A classical result of Berger [1] states that given a
set of tiles, it is not decidable whether there exists a tiling of the planewhich involves all its elements. This result implies the
existence of aperiodic sets of tiles, and Berger provided an example using 20426 tiles. Berger’s result has been strengthened
afterwards by Gurevich and Koriakov [2] to the periodic case. It was therefore natural to seek manageable problems, and
polyominoes appeared as good candidates. Invented by Golomb [3] who coined the term polyomino, these objects, also
called n-ominoes or lattice animals, gained some interest after being popularized by Gardner in mathematical games [4]. In
statistical physics they appear as models for percolation theory and their combinatorial properties have been extensively
studied. These well-studied combinatorial objects are still related to many challenging problems, such as tiling problems [5,
6], games [4], among many others (seeWeisstein [7] for more pointers). Their enumeration is also an open problem despite
the fact that restricted classes have been fully described.
There are different types of polyominoes and here we consider a polyomino as a finite union of unit lattice closed squares

(pixels) in the discrete planewhose boundary consists of a simple closedpolygonal pathusing 4-connectedness. In particular,
polyominoes are simply connected (contain no holes), and have no multiple points (Fig. 1(a)).

I With the support of NSERC (Canada).
∗ Corresponding author. Tel.: +1 514 9873000; fax: +1 514 9878274.
E-mail addresses: brlek.srecko@uqam.ca (S. Brlek), provenca@lacim.uqam.ca (X. Provençal), fedou@unice.fr (J.-M. Fédou).

0166-218X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.05.026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82231191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:brlek.srecko@uqam.ca
mailto:provenca@lacim.uqam.ca
mailto:fedou@unice.fr
http://dx.doi.org/10.1016/j.dam.2008.05.026

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 465

Fig. 1. (a) A polyomino; (b) not a polyomino.

The problemof deciding if a given polyomino tiles the plane by translation goes back toWisjhoff andVan Leeuven [8]who
coined the term exact polyomino for these, and also provided a polynomial algorithm for solving the problem. Polyominoes
may be coded by words on a 4-letter alphabetΣ = {a, a, b, b} identified with the unit steps {→,←,↑,↓}, also known as
the Freeman chain codes [9,10], coding their boundaries (see [11] for further reading). For instance, the boundary b(P) of
the polyomino in Fig. 1(a), in a counterclockwise manner and starting from the lowest of the leftmost points S, is coded by
the wordw = a b a a b a b b a b a b a b a b.
Observe that we may consider the words as circular which avoids a fixed origin. The perimeter of a polyomino P is the

length of its boundary word b(P) and is of even length 2n. Beauquier and Nivat [12] gave a characterization stating that the
boundary of such a polyomino P satisfies the following (not necessarily in a unique way) factorization

b(P) = A · B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is possibly empty. Hereafter, this condition is referred as the BN-factorization. The
operation (̂) appearing in (1) is defined by Û = Ũ , where (̃) is the usual reversal operation and () the complement
onΣ = {a, a, b, b}.

Fig. 2. (a) An exact polyomino; (b) the associated tiling.

For instance, the exact polyomino in Fig. 2 can be coded by the circular word

w = a b a a b a b a a b a b a b

its semi-perimeter is 7, and its boundary may be factorized as

b(P) = A · B · Â · B̂ = a b a a · b a b · a a b a · b a b,

and for the exact polyomino P ′ below

the boundary may be factorized as

b(P ′) = a a b · a b a · b a b · b a a · a b a · b a b.

Therefore the problem of decidingwether a polyomino tiles the plane by translation or not, reduces to finding a factorization
satisfying the Beauquier and Nivat condition. A naive O(n4) algorithm solves the problem, but recently, Gambini and
Vuillon [13] improved that bound by designing an O(n2) algorithm that checks the BN-condition (1).
The underlying idea of our approach is to search efficiently the pairs of homologous factors X, X̂ . Our algorithms borrow

from Lothaire [14] (for instance) that the Longest-Common-Factor, the Longest-Common-Prefix and the Longest-Common-
Suffix in two words may be computed in linear time. The approach is also inspired by the linear algorithm of Gusfield and
Stoye [15] for detecting tandem repeats in a word, and by the linear algorithm used to detect repetitions with gaps, as shown
in Lothaire [14]. More precisely, the computation of the Longest-Common-Left-Extension (LCLE(u, v)) and Longest-Common-
Right-Extension (LCRE(u, v)) is achieved in constant time, provided a linear pre-processing is performed on u and v, by a
clever utilization of suffix-trees (see Gusfield [16]). Taking advantage of these algorithms we provide a linear algorithm,
with respect to the length of words, for pseudo-square polyominoes (Theorem 9). We establish a first step to provide a
linear algorithm for pseudo-hexagons as well. Indeed, for boundary words not having two large square repetitions there is
a linear algorithm to decide whether a polyomino tiles the plane by translation or not (Theorem 12).

466 S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475

2. Preliminaries

Let Σ be a finite alphabet whose elements are called letters. Finite words are sequences of letters, that is, functions
w : [0..n− 1] −→ Σ . For practical reasons we use the functions f (w) = w[0], and `(w) = w[n− 1]. The set of words of
length n isΣn, and the free monoidΣ∗ = ∪∞n=0Σ

n is the set of all finite words and the empty word is denoted ε.
A morphism is a function σ : Σ∗ −→ Σ∗ such that σ(uv) = σ(u)σ (v). Clearly a morphism is defined by the image

of the letters. On the other hand, the operator (̂) is an antimorphism since ûv = v̂̂u. Moreover this operator is involutive
since ̂̂u = u. A factor u of w is a word u ∈ Σ∗ such that w = xuy, for some words x, y ∈ Σ∗. If x = ε (resp. y = ε) then
u is called prefix (resp. suffix). The length of a word w is |w|, and the number of occurrences of a factor u ∈ Σ∗ is |w|u. A
word is said to be primitive if it is not a power of another word. A useful operator is the circular permutation ρ defined by
ρ(w) = w[1..(n − 1)] · w[0]. Two words u and v are conjugate when there are words x, y such that u = xy and v = yx.
Equivalently, u and v are conjugate if and only if there exists an index k such that u = ρk(v). Conjugation is an equivalence
relation written u ≡ v. Paths on the square lattice Z × Z are encoded by pairs (S, w), where S is a point in Z × Z and w a
word on Σ = {a, a, b, b} identified with the unit steps {→,←,↑,↓}. Moreover, the relative positions of the starting and
ending point of any path is completely determined by the sum of the unit vectors corresponding to each letter, that is, for a
wordw : [0..n− 1] → Σ , there is a naturally defined vector

−→w =

n−1∑
k=0

−→wk.

Note that−→w = 0 if and only ifw is a closed path, and that−→w = −−→ŵ .

The classical notion of equipollent vectors also extends to paths, so that equipollent paths always define a translation.
Two vectors −→v1 and −→v2 are called homologous if either −→v1 = −→v2 or −→v1 = −−→v2 , and the notion extends to paths as well.
When two paths (S, u) and (S ′, v) are homologous, we also say that the words u and v are homologous. More precisely, two
words u and v are said to be homologous when either (i) u = v, or (ii)u = v̂. An exact polyomino P whose boundary is
b(P) ≡ A · B · C · Â · B̂ · Ĉ is called a pseudo-hexagon if none of the variables is empty and a pseudo-square otherwise. Such
factorization defines a pair of vectors, u = −→A +−→B and v = −→B +−→C , whose translations induce a regular tiling of the plane.
For instance, lets consider the wordw ≡ b a b a a b a b a a b a b a b a a a a bwith factorization

w ≡ A · B · C · Â · B̂ · Ĉ = b a b · a a b a · b a a · b a b · a b a a · a a b.

The associated vectors are u = −→A +−→B = (4,−3) and v = −→B +−→C = (5, 0) as shown in Fig. 3.

Fig. 3. Translations defined by a BN-factorization.

The next lemma gives two useful criteria for identifying closed paths.

Lemma 1. For a pathw ∈ Σ∗, the following conditions are equivalent

(i) w is a closed path;
(ii) |w|α = |w|α , for all α ∈ Σ ;
(iii) −→w = 0.

Denote the set of closed paths inΣ∗ by C.

3. Searching the homologous factors

Since polyominoes are coded by circular wordsw, in order to find the homologous factors it is convenient to work with
w ·w since a pair of homologous factors might be split, depending on the starting point. Therefore, finding the homologous
factors suggests to look for the longest common factor of ww and ŵw denoted LCF(ww, ŵw). For instance the longest
common factors of the polyomino-tile P in Fig. 2 are

LCF(ww, ŵw) = {a b a a, a a b a}

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 467

and they are homologous sides by definition. Indeed, since we know the positions i and j of a b a a and a a ba in w, this is
easy to check in linear time. Clearly the boundary of P may be written as

b(P) = w = a b a a · u · a a b a · v

and thenwehavev = û. Unfortunately the situation is not always that good. Indeed, letw = a a b b b a a b a a b a b b b a a b a b.
Then the longest homologous factors ofw are LCF(ww, ŵw) = {a a b b b a, a b b b a a} (see Fig. 4).

Fig. 4. (b) Longest homologous factors; (c) a good factorization.

However, w = a a b b b a · a b a a b · a b b b a a · b a b does not satisfy the BN-factorization. A good factorization is
w ≡ b b · b a a b · a a b a · b b · b a a b · a b a a. This means that not all the homologous factors provide a factorization, and good
candidates are those separated by factors of same length.

Definition 2. Letw ≡ b(P) be the boundary of a polyomino P . A factor A ofw is admissible if

(i) w ≡ Ax̂Ay, for some x, y such that |x| = |y|;
(ii) A ismaximal, that is, f (x) 6= `(x) and f (y) 6= `(y).

Not all admissible factors lead to a BN-factorization. For instance, in the polyominow ≡ a a a b a b a b a a a b a b a b shown
below.

The factor aaa is admissible but does not provide a correct factorization of w. Indeed, A = aa is the admissible factor
(w = Ax̂Aywith x = ababab, y = ababab) yielding a correct factorization with B = aba and C = bab:

w ≡ a a · a b a · b a b · a a · a b a · b a b.

The following technical property is established in [17,18], generalizing a result of Daurat and Nivat ([5], IWCIA’03) on the
number of salient and reentrant points of discrete sets. More precisely, letL = {ab, ba, ab, ba}, that is the set of ‘‘left turns’’
moves. Similarly R = {ab, ba, ab, ba} is the set of ‘‘right turns’’. Then |w|R (or |w|L) is the number of right (or left) turns
in a path w on a square lattice. For practical reason, we define for every word w ∈ Σ∗ an auxiliary function recording the
difference between left and right turns by

∆(w) = |w|L − |w|R. (2)

The function∆ is additive in the following sense

∆(uv) = ∆(u)+∆(`(u) · f (v))+∆(v).

Observe that∆(w) = −∆(ŵ), for all paths w ∈ Σ∗. When the path w is closed there is possibly an extra left or right turn
at the end of the path, so that we define the following specialization of∆ for closed paths

∆C(w) = ∆(ww0).

Note that∆C is invariant by conjugation of words. A path in a grid is said to be non-crossing, if it does not traverse itself in a
grid point visited twice.

Property 3 (B.L.L. [17], DLT2005). Let w ∈ C be a non-crossing closed path in the square lattice. Then |∆C(w)| = 4.

Obviously, Property 3 holds for words coding the boundary of polyominoes since such paths are non-crossing. The next
proposition establishes a useful property.

468 S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475

Proposition 4. Let p be any fixed position on the contour w = b(P) ∈ Σ2n of a polyomino P. Let X be the set of all admissible
factors that include position p and X̂ be the set of their respective homologous factors. Then, there exists at least one position inw
that is not covered by any element of X ∪ X̂ .

Proof. By contradiction, assume that there is no such point. Let A ∈ X be the factor that starts at the leftmost position and
B ∈ X be the one that ends at the rightmost position as shown below.

Let x be the overlap between A and B̂, and y be the overlap between A and B. Without loss of generality we may assume that
|y| ≥ |x|. Note that since y is a prefix of B and a suffix of A, then ŷ is a suffix of B̂ and a prefix of Â. This implies that if |x| = |y|,
then x = ŷ and the factorization isw ≡ x U x̂ V x Û x̂ V̂ (see Fig. 5).

Fig. 5. Case 1 : |x| = |y|.

Since all turns in a factor are cancelled by those of its homologue, we only have to consider the turns between consecutive
factors: x U is cancelled by Û x̂, U x̂ by x Û , x̂ V by V̂ x (the word w is circular), and V x by x̂ V̂ . Hence the difference between
right and left turns is 0 and, by Property 3,w is not the boundary of a polyomino. Contradiction.
If |x| 6= |y|we have the following situation where ŷ does not overlap Â in B̂ (see Fig. 6). Letting V be the factor between

Fig. 6. Case 2 : ŷ does not overlap Â in B̂.

Â and ŷ, we have the factorizationw ≡ A V̂ β Â V α , where α is the factor between V and A in B̂ and β is the factor between
V̂ and Â in B. Passing to vectors, and using commutativity of addition, we have

−→w =
−→A +

−→
Â +−→V +

−→
V̂ +−→β +−→α = −→β +−→α = −→0 .

But ŷ = αx, so that β is followed by α inw. Therefore, βα is a nonempty closed path on the boundary of P . Contradiction.
In the case where ŷ overlaps Â in B̂we have the following situation where−→γ +−→β = 0 (see Fig. 7) (by closure property

Fig. 7. Case 3 : ŷ does overlap Â in B̂.

−→w = 0 = −→A +−→γ +
−→
Â +−→β). Moreover, ŷ = αβx, so that y γ ŷ contains the nonempty factor α̂ γ α β corresponding to a

closed path. Contradiction. �

Consequently, admissibility is ensured for words having a BN-factorization, as we show now.

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 469

Corollary 5. Let w ≡ ABCÂ B̂ Ĉ be a BN-factorization of the boundary b(P) of an exact polyomino P. Then A, B and C are
admissible.

Proof. Condition (i) of Definition 2 is a direct consequence of the fact that |u| = |̂u| for all u ∈ Σ∗. For condition (ii) of
Definition 2, we proceed by contradiction. Assume that A is not maximal, that is f (BC) = `(BC).
In the case of a pseudo-hexagon factorization, A, B and C are nonempty. Let x ∈ Σ and B′, C ′ ∈ Σ∗ be such that B = xB′

and C = C ′x, then the factor B̂ Ĉ = x̂B′Ĉ ′x = B̂′xxĈ ′. But xx cannot be a factor of a word coding the boundary of a polyomino.
Contradiction.
In the case of a pseudo-square factorization w ≡ AB̂A B̂, the assumption implies that f (B) = `(B). Let u ∈ Σ+ be the

longest prefix of B such that B = uB′û for some word B′ ∈ Σ∗. Let A = ûAu, the factor A is admissible because f (B′) 6= `(B′).
Similarly, let B = v̂A′v where v is the longest prefix of A such that A = vA′v̂. Note that if B is admissible, then v is the empty
word and B = B.

Since u is nonempty, there exists a position p in w such that every other position in w is overlapped by an admissible
factor overlapping p or its homologue. This is in contradiction with Proposition 4. �

A similar approach was used by Gambini and Vuillon ([13], Section 3.1) by using the geometric result of Daurat and
Nivat [5]. The (shorter) proof above differs substantially since it only depends on combinatorial arguments on words.
Proposition 4 specializes for pseudo-squares as follows. Assume that a pseudo-square P has two factorizations

w = b(P) ≡ AB̂A B̂ ≡ XY X̂ Ŷ

where A = sXt . Then, by using the same argument as in Proposition 4, the boundary of P contains a loop yielding a
contradiction.

Corollary 6. If w = b(P) ≡ AB̂A B̂ ≡ XY X̂ Ŷ are two non-trivially distinct factorizations of the boundary of a pseudo-square P,
that is A 6∈ {X, Y , X̂, Ŷ }, then there exist α ∈ Suff(A) and β ∈ Pref(B) such that αβ ∈ {X, Y , X̂, Ŷ }.

As an example, for a cross polyomino, we have the following pseudo-square factorizations

The problem of enumerating all the factorizations of a given pseudo-square will be addressed in a forthcoming paper.

3.1. A linear time algorithm for detecting pseudo-squares

Themain idea used to achieve linear time factorization, is to choose a position p inw and then list all the admissible factors
A that overlap this fixed position. The following auxiliary functions are useful. The Longest-Common-Right-Extension (LCRE)
and Longest-Common-Left-Extension (LCLE) of two words u and v at positions respectivelym and n are partial functions

LCRE, LCLE : Σ∗ ×Σ∗ × N× N −→ N

defined as follows. For u, v ∈ Σ∗, let i and j be such that 0 ≤ i ≤ |u| and 0 ≤ j ≤ |v|, then

LCRE(u, v, i, j) = LCP(ρ i(u), ρ j(v)),
LCLE(u, v, i, j) = LCS(ρ|u|−i(u), ρ|v|−j(v)),

where LCP and LCS are the lengths of the longest common prefix and suffix, respectively.

Remark 7. It is clear from the definition above that LCRE and LCLE may be computed in linear time. Their computation may
also be performed directly by the following formulas. Since we use circular words w, denote i = i mod |w|. If u[i] = v[j]
then

(i) LCRE(u, v, i, j) = max{k ∈ N | u[i..(i+ k)] = v[j..(j+ k)]} + 1,
(ii) LCLE(u, v, i, j) = max{k ∈ N | u[(i− k)..i] = v[(j− k)..j]} + 1,

and, otherwise, LCRE(u, v, i, j) = LCLE(u, v, i, j) = 0.

470 S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475

For example, if u = a a b b b a a b a a b a b a b a b a, v = b a b a a b b b a a b b a b a b a b b, i = 4 and j = 7 then (note that
words all start at position 0) we have

u = a a b b b a a b a a b a b a b a b a,
v = b a b a a b b b a a b b a b a b a b b,

and LCRE(u, v, 4, 7) = 4, LCLE(u, v, 4, 7) = 5. On the other hand LCRE(u, v, 4, 1) = LCLE(u, v, 4, 1) = 0.
Later we need to perform these computations O(n) times. Fortunately, the computation of LCLE and LCRE is achieved

in constant time, provided a linear pre-processing is performed on u and v, by a clever utilization of suffix-trees (see
Gusfield [16], Section 9.1, or Gusfield and Stoye [15], page 531).

Lemma 8. Let w = b(P) ∈ Σ2n be the boundary of P. For any position p inw, listing all the admissible factors that include p is
computable in linear time.

Proof. Since the longest common right and left extension problem can be solved in constant time after linear time pre-
processing, the following algorithm lists all admissible factors containing the (p+ 1)-th letter ofw in linear time.

Algorithm 1.
Input:w = b(P) ∈ Σ2n
0: Pre-processw and ŵ so that LCLE and LCRE take constant time
1: For i := 0 to 2n− 1 do
2: l := LCLE(w, ŵ, p, i)− 1
3: r := LCRE(w, ŵ, p, i)− 1
4: A := w[p− l, . . . , p+ r]
5: Ifw ≡ Ax̂Aywith |x| = |y| then
6: Add A to the list of admissible factors
7: end if
8: end for

Using the modulo in managing the positions is superfluous. Indeed, sincew is a circular word, wemay take a convenient
conjugate such that the modulo is not used. Note that, by definition of LCRE and LCLE, the factor A in this algorithm is
necessarily maximal. Given an occurrence of A in ŵ, one computes in constant time the corresponding position of Â in w.
Whether or not Â overlaps A inw is decidable in constant time. If Â and A do not overlap then, u ≡ Ax̂Ay and A is an admissible
factor if |x| = |y|, a condition obtained in O(1). �

This lemma implies that the number of admissible factors in a word is linear. To determine a precise upper bound remains
an open problem which is similar to the problem of determining a tight upper bound for the number of distinct squares in
a word (see for instance Lothaire [14] or Ilie [19]).

Theorem 9. Let w = b(P) ∈ Σ2n be the boundary of P. Determining if w codes a pseudo-square is decidable in linear time.
Proof. Ifw encodes an exact polyomino, any position belongs to some admissible factor of the BN-factorization. Therefore, it
suffices to apply Lemma 8 to an arbitrary position p. Then, Algorithm 1 provides the list of all admissible factors overlapping

Fig. 8. An admissible factor A inw and ŵ.

the position p, and it only remains to check, for each admissible factor, if x = ŷ. Corollary 5 ensures that if w ≡ AB̂A B̂ then
B is maximal. As shown in Fig. 8, it suffices now to replace step 6 in Algorithm 1 by:

6a: If LCRE(w, ŵ, p+r+1, i+ r + n+ 1) = |x| then
6b: P is a pseudo-square :w ≡ Ax̂A x̂
6c: end if

Since LCRE is computed in constant time, the overall algorithm is linear. �

To illustrate this algorithm take the word w ≡ a a b a a b a a b a a b a a b a a b as shown in Fig. 9. It satisfies the condition
of Theorem 9. Since p is an arbitrary chosen position we may take p = 0. All the admissible factors are displayed with

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 471

Fig. 9. A pseudo-square with its admissible factors.

dashed lines, and the homologous factors are displayed with thick lines. In this case we obtain two different pseudo-square
factorizations distinguished by ◦ and •:

◦ : w ≡ a a b a a · b a a b · a a b a a · b a a b;
• : w ≡ a a b a a · b a a b · a a b a a · b a a b.

Note that the algorithm above lists all the pseudo-square factorizations but can be easily modified to stop after the first one
if there is such.

3.2. A linear algorithm for k-square-free pseudo-hexagons

A factor f of a wordw is called a square if f = xx for some x ∈ Σ+. The set of squares of a wordw is Squares(w).

Definition 10. A wordw is k-square-free if and only if it satisfies the inequality max{|f | : f ∈ Squares(w)} < k.

The following technical lemma is useful.

Lemma 11. Let w = b(P) ∈ Σ2n a k-square-free word, and let p be any position in w. Then, the number of admissible factors
that overlap the position p inw is bounded by 4k+ 2 log(n).

Proof. Let A1, A2, . . . , Ar be all the admissible factors that include p inw. Sincew ≡ AixiÂiyi with |xi| = |yi| for all 1 ≤ i ≤ r ,
all their homologous occurrences Âi include the position p′ = p + n. Thus, there is a position q such that all Ai include q in
ŵ. In Algorithm 1, all the admissible factors including p inw are listed through a loop such that each iteration can detect at
most one of them. Let i1, i2 be such that 0 ≤ i1 < i2 < q and assume that admissible factors are detected when i = i1 and
i = i2.
Let α1 = ŵ[i1, . . . , q] and α2 = ŵ[i2, . . . , q]. By definition of common extension we have α1 = w[p, . . . , p + |α1| − 1]

and α2 = w[p, . . . , p+ |α2| − 1], as shown below.

This implies that α2 is prefix and suffix of α1, so that Lothaire’s Proposition 1.3.4 [20] applies. It follows that there are
two words u, v ∈ Σ∗ such that α1 = (uv)mu, for some integermwith

m(|α1| − |α2|) ≥ |α2| ≥ (m− 1)(|α1| − |α2|). (3)

If |α1| < 2|α2|, Eq. (3) requires m to be greater than 1 and thus α1 contains a square of length at least 12 |α1|. This implies
that if |α2| ≥ 2k then |α1| > 2|α2| because otherwise it would contain a square longer than k. Since this holds for any pair
of admissible factors detected while i is strictly smaller than q − 2k, the number of such admissible factors is bounded by
log2(q− 2k) < log(n). So, in Algorithm 1, as i runs from 0 to 2n− 1, the number of admissible factors is bounded by :

– log n for i from 0 to q− 2k.
– 4k for i from q− 2k+ 1 to q+ 2k− 1.
– log n for i from q+ 2k to 2n− 1.

Summing up all these provides the bound. �

Theorem 12. Let w = b(P) ∈ Σ2n be a k-square-free word encoding the boundary of a polyomino P, with k ∈ O(
√
n).

Determining if w codes a pseudo-hexagon is decidable in linear time.

472 S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475

Proof. The idea is to construct convenient, and not too long, lists of admissible factors and then to use the constant time
LCRE function.

Algorithm 2.
Input :w = b(P) ∈ Σ2n
0: Build L1 : list of all admissible factors containing position p;
1:m := position of the rightmost letter ofw included in a factor of L1;
2: BuildL2 : list of all admissible factors containing position (m+ 1);
3: For all A ∈ L1 do
4: For all B ∈ L2 do
5: Ifw ≡ ABx̂A B̂y orw ≡ AxB̂AŷB then
6: Compute i : position of x inw;
7: Compute j : position of ŷ in ŵ;
8: If LCRE(w, ŵ, i, j) = |x| then P is a pseudo-hexagon;
9: end if
10: end if
11: end for
12: end for

Sincew is k-square-free, Lemma 11 ensures that L1 and L2 each contain less than 4k+ 2 log n elements. The nested loops
perform at most (4k+ 2 log n)2 iterations, and thus, the overall complexity is O(n+ (4k+ 2 log n)2) = O(n). �

The k-square-freeness condition in the hypothesis of Theorem 12 is sufficient to ensure the linear complexity, but not
necessary as shown in the following examples. Indeed, letw ≡ at+1babatba2b, shown in Fig. 10 (a) with t = 7: the longest
square is a8 and 8 >

√
22 which does not satisfy the condition. In that case the result is provided still in linear time, and

there is a unique solution.

Fig. 10. (a) A pseudo-hexagon; (b) a bad pseudo-hexagon.

On the other hand, the polyomino in Fig. 10 (b) is coded by w ≡ atbtat−1b a b
t−1
with t = 6. In that case the longest

square is a6 while the length of |w| = 24, so that 6 >
√
24 which violates the condition: the solution is still unique but the

loops in Algorithm 2 run through two lists of sizeO(n), providing the result inO(n2). This example also shows that checking
all the possible pairs is sometimes unavoidable.

4. Polyominoes on the hexagonal lattice

On a honeycomb lattice, a polyomino is encoded by a word on a 6-letter alphabet Σ = {a, a, b, b, c, c} identified with
the set of unit steps {→,←,↗,↙,↖,↘} representing the sequence of steps on its boundary. For instance, the boundary

Fig. 11. (a) An exact polyomino; (b) the associated tiling.

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 473

b(P) of the polyomino in Fig. 11 (a), in a counterclockwise manner starting from the bottom left point, is coded by the word
w = a b a c a b c a c b a b c a b a c a b a c a b c a c a b a c b a b c, and its boundary may be factorized as

b(P) = b a c a b · c · a c b a b c a b a c a · b a c a b · c · a c a b a c b a b c a,
satisfying the BN-condition (1).
Not all pairs of units steps are allowed. Indeed the forbidden pairs of steps are

Φ = {αα | α ∈ Σ} ∪ {αα | α ∈ Σ} ∪ {ac, ab, ba, bc, ca, cb, ab, ac, ba, bc, ca, cb}

so that these paths are wordsw ∈ P where P is given by

P = Σ∗ \
(
Σ∗ · Φ ·Σ∗

)
. (4)

A noticeable difference between square and hexagonal lattices is now established. Indeed, pseudo-squares do not exist
on an hexagonal lattice. In order to prove this we need a technical property established in [17,18], extending to hexagonal
lattices the Daurat-Nivat result ([5], IWCIA’03) on the number of salient and re-entrant points of discrete sets. In this case,
we take L = {ab, bc, ca, ab, bc, ca}, as the set of ‘‘left turns’’ moves, and R = {ac, ba, cb, ac, ba, cb} as the set of ‘‘right
turns’’.

Property 13 (B.L.L. [18]). Let w ∈ C be a non-crossing closed path in the hexagonal lattice. Then |∆C(w)| = 6.

Proposition 14. On an hexagonal lattice, a polyomino P tiles the plane by translation if and only if it is a pseudo-hexagon.

Proof. It suffices to show that there is no pseudo-square BN-factorization of the boundary of w = b(P). By contradiction,
assume thatw ≡ A · B · Â · B̂. Applying the∆C function, we have

∆C(w) = ∆(A)+∆(`(A)f (B))+∆(B)+∆(`(B)f (̂A))+∆(̂A)+∆(`(̂A)f (̂B))+∆(̂B)+∆(`(̂B)f (A))
≤ 4,

contradicting Property 13. �

4.1. Polyominoes with holes

The results above generalize to more general tilings. Indeed, since the BN-factorization involves path properties, there is
no need for a tile to be a polyomino. For instance, the tile T in Fig. 12 is a pseudo-hexagon and its BN-factorization is (starting
from S)

b(T) ≡ baba · bc · acabcbacacbacabcac · abab · cb · cacbacabcacabcbaca .

Fig. 12. (a) An hexagonal tile with (b) the associated tiling.

The contour path is non-crossing, that is, it may not cross itself in a (i, j) coordinate point visited twice or more times.
In a polyomino each point on the boundary is visited once, while in a non-crossing closed path a point may appear several
times. A sequence of elementary stepsmay therefore visit a contiguous sequence ofmultiple points, defining amaximal null
area region between two factors u and û at some fixed positions.

Definition 15. Letw ∈ C be a closed path and u ∈ P be such that

(i) w ≡ xuŷu for some non empty words x, y ∈ C, and
(ii) ∆ (`(x)f (u)) = ∆ (`(u)f (y)) = ∆ (`(y)f (̂u)) = ∆ (`(̂u)f (x)).

The pair u, û is called a channel.

474 S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475

Fig. 13. Two types of channels.

A point in a closed path may have an O(n)multiplicity. In order to avoid pathological cases, we consider only the paths
having a point multiplicity bounded by 2. Checking that a closed path is non-crossing requires some analysis, so we proceed
with a criterion for checking that property. A channel (Fig. 13) in any closed path w ∈ P is a maximal sequence of points
having multiplicity 2 and bordered by two nonempty closed paths. Note that the following case is excluded since it leads
necessarily to a crossing path:

Indeed, it contains a factor αβαwhere α 6= ε, with αβ ∈ C.Note that a closed pathmay have several instances of a channel.
It follows that a closed path is non-crossing if and only if every multiple point occurs in a channel.
At this point we need to generalize Proposition 4 to non-crossing paths.

Proposition 16. Let w ∈ C be a non-crossing closed path, and let p be any fixed position inw. Let X be the set of all admissible
factors overlapping the position p and X̂ be the set of their respective homologous factors. Then, there exists at least one position
inw that is not covered by any element of X ∪ X̂ .

Proof. The proof is an adaptation-continuation of that of Proposition 4, with the same notation. We have to go one step
further in the two considered cases. In case 1, we use Property 13 instead of Property 3.
In case 2, since x is a prefix of A, x̂ is a suffix of Â. This implies that x̂Vαx is a suffix of B̂ and x̂̂αV̂ x is a prefix of B. But

x̂̂αV̂β is also a prefix of B so that x and β share a common nonempty prefix. Let u be such a common nonempty prefix and
u′ be such that βα = uu′. The factor β ŷ ofw is equal to βαx containing the factor uu′uwhere uu′ is a closed path. It is not a
channel since it leads necessarily to either a multiplicity greater than 2 or a crossing. Contradiction.
In case 3, since α̂γ αβ is a closed loop and α̂γ αβx is a factor ofw, it suffices to show that α̂ and x share a nonempty prefix.

Let a be the first letter of x. By construction, a is also the first letter of A, and a is the last letter of Â. Since α is a suffix of Â, α̂
also starts by the letter a. Contradiction. �

5. Concluding remarks

Corollary 5, the subsequent lemmas, and Theorem 12 apply straightforwardly to non-crossing paths (and therefore
polyominoes) on the hexagonal lattice. On the other hand, the notion of channel applies to non-crossing paths over the
square lattice but non-trivially since the square lattice allows pairs of unit steps that doesn’t form a turn. This requires a
more technical analysis and will appear in full detail in the second author’s thesis [21].

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading and suggestions that improved the
presentation of the paper.

References

[1] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66 (1966) 1–72.
[2] Y. Gurevich, I. Koriakov, A remark on Berger’s paper on the domino problem, Siberian J. Math. 13 (1972) 459–463 (in Russian).
[3] S.W. Golomb, Checker boards and polyominoes, Amer. Math. Monthly 61 (1954) 675–682.
[4] M. Gardner, Mathematical games, Sci. Amer. (September) (1958) 82–192; (Novvember) 136–142.
[5] A. Daurat, M. Nivat, Salient and reentrant points of discrete sets, in: A. del Lungo, V. di Gesu, A. Kuba (Eds.), Proc. IWCIA’03, International Workshop
on Combinatorial Image Analysis, in: Electronic Notes in Discrete Mathematics, Elsevier Science, Palermo, Italia, 2003.

[6] S.W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings, Princeton Academic Press, Princeton, 1996.

S. Brlek et al. / Discrete Applied Mathematics 157 (2009) 464–475 475

[7] E. Weisstein, Polyomino, fromWolfram Mathworld. Available electronically at: http://mathworld.wolfram.com/Polyomino.html.
[8] H.A.G. Wijshoff, J. van Leeuven, Arbitrary versus periodic storage schemes and tesselations of the plane using one type of polyomino, Inform. Control
62 (1984) 1–25.

[9] H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. Electron. Comput. 10 (1961) 260–268.
[10] H. Freeman, Boundary encoding and processing, in: B. Lipkin, A. Rosenfeld (Eds.), Picture Processing and Psychopictorics, Academic Press, New York,

1970, pp. 241–266.
[11] J.-P. Braquelaire, A. Vialard, Euclidean paths: A new representation of boundary of discrete regions, Graph. Models Image Process. 61 (1999) 16–43.
[12] D. Beauquier, M. Nivat, On translating one polyomino to tile the plane, Discrete Comput. Geom. 6 (1991) 575–592.
[13] I. Gambini, L. Vuillon, An algorithm for deciding if a polyomino tiles the plane by translations, Theoret. Inform. Appl. 41 (2007) 147–155.
[14] M. Lothaire, Applied Combinatorics on Words, Cambridge University Press, Cambridge, 2005.
[15] D. Gusfield, J. Stoye, Linear time algorithms for finding and representing all the tandem repeats in a string, J. Comput. System Sci. 69 (2004) 525–546.
[16] D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University Press, Cambridge, UK, 1997.
[17] S. Brlek, G. Labelle, A. Lacasse, A note on a result of Daurat and Nivat, in: C. de Felice, A. Restivo (Eds.), Proc. DLT 2005, 9-th International Conference

on Developments in Language Theory, in: LNCS, vol. 3572, Springer-Verlag, Palermo, Italia, 2005, pp. 189–198.
[18] S. Brlek, G. Labelle, A. Lacasse, Properties of the contour path of discrete sets, Int. J. Found. Comput. Sci. 17 (3) (2006) 543–556.
[19] L. Ilie, A note on the number of distinct squares in a word, in: S. Brlek, C. Reutenauer (Eds.), Proc. Words2005, 5-th International Conference onWords,

Vol. 36, Publications du LaCIM, Montreal, Canada, 2005, pp. 289–294.
[20] M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
[21] X. Provençal, Ph.D. Thesis, UQAM, Montréal, 2008 (in press).

http://arxiv.org//arxiv://mathworld.wolfram.com/Polyomino.html

	On the tiling by translation problem
	Introduction
	Preliminaries
	Searching the homologous factors
	A linear time algorithm for detecting pseudo-squares
	A linear algorithm for k -square-free pseudo-hexagons

	Polyominoes on the hexagonal lattice
	Polyominoes with holes

	Concluding remarks
	Acknowledgements
	References

