
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 45 (2008) 3153–3172

www.elsevier.com/locate/ijsolstr
Finite deformation higher-order shell models
and rigid-body motions

G.M. Kulikov a,*, E. Carrera b

a Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street 106, 392000 Tambov, Russia
b Department of Aeronautics and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 17 September 2007; received in revised form 13 December 2007
Available online 31 January 2008
Abstract

This paper focuses on the developments of higher-order shell models by employing the new concept of interpolation

surfaces (I-surfaces) inside the shell body. We introduce N (N P 3) I-surfaces and choose the values of displacements with
correspondence to these surfaces as fundamental shell unknowns. Such choice allows, first, to develop various higher-order
shell models in a very compact form and, second, to derive non-linear strain–displacement relationships, which are com-
pletely free for arbitrarily large rigid-body motions. The general 3N-parameter shell model is proposed in the framework of
the Lagrangian description. The special 9, 12 and 15 parameters cases (corresponding to N = 3, 4 and 5) have been dealt in
detail. The proposed shell models account for thickness stretching and the complete 3D constitutive equations are utilized.
The displacement vectors of equally located I-surfaces for each model are represented in a convected curvilinear coordinate
system allowing one to develop directly finite deformation geometrically exact shell finite elements which could be dis-
cussed in future works.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main requirements of any shell theory that is intended for application to computational mechan-
ics (e.g. a finite element method) is that it must lead to strain-free modes for arbitrary rigid-body motions. The
adequate representation of rigid-body motions is a necessary condition if good both accuracy and convergence
properties are required. Therefore, when an inconsistent shell theory is utilized to develop any finite element,
erroneous straining modes under rigid-body motions can be appeared. This problem has been studied for the
classical Kirchhoff–Love shell theory by Cantin (1968) and Dawe (1972). Further developments for the finite
deformation 6-parameter homogeneous and layer-wise shell theories based on the Mindlin kinematics have
been done by Kulikov (2004) and Kulikov and Plotnikova (2003, 2006a). This work proposes higher-order
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shell theories on the basis of the strain–displacement equations, which exactly represent arbitrarily large rigid-
body motions in a convected curvilinear coordinate system.

A large number of works has been already done to develop the finite deformation higher-order shell for-
mulation (Librescu, 1987; Parisch, 1995; Sansour, 1995; Basar et al., 2000; El-Abbasi and Meguid, 2000; San-
sour and Kollmann, 2000; Brank et al., 2002; Krätzig and Jun, 2003; Brank, 2005; Arciniega and Reddy, 2007)
with thickness stretching. These articles except for purely theoretical contributions of Librescu (1987) and
Krätzig and Jun (2003) are devoted to the 7-parameter shell theory in which the transverse normal strain var-
ies at least linearly through the shell thickness. This fact is of great importance since the 6-parameter shell for-
mulation based on the complete 3D constitutive equations exhibits thickness locking as mentioned in works
(Kim and Lee, 1988; Buchter et al., 1994; Park et al., 1995; Kulikov, 2001; Sze, 2002; Kulikov and Plotnikova,
2006a; Carrera and Brischetto, 2007). The errors caused by thickness locking do not decrease with the mesh
refinement because the reason of stiffening lies in the shell theory itself rather than the finite element discret-
ization. We refer to review papers of Carrera (2002, 2003), where one may read that a conventional way for
developing the higher-order shell formulation is to utilize either quadratic or cubic series expansions in the
thickness coordinate and to choose as unknowns the generalized displacements of the reference (middle) sur-
face. A Unified Formulation is also discussed in the latter paper (Carrera, 2003), which permits to develop
plate/shell theories in terms of a few fundamental nuclei whose forms do not depend on the order of the used
expansion.

In this paper, the higher-order shell models are developed by using the new concept that employs N

interpolation surfaces (I-surfaces) inside the shell body, in order to choose displacements of these surfaces
as fundamental unknowns. Such choice of displacements with the consequent use of the Lagrange poly-
nomials in the thickness direction allows one to represent all three higher-order shell formulations devel-
oped in a compact form (similar to that used by Carrera, 2003) and to derive non-linear strain–
displacement equations which are completely free for large rigid-body motions. Taking into account that
displacement vectors of I-surfaces are introduced and resolved in the reference surface frame the proposed
higher-order shell formulations are very promising for developing high performance finite rotation geomet-
rically exact shell elements (Kulikov and Plotnikova, 2006b, 2007). The term ‘‘geometrically exact” reflects
the fact that coefficients of the first and second fundamental forms, and Christoffel symbols are taken
exactly at every Gauss integration point. Therefore, no approximation of the reference surface is needed.
The advantage of the geometrically exact shell element formulation for coarse meshes is discussed in afore-
cited papers.

It should be mentioned that in some works (see e.g. Parisch, 1995; Kulikov, 2001, 2004; Carrera, 2003;
Kulikov and Plotnikova, 2003, 2007) on solid-shell elements the displacement vectors of the bottom and
top surfaces are also utilized. An idea of this approach can be traced back to the contribution of Schoop
(1986). But in our higher-order shell formulation the use of bottom and top surfaces has a principally another
mechanical sense: these are just a part of a set of I-surfaces inside the shell body. To substantiate this point of
view, we remark that respectively N = 3, 4 and 5 equally located surfaces have been chosen as I-surfaces (such
assumption is not mandatory, the I-surfaces could be also located with different relative distances). Thus, the
resulting shell models are characterized by 3N parameters, i.e., we deal with 9, 12 and 15-parameter shell
models.

It is of interest to notice that there is a connection between the proposed higher-order solid-shell model
and the Lagrange continuum-based element (Zienkievicz and Taylor, 2000). The main difference consists in
the fact that in our solid-shell formulation the Lagrange polynomials in the thickness direction are utilized
before starting the discretization procedure by the finite element method. Thus, we deal with the stress
resultant solid-shell theory, which permits one to derive equilibrium equations in both weak and strong
forms. The latter can be useful for the analytical developments. Besides, the proposed solid-shell formu-
lation based on the I-surface technique clears the way for developing efficient geometrically exact higher-
order shell elements.

The attention of the present work has been restricted to the full description of fundamentals of the non-lin-
ear shell theory based on the I-surfaces including a weak form of equilibrium equations. The finite element
formulations and their applications to homogeneous structures as well as the extension to laminated compos-
ite structures could be conveniently discussed in future developments.
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2. Preliminaries

Let us consider a thick shell of the thickness h. The shell can be defined as a 3D body of volume V bounded
by two outer surfaces Xb and Xt, located at the distances db and dt measured with respect to the reference sur-
face X, and the edge boundary surface R. The reference surface is assumed to be sufficiently smooth and with-
out any singularities. Let the reference surface be referred to the general curvilinear coordinates h1 and h2,
whereas the coordinate h3 = z is oriented along the unit vector a3 = a3 normal to the reference surface.

We now introduce all needed notations for describing the initial shell configuration (see Figs. 1 and 2):

– position vector of any point of the reference surface r = r(h1,h2);
– covariant and contravariant base vectors of the reference surface
aa ¼ r;a; aa � ab ¼ db
a ; ð1Þ
– covariant and contravariant components of the metric tensor of the reference surface
aab ¼ aa � ab; aab ¼ aa � ab; ð2Þ

– determinant of the metric tensor of the reference surface a = det(aab);
– mixed components of the curvature tensor
bb
a ¼ �ab � a3;a; ð3Þ
– position vector of any point in the shell body
R ¼ rþ h3a3; ð4Þ

– mixed components of the 3D shifter tensor
lb
a ¼ db

a � h3bb
a ; ð5Þ
– covariant base vectors in the shell body
ga ¼ R;a ¼ lb
aab; g3 ¼ R;3 ¼ a3; ð6Þ
– covariant components of the 3D metric tensor
gab ¼ ga � gb ¼ lc
al

d
bacd; gi3 ¼ gi � g3 ¼ di3; ð7Þ
– determinant of the 3D metric tensor g = det(gij);
– determinant of the shifter tensor l ¼

ffiffiffiffiffiffiffiffi
g=a

p
;

Fig. 1. Geometry of the shell and I-surfaces for the 3N-parameter shell model.



Fig. 2. Geometry and kinematics of the shell.
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– I-surfaces X1 = Xb, X2, . . . ,XN�1, XN = Xt defined by thickness coordinates
zI ¼ �db þ ðI � 1Þh=ðN � 1Þ; z1 ¼ �db; zN ¼ dt; ð8Þ
– position vectors of I-surfaces
RI ¼ rþ zIa3; R1 ¼ Rb; RN ¼ Rt; ð9Þ
– mixed components of the shifter tensors of I-surfaces
lIb
a ¼ db

a � zIb
b
a ; ð10Þ
– covariant base vectors of I-surfaces
gI
a ¼ RI

;a ¼ lIb
a ab; gI

3 ¼ a3; ð11Þ
– covariant components of the metric tensors of I-surfaces
gI
ab ¼ gI

a � gI
b ¼ lIc

a lId
b acd; gI

i3 ¼ gI
i � gI

3 ¼ di3; ð12Þ
– determinants of the metric tensors of I-surfaces gI ¼ detðgI
ijÞ;

– determinants of the shifter tensors of I-surfaces lI ¼
ffiffiffiffiffiffiffiffiffi
gI=a

p
;

– partial derivatives (. . .),i in V with respect to coordinates hi;
– covariant derivatives (. . .)ja in X with respect to coordinates ha.

Here and in the following developments, Greek tensorial indices a, b, c, d range from 1 to 2; Latin tensorial
indices i, j, m, n range from 1 to 3; indices I, J, K identify the belonging of any quantity to the I-surfaces and
run from 1 to N. Note also that from Eqs. (4), (6), (9) and (11) follow
R ¼ 1

h
ðdt � zÞR1 þ 1

h
ðzþ dbÞRN ; ð13Þ

ga ¼
1

h
ðdt � zÞg1

a þ
1

h
ðzþ dbÞgN

a ; ð14Þ
where base vectors of the bottom and top surfaces are
g1
a ¼ l1b

a ab; gN
a ¼ lNb

a ab: ð15Þ
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2.1. 9-Parameter shell model

In accordance with Fig. 3(a) as I-surfaces the bottom, middle and top surfaces are chosen hence N = 3 and I

runs from 1 to 3.
The position vector and base vectors of the shell can be expressed as
Fig. 3.
param
R ¼ L3
I RI ; ð16Þ

ga ¼ L3
I gI

a; ð17Þ

where L3

I ðzÞ are the Lagrange polynomials of the second order defined as
L3
1 ¼

2

h2
ðz2 � zÞðz3 � zÞ;

L3
2 ¼

4

h2
ðz� z1Þðz3 � zÞ;

L3
3 ¼

2

h2
ðz� z1Þðz� z2Þ:

ð18Þ
Remark 1. From geometrical point of view we have
R1 ¼ Rb; R2 ¼ 1

2
Rb þ

1

2
Rt; R3 ¼ Rt: ð19Þ
The use of Eqs. (18) and (19) in Eq. (16) shows that both expressions for the position vector (13) and (16) are
equivalent. The same conclusion can be done concerning base vectors (14) and (17).
2.2. 12-Parameter shell model

In this model, we choose four equally located I-surfaces as depicted in Fig. 3(b). Thus, N = 4 and I runs
from 1 to 4.

The position vector and base vectors of the shell are written as
R ¼ L4
I RI ; ð20Þ

ga ¼ L4
I gI

a; ð21Þ
Displacement field through the thickness of the shell for (a) 9-parameter model (N = 3), (b) 12-parameter model (N = 4), (c) 15-
eter model (N = 5), and (d) 3N-parameter model.
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where L4
I ðzÞ are the Lagrange polynomials of the third order given by
L4
1 ¼

9

2h3
ðz2 � zÞðz3 � zÞðz4 � zÞ;

L4
2 ¼

27

2h3
ðz� z1Þðz3 � zÞðz4 � zÞ;

L4
3 ¼

27

2h3
ðz� z1Þðz� z2Þðz4 � zÞ;

L4
4 ¼

9

2h3
ðz� z1Þðz� z2Þðz� z3Þ:

ð22Þ
Remark 2. Using geometrical relations
R1 ¼ Rb; R2 ¼ 2

3
Rb þ

1

3
Rt;

R3 ¼ 1

3
Rb þ

2

3
Rt; R4 ¼ Rt

ð23Þ
and formulas for Lagrange polynomials (22) in Eqs. (20) and (21), we get again Eqs. (13) and (14).
2.3. 15-Parameter shell model

Herein, as displayed in Fig. 3(c), five equally located surfaces are chosen as I-surfaces, that is, N = 5 and I

runs from 1 to 5.
The position vector and base vectors of the shell are written as
R ¼ L5
I RI ; ð24Þ

ga ¼ L5
I gI

a; ð25Þ
where L5
I ðzÞ are the Lagrange polynomials of the fourth order defined as
L5
1 ¼

32

3h4
ðz2 � zÞðz3 � zÞðz4 � zÞðz5 � zÞ;

L5
2 ¼

128

3h4
ðz� z1Þðz3 � zÞðz4 � zÞðz5 � zÞ;

L5
3 ¼

64

h4
ðz� z1Þðz� z2Þðz4 � zÞðz5 � zÞ; ð26Þ

L5
4 ¼

128

3h4
ðz� z1Þðz� z2Þðz� z3Þðz5 � zÞ;

L5
5 ¼

32

3h4
ðz� z1Þðz� z2Þðz� z3Þðz� z4Þ:
Remark 3. From geometrical point of view we have
R1 ¼ Rb; R2 ¼ 3

4
Rb þ

1

4
Rt; R3 ¼ 1

2
Rb þ

1

2
Rt; ð27Þ

R4 ¼ 1

4
Rb þ

3

4
Rt; R5 ¼ Rt:
As a result, corresponding Eqs. (13), (14), (24) and (25) are also equivalent.
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2.4. 3N-parameter shell model

Finally, we choose N equally located I-surfaces as shown in Fig. 3(d). Therefore, the position vector and
base vectors in the shell body can be represented as
R ¼ LN
I RI ; ð28Þ

ga ¼ LN
I gI

a; ð29Þ
where LN
I ðzÞ are the Lagrange polynomials of the (N � 1)th order and position vectors of I-surfaces are
RI ¼ 1

h
ðdt � zIÞRb þ

1

h
ðdb þ zIÞRt:
This general shell formulation will not be considered in details anyway the developments in the next sections
will conveniently refer to it.

3. Kinematic description of deformed shell

The first fundamental assumption for the proposed higher-order shell theory, which is partially illustrated in
Fig. 3, is made at this point introduced.

Assumption 1. The displacement field is approximated in the thickness direction using general description of
the 3N-parameter shell model as follows:
u ¼ LN
I uI ; ð30Þ
where uI(h1,h2) are the displacement vectors of I-surfaces.
From Eqs. (28) and (30) we find the following expression for the position vector of the deformed shell:
R ¼ Rþ u ¼ LN
I RI ; ð31Þ
where RIðh1; h2Þ are the position vectors of I-surfaces given by
RI ¼ RI þ uI : ð32Þ

Covariant base vectors in the current shell configuration, allowing for Eqs. (11) and (30)–(32), can be writ-

ten as
�ga ¼ R;a ¼ LN
I �gI

a; ð33aÞ
�g3 ¼ R;3 ¼ a3 þ b; ð33bÞ
where
�gI
a ¼ RI

;a ¼ gI
a þ uI

;a; ð34Þ
b ¼ u;3 ¼ LN

I;3uI : ð35Þ
It is of extreme interest to notice that the introduction of the transverse rate vector b plays a central role in the
present higher-order shell formulation. A discussion on that is made in section 5, where rigid-body motion
representations of its vector at the I-surfaces are studied. The explicit forms of the derivatives of Lagrange
polynomials LN

I ;3 for the three shell models are presented in Appendix A.
4. Strain–displacement relationships

According to the total Lagrangian description the energetically conjugate second Piola–Kirchhoff stress
tensor and Green–Lagrange strain tensor are employed. The Green–Lagrange strain tensor can be written as
2eij ¼ �gi � �gj � gi � gj: ð36Þ
Substituting base vectors (33) into relationships (36) and allowing for Eqs. (29) and (34), one derives
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2eab ¼ LN
I LN

J ðuI
;a � gJ

b þ uJ
;b � gI

a þ uI
;a � uJ

;bÞ; ð37aÞ
2ea3 ¼ LN

I ðb � gI
a þ uI

;a � a3 þ b � uI
;aÞ; ð37bÞ

2e33 ¼ 2b � a3 þ b � b: ð37cÞ
The analysis of Eqs. (35) and (37) shows that: in-plane strains eab are the polynomials of the (2N � 2)th order;
transverse shear strains ea3 are the polynomials of the (2N � 3)th order; and a transverse normal strain e33 is
the polynomial of the (2N � 4)th order.

To simplify the higher-order shell formulation, the second fundamental assumption of the present theory is
introduced.

Assumption 2. All components of the Green–Lagrange strain tensor are distributed through the thickness of
the shell according to the displacement distribution (30), that is,
~eij ¼ LN
I eI

ij; ð38Þ
where eI
ij ¼ eijðzIÞ are the exact strains of I-surfaces defined as
2eI
ab ¼ uI

;a � gI
b þ uI

;b � gI
a þ uI

;a � uI
;b; ð39aÞ

2eI
a3 ¼ bI � gI

a þ uI
;a � a3 þ bI � uI

;a; ð39bÞ
2eI

33 ¼ 2bI � a3 þ bI � bI : ð39cÞ
Here, bI(h1,h2) are the transverse rate vectors of I-surfaces given by
bI ¼ bðzIÞ ¼ LN
J ;3ðzIÞuJ : ð40Þ
As can be seen, this assumption is very robust because now all strain components ~eij are the polynomials of the
(N � 1)th order that simplifies sufficiently the higher-order shell formulation.

Remark 4. It can be verified using a property of Lagrange polynomials (18), (22) and (26), namely,
LN

I ðzJ Þ ¼ dIJ that simplified strains ~eij satisfy linking conditions
~eijðzIÞ ¼ eijðzIÞ ¼ eI
ij:
This fact is illustrated in Fig. 4 by means of in-plane strains.
Let us represent displacement vectors of I-surfaces in a form
uI ¼ uI
i a

i: ð41Þ
It should be remarked that displacement vectors are resolved in the contravariant reference surface basis ai

that allows us to reduce the computational cost of numerical integration in the evaluation of the stiffness ma-
trix (Kulikov and Plotnikova, 2006b, 2007).

The derivatives from strain–displacement relationships (39) can be expressed as

uI
;a ¼ uI

i jaai; ð42Þ
uI

i ja ¼ uI
i;a � Cj

iauI
j; ð43Þ
where Cj
ia are the Christoffel symbols defined as
Ci
ab ¼ ai � aa;b; Cb

3a ¼ �bb
a ; C3

3a ¼ 0: ð44Þ
For the transverse rate vectors of I-surfaces we have the similar presentation in this contravariant basis
bI ¼ bI
i a

i: ð45Þ

Substituting Eqs. (11), (42) and (45) into strain–displacement relationships (39), we can write these ones in a

scalar form as



Fig. 4. Approximate ~eab ( ) and exact eab ( ) in-plain strain distributions through the thickness of the shell for (a) 9-parameter
model, where eab and ~eab are the polynomials of the fourth and second orders; (b) 12-parameter model, where eab and ~eab are the
polynomials of the sixth and third orders; (c) 15-parameter model, where eab and ~eab are the polynomials of the eighth and fourth orders;
and (d) 3N-parameter model, where eab and ~eab are the polynomials of the (2N � 2)th and (N � 1)th orders.
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2eI
ab ¼ lIc

b uI
cja þ lIc

a uI
cjb þ aijuI

i jauI
jjb; ð46aÞ

2eI
a3 ¼ lIc

a bI
c þ uI

3ja þ aijbI
i u

I
jja; ð46bÞ

2eI
33 ¼ 2bI

3 þ aijbI
i b

I
j: ð46cÞ
Here, for convenience it has been introduced an additional notation ai3 = di3. In orthogonal curvilinear refer-
ence surface coordinates the strain–displacement relationships (46) are represented in a simpler form and may
be useful for the geometrically exact shell element formulation (Kulikov and Plotnikova, 2006b, 2007). This is
discussed in Appendix B.

Finally, we consider presentations of the transverse rate vectors of I-surfaces for the developed shell
models.
4.1. 9-Parameter shell model

In this model N = 3 and according to Eq. (40) we have
bI ¼ L3
J ;3ðzIÞuJ : ð47Þ
The use of Eq. (47) and Table 1 leads to
b1 ¼ 1

h
ð�3u1 þ 4u2 � u3Þ;

b2 ¼ 1

h
ð�u1 þ u3Þ;

b3 ¼ 1

h
ðu1 � 4u2 þ 3u3Þ:

ð48Þ



Table 1
Values of derivatives of Lagrange polynomials of the second order at I-surfaces

Coordinates L3
1;3 L3

2;3 L3
3;3

z1 � 3
h

4
h � 1

h

z2 � 1
h 0 1

h

z3
1
h � 4

h
3
h
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4.2. 12-Parameter shell model

In this model N = 4 and
Table
Values

Coord

z1

z2

z3

z4
bI ¼ L4
J ;3ðzIÞuJ : ð49Þ
From Eq. (49) and Table 2 we derive
b1 ¼ 1

2h
ð�11u1 þ 18u2 � 9u3 þ 2u4Þ;

b2 ¼ 1

2h
ð�2u1 � 3u2 þ 6u3 � u4Þ;

b3 ¼ 1

2h
ðu1 � 6u2 þ 3u3 þ 2u4Þ;

b4 ¼ 1

2h
ð�2u1 þ 9u2 � 18u3 þ 11u4Þ:

ð50Þ
4.3. 15-Parameter shell model

In this model N = 5 and
bI ¼ L5
J ;3ðzIÞuJ : ð51Þ
Using Eq. (51) and Table 3, one finds
b1 ¼ 1

3h
ð�25u1 þ 48u2 � 36u3 þ 16u4 � 3u5Þ;

b2 ¼ 1

3h
ð�3u1 � 10u2 þ 18u3 � 6u4 þ u5Þ;

b3 ¼ 1

3h
ðu1 � 8u2 þ 8u4 � u5Þ;

b4 ¼ 1

3h
ð�u1 þ 6u2 � 18u3 þ 10u4 þ 3u5Þ;

b5 ¼ 1

3h
ð3u1 � 16u2 þ 36u3 � 48u4 þ 25u5Þ:

ð52Þ
2
of derivatives of Lagrange polynomials of the third order at I-surfaces

inates L4
1;3 L4

2;3 L4
3;3 L4

4;3

� 11
2h

9
h � 9

2h
1
h

� 1
h � 3

2h
3
h � 1

2h

1
2h � 3

h
3
2h

1
h

� 1
h

9
2h � 9

h
11
2h



Table 3
Values of derivatives of Lagrange polynomials of the fourth order at I-surfaces

Coordinates L5
1;3 L5

2;3 L5
3;3 L5

4;3 L5
5;3

z1 � 25
3h

16
h � 12

h
16
3h � 1

h

z2 � 1
h � 10

3h
6
h � 2

h
1

3h

z3
1

3h � 8
3h 0 8

3h � 1
3h

z4 � 1
3h

2
h � 6

h
10
3h

1
h

z5
1
h � 16

3h
12
h � 16

h
25
3h
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4.4. 3N-parameter shell model

The extension to the case of N I-surfaces is for sake of brevity omitted. However, such an extension does
not introduce any difficulties.

5. Rigid-body motions

An arbitrarily large rigid-body motion can be defined as
ðuÞRigid ¼ Dþ ðU� IÞR; ð53Þ

where D = Dia

i is the constant displacement (translation) vector; I is the identity matrix; U is the orthogonal
rotation matrix (see e.g. Kulikov, 2004). In particular, rigid-body displacements of I-surfaces are written as
ðuIÞRigid ¼ Dþ URI � RI ð54Þ

and derivatives of first two terms will be
D;a ¼ 0; ð55Þ
ðURIÞ;a ¼ URI

;a ¼ UgI
a: ð56Þ
Using Eqs. (54)–(56), one obtains
ðuI
;aÞ

Rigid ¼ UgI
a � gI

a: ð57Þ
Substituting rigid-body displacements (54) into Eq. (48) and taking into account Eqs. (9) and (19), we derive
ðb1ÞRigid ¼ 1

h
f�3½Dþ ðU� IÞR1� þ 4½Dþ ðU� IÞR2� � ½Dþ ðU� IÞR3�g

¼ 1

h
ðU� IÞð�3R1 þ 4R2 � R3Þ ¼ 1

h
ðU� IÞðRt � RbÞ ¼ Ua3 � a3; ð58aÞ

ðb2ÞRigid ¼ 1

h
f�D� ðU� IÞR1 þ Dþ ðU� IÞR3g ¼ 1

h
ðU� IÞðR3 � R1Þ ¼ 1

h
ðU� IÞðRt � RbÞ

¼ Ua3 � a3; ð58bÞ

ðb3ÞRigid ¼ 1

h
f½Dþ ðU� IÞR1� � 4½Dþ ðU� IÞR2� þ 3½Dþ ðU� IÞR3�g

¼ 1

h
ðU� IÞðR1 � 4R2 þ 3R3Þ ¼ 1

h
ðU� IÞðRt � RbÞ ¼ Ua3 � a3: ð58cÞ
In a general notation formulas (58) are written as
ðbIÞRigid ¼ Ua3 � a3: ð59Þ

Note that these results can be easily extended to the 12-parameter and 15-parameter shell models employing
correspondingly Eqs. (9), (23) and (50), and Eqs. (9), (27) and (52).
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It may be verified by using Eqs. (57) and (59) that strains of I-surfaces (39) are all zero in a general large
rigid-body motion:
1 By
2ðeI
ijÞ

Rigid ¼ ðUgI
i Þ � ðUgI

jÞ � gI
i � gI

j ¼ 0: ð60Þ
This conclusion is true because an orthogonal transformation retains the scalar product of vectors. So, due to
relations (60) Green–Lagrange strains (38) exactly represent arbitrarily large rigid-body motions, that is,
ð~eijÞRigid ¼ LN
I ðeI

ijÞ
Rigid ¼ 0: ð61Þ
The results obtained in this section clearly show the convenience of referring to I-surfaces in the development
of higher-order theories for shells.

6. Principle of virtual work

The internal virtual work in a 3D shell body is expressed as
dW int ¼
Z Z Z

V
lsijd~eij

ffiffiffi
a
p

dh1 dh2 dh3; ð62Þ
where sij are the components of the second Piola–Kirchhoff stress tensor.
Substituting strains (38) in Eq. (62) and introducing stress resultants
Sij
I ¼

Z dt

�db

lsijLN
I dh3; ð63Þ
one finds
dW int ¼
ZZ

X
Sij

I deI
ij

ffiffiffi
a
p

dh1 dh2: ð64Þ
This study focuses on linear elastic materials. The natural choice for constitutive equations is the generalized
Hooke’s law:
sij ¼ Cijmn~emn; ð65Þ

where Cijmn are the components of the material tensor.

The use of Eqs. (38) and (65) in a formula for stress resultants (63) yields
Sij
I ¼ Dijmn

IJ eJ
mn; ð66Þ
where
Dijmn
IJ ¼

Z dt

�db

lCijmnLN
I LN

J dh3: ð67Þ
Remark 5. To carry out the exact analytical integration1 in Eq. (67), the determinant of the 3D shifter tensor
can be approximated by applying the Lagrange expansion that has been extensively used in this paper, i.e.,
l ¼ LN
KlK ; ð68Þ
where values of this determinant at the I-surfaces are
lK ¼
ffiffiffiffiffiffiffiffiffiffi
gK=a

p
: ð69Þ
As a result, the following compact and convenient formula is obtained:
using any software for the symbolic mathematical analysis.
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Dijmn
IJ ¼

Z dt

�db

lKCijmnLN
I LN

J LN
K dh3: ð70Þ
In practice, for thin shells the simplest approximation may be employed
l ¼ 1

N

X
K

lK : ð71Þ
Consider next the virtual work of the external forces. For the sake of simplicity we limit our discussion to
conservative surface loading. In such case one obtains
dW ext ¼
ZZ

X
ðlN pi

tduN
i � l1pi

bdu1
i Þ

ffiffiffi
a
p

dh1 dh2 þ dW R
ext; ð72Þ
where dW R
ext is the virtual work done by external loads acting on the boundary surface R; pi

b and pi
t are the

contravariant components of the traction vectors pb and pt applied to the bottom and top surfaces.
The principle of the virtual work is now stated as
dW int ¼ dW ext: ð73Þ

From the principal of the virtual work we can derive equilibrium equations in both weak and strong forms.
However, the latter is usually not considered for computational developments. Thus, our attention will be re-
stricted to the weak form formulation.
7. Weak form of equilibrium equations

It is well known that the use of the tensor-based shell formulation in conjunction with higher-order elements
for the non-linear analysis of both thin and thick shells leads to an effective computational approach. In this
context, we address concisely an implementation of the proposed 9-parameter shell formulation for construct-
ing geometrically exact shell elements (Fig. 5). The term ‘‘geometrically exact” is explained in Section 1.
Fig. 5. Biunit square in (n1,n2)-space mapped into the geometrically exact shell element in (x1,x2,x3)-space.
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To realize the above, we write the principle of the virtual work (64), (72) and (73) for the shell element in
matrix notations as follows:
Z Z

Sel

½dðeIÞTDIJ e
J � d~uTp�

ffiffiffi
a
p

Kdn1 dn2 � dW R
ext ¼ 0; ð74Þ
where Sel = [�1,1] � [�1,1] is the biunit square in (n1,n2)- space; K is the determinant of the transformation
matrix; ~u is the displacement vector of the shell; eI are the strain vectors of I-surfaces; p is the surface traction
vector; DIJ are the constitutive stiffness matrices given by
~u ¼ ½u1
1 u1

2 u1
3 u2

1 u2
2 u2

3 u3
1 u3

2 u3
3�

T
; eI ¼ ½eI

11 eI
22 eI

33 2eI
12 2eI

13 2eI
23�

T
; ð75Þ

p ¼ ½�l1p1
b � l1p2

b � l1p3
b 0 0 0l3p1

t l
3p2

t l
3p3

t �
T
;

DIJ ¼
Z dt

�db

lCL3
I L3

J dh3; K ¼ det
ohb

ona

� �
; ð76Þ
where C is the elastic coefficients matrix defined as
C ¼

C1111 C1122 C1133 C1112 0 0

C2211 C2222 C2233 C2212 0 0

C3311 C3322 C3333 C3312 0 0

C1211 C1222 C1233 C1212 0 0

0 0 0 0 C1313 C1323

0 0 0 0 C2313 C2323

2
666666664

3
777777775
: ð77Þ
The finite element approximation of the displacement field can be written as
~u ¼
X

r

N rur ðr ¼ 1; 2; . . . ;NNÞ; ð78Þ
where Nr(n
1,n2) are the shape functions of the element; NN is the number of nodes; ur are the displacement

vectors of element nodes given by
ur ¼ ½u1
1r u1

2r u1
3r u2

1r u2
2r u2

3r u3
1r u3

2r u3
3r�

T
: ð79Þ
It is convenient further to introduce a displacement vector of the shell element of order NDOF = 9 � NN:
U ¼ ½uT
1 uT

2 . . . uT
NN �

T
: ð80Þ
The use of this notation and approximation (78) into strain–displacement relationships (46) yields
eI
11 ¼

X
p

BI
1pU p þ

X
p;q

AI
1pqU pUq;

eI
22 ¼

X
p

BI
2pU p þ

X
p;q

AI
2pqU pUq;

. . .

2eI
23 ¼

X
p

BI
6pU p þ

X
p;q

AI
6pqU pU q;

ð81Þ
where coefficients BI
sp and AI

spq depend on the shape functions and their derivatives and correspond to the linear
and non-linear strain–displacement transformations. Throughout this section the index s runs from 1 to 6 and
the indices p, q run from 1 to NDOF. Besides, a symmetry condition
AI
spq ¼ AI

sqp ð82Þ
holds.
In a matrix form relations (81) can be represented in the following form (Kulikov and Plotnikova, 2007):
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eI ¼ BIUþ ðAIUÞU ¼ ðBI þ AIUÞU; ð83Þ
where BI are the matrices of order 6 � NDOF; AI are the 3D arrays of order 6 � NDOF � NDOF; AIU are the
matrices of order 6 � NDOF such that their elements are defined as
ðAI UÞsp ¼
X

q

AI
spqU q: ð84Þ
Due to symmetry of the 3D arrays (82), we have
deI ¼ ðBI þ 2AI UÞdU: ð85Þ
Introducing Eqs. (78), (83) and (85) into variational equation (74), one obtains element equilibrium
equations
KSðUÞU ¼ F; ð86Þ
where F is the force vector and KS(U) is the secant stiffness matrix given by
KSðUÞ ¼
Z Z

Sel

ðBI þ 2AIUÞTDIJ ðBJ þ AJ UÞ
ffiffiffi
a
p

Kdn1 dn2: ð87Þ
It is remarkable that the stiffness matrix (87) has been written in a very compact form, which is straightforward
for the finite element implementation. Due to the fact that all non-linear terms have been retained in strain–
displacement relationships (81), equilibrium equations (86) are highly non-linear algebraic equations. Future
developments will be devoted to the approximate solution of these equations by the Newton–Raphson meth-
od. To realize the above, the symmetric tangent stiffness matrix KT should be consistently derived. A short
discussion on that is presented in Appendix C. Thus, the systems of linearized algebraic equations at each iter-
ation and load step can be solved efficiently.
8. Conclusions

A compact and convenient finite deformation higher-order shell formulation has been presented in this
work. This formulation is based on the use of displacements of I-surfaces inside the shell body as fundamental
unknowns. In the case of choosing three, four and five equally located surfaces as I-surfaces, respectively 9, 12
and 15-parameter shell models have been developed. Such choice of unknowns allowed us to derive non-linear
strain–displacement relationships, which exactly represent arbitrarily large rigid-body motions in a convected
curvilinear coordinate system. All three finite deformation higher-order shell models take into account the
non-linear distribution of the transverse normal strain through the shell thickness and, therefore, the 3D con-
stitutive equations are utilized.

A weak form of equilibrium equations for the tensor-based 9-parameter shell formulation has been derived.
It is noteworthy that the stiffness matrix has a very compact form that can be used efficiently for development
of geometrically exact shell elements undergoing finite displacements and rotations.

The future and ongoing works will present the finite element implementation of the proposed theories. In
particular, the use of I-surfaces could be extended to the analysis of laminate structures; the I-surfaces tech-
nique should be very convenient to develop so-called global–local approaches.
Appendix A. Derivatives of Lagrange polynomials

Herein, we represent the derivatives of Lagrange polynomials. Note that in accordance with a property of
Lagrange polynomials (18), (22) and (26), namely,
X

I

LN
I ¼ 1; z 2 ½�db; dt� ðA1Þ
the identity for derivatives
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X
I

LN
I ;3 ¼ 0; z 2 ½�db; dt� ðA2Þ
holds.
A.1. Lagrange polynomials of the second order

From Eq. (18) follows
L3
1;3 ¼

2

h2
ð2z� z2 � z3Þ;

L3
2;3 ¼

4

h2
ð�2zþ z1 þ z3Þ;

L3
3;3 ¼

2

h2
ð2z� z1 � z2Þ:

ðA3Þ
A.2. Lagrange polynomials of the third order

From Eq. (22) we find
L4
1;3 ¼

9

2h3
½�ðz3 � zÞðz4 � zÞ � ðz2 � zÞðz4 � zÞ � ðz2 � zÞðz3 � zÞ�;

L4
2;3 ¼

27

2h3
½ðz3 � zÞðz4 � zÞ � ðz� z1Þðz4 � zÞ � ðz� z1Þðz3 � zÞ�;

L4
3;3 ¼

27

2h3
½ðz� z2Þðz4 � zÞ þ ðz� z1Þðz4 � zÞ � ðz� z1Þðz� z2Þ�;

L4
4;3 ¼

9

2h3
½ðz� z2Þðz� z3Þ þ ðz� z1Þðz� z3Þ þ ðz� z1Þðz� z2Þ�:

ðA4Þ
A.3. Lagrange polynomials of the fourth order

From Eq. (26) one derives
L5
1;3 ¼

32

3h4
½�ðz3 � zÞðz4 � zÞðz5 � zÞ � ðz2 � zÞðz4 � zÞðz5 � zÞ

� ðz2 � zÞðz3 � zÞðz5 � zÞ � ðz2 � zÞðz3 � zÞðz4 � zÞ�;

L5
2;3 ¼

128

3h4
½ðz3 � zÞðz4 � zÞðz5 � zÞ � ðz� z1Þðz4 � zÞðz5 � zÞ

� ðz� z1Þðz3 � zÞðz5 � zÞ � ðz� z1Þðz3 � zÞðz4 � zÞ�;

L5
3;3 ¼

64

h4
½ðz� z2Þðz4 � zÞðz5 � zÞ þ ðz� z1Þðz4 � zÞðz5 � zÞ

� ðz� z1Þðz� z2Þðz5 � zÞ � ðz� z1Þðz� z2Þðz4 � zÞ�;

L5
4;3 ¼

128

3h4
½ðz� z2Þðz� z3Þðz5 � zÞ þ ðz� z1Þðz� z3Þðz5 � zÞ

þ ðz� z1Þðz� z2Þðz5 � zÞ � ðz� z1Þðz� z2Þðz� z3Þ�;

L5
5;3 ¼

32

3h4
½ðz� z2Þðz� z3Þðz� z4Þ þ ðz� z1Þðz� z3Þðz� z4Þ

þ ðz� z1Þðz� z2Þðz� z4Þ þ ðz� z1Þðz� z2Þðz� z3Þ�:

ðA5Þ
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A.4. Verification

It can be verified that all polynomials (A3)–(A5) satisfy Eq. (A2) exactly.
Appendix B. Strain–displacement relationships in orthogonal curvilinear coordinate system

In the following, we briefly summarize the strain–displacement relationships for one particular case. If the
reference surface X is referred to the orthogonal curvilinear coordinates, which coincide with the lines of prin-
cipal curvatures of its surface, then
aa ¼ Aaea; a3 ¼ e3;

b1
1 ¼ �k1; b2

2 ¼ �k2; b2
1 ¼ b1

2 ¼ 0;
ðB1Þ
where ei are the orthonormal base vectors of the reference surface; Aa and ka are the coefficients of the first
fundamental form and principal curvatures of the reference surface. The use of Eq. (B1) in Eqs. (10) and
(11) leads to
lI1
1 ¼ cI

1 ¼ 1þ k1zI ; lI2
2 ¼ cI

2 ¼ 1þ k2zI ; lI2
1 ¼ lI1

2 ¼ 0; ðB2Þ
gI

a ¼ AacI
aea; gI

3 ¼ e3: ðB3Þ
From Eqs. (39) and (B3) follow the needed strain–displacement relationships
2e
�I
ab ¼

1

Aa
cI

buI
;a � eb þ

1

Ab
cI

auI
;b � ea þ

1

AaAb
uI
;a � uI

;b; ðB4Þ

2e
�I
a3 ¼ cI

ab
I � ea þ

1

Aa
uI
;a � ðe3 þ bIÞ;

2e
�I

33 ¼ bI � ð2e3 þ bIÞ;
where e
�I

ij are the components of the Green–Lagrange strain tensor at the I-surfaces in the orthonormal refer-
ence surface frame.

The displacement vectors and transverse rate vectors of I-surfaces can be represented in this orthonormal
frame as follows:
uI ¼
X

i

u
� I

i ei; ðB5Þ

bI ¼
X

i

b
�

I
i ei: ðB6Þ
Taking into account Eq. (B5) and well-known formulas for the derivatives of unit vectors ei with respect to
orthogonal coordinates (see e.g. Kulikov and Plotnikova, 2007)
1

Aa
ea;a ¼ �Babeb � kae3;

1

Aa
eb;a ¼ Babea for b 6¼ a;

1

Aa
e3;a ¼ kaea; Bab ¼

1

AaAb
Aa;b for b 6¼ a;

ðB7Þ
one derives
1

Aa
uI
;a ¼

X
i

kI
iaei; ðB8Þ
where
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kI
aa ¼

1

Aa
u
� I
a;a þ Babu

� I
b þ kau

� I
3 for b 6¼ a;

kI
ba ¼

1

Aa
u
� I
b;a � Babu

� I
a for b 6¼ a;

kI
3a ¼

1

Aa
u
� I

3;a � kau
� I
a:

ðB9Þ
Substituting Eqs. (B6) and (B8) into Eq. (B4), we arrive at the final strain–displacement relationships
2e
�I
ab ¼ cI

ak
I
ab þ cI

bk
I
ba þ

X
i

kI
iak

I
ib;

2e
�I
a3 ¼ cI

ab
�

I
a þ kI

3a þ
X

i

b
�

I
i k

I
ia;

2e
�I

33 ¼ 2b
�

I
3 þ

X
i

b
�

I
i b
�

I
i :

ðB10Þ
It is worth noting that strain–displacement relationships (B10) are also invariant under arbitrarily large rigid-
body motions.
Appendix C. Derivation of tangent stiffness matrix

The right multiplication of a vector U of order NDOF by a 3D array AI of order 6 � NDOF � NDOF gen-
erates the matrix AIU of order 6 � NDOF whose elements are described by Eq. (84), that is,
ðAIUÞsp ¼
X

q

AI
spqUq ¼

X
q

AI
sqpU q; ðC1Þ
since a symmetry condition (82) holds. As we remember, the index s runs from 1 to 6, whereas the indices p, q

run from 1 to NDOF.
We can also define the left multiplication of any vector W of order 6 by a 3D array AI of order

6 � NDOF � NDOF following the rule:
ðWAIÞpq ¼
X

s

AI
spqW s ¼

X
s

AI
sqpW s ¼ ðWAIÞqp: ðC2Þ
This implies that WAI is the symmetric matrix of order NDOF � NDOF.
There is a noteworthy transformation (Kulikov and Plotnikova, 2007) connecting right and left vector

multiplications:
ðAIUÞTW ¼ ðWAIÞU: ðC3Þ
The proof of this statement is trivial. Really, comparing the components of vectors in left and right parts of
Eq. (C3)
½ðAIUÞTW�p ¼
X

s

ðAIUÞTpsW s ¼
X

s

X
q

AI
spqUq

 !
W s;

½ðWAIÞU�p ¼
X

q

ðWAIÞpqU q ¼
X

q

X
s

AI
spqW s

 !
U q;
one can see that both vectors are the same.
Let the vector U + DU be the solution of non-linear equilibrium equations (86). The use of this vector in

Eq. (86) yields
KSðUþ DUÞðUþ DUÞ ¼ F: ðC4Þ
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Considering the secant stiffness matrix KS(U) from Eq. (87) and omitting higher-order terms into (C4), we de-
rive linearized element equilibrium equations
KTDU ¼ F� KSðUÞU; ðC5Þ

where KT is the tangent stiffness matrix defined as
KT ¼
Z Z

Sel

ðBI þ 2AI UÞTDIJ ðBJ þ 2AJ UÞ
ffiffiffi
a
p

Kdn1 dn2 þ 2

Z Z
Sel

½DIJ ðBJ þ AJ UÞU�AI ffiffiffi
a
p

Kdn1 dn2:

ðC6Þ

It should be noted that the derivation of the second integral required using the transformation (C3) in the fol-
lowing form:
ðAIDUÞTWI ¼ ðWIA
IÞDU; ðC7Þ
where WI are the vectors of order 6 given by
WI ¼ DIJ ðBJ þ AJ UÞU: ðC8Þ

As expected, the tangent stiffness matrix KT is symmetric because the matrix WIA

I in the second integral (C6)
is symmetric. This is due to (C8) and the definition of the left multiplication of vectors by 3D arrays AI.
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