IL-6-mediated intersubgenotypic variation of interferon sensitivity in hepatitis C virus genotype 2a/2b chimeric clones

Goki Suda a,1, Naoya Sakamotob, a,b,∗,†, Yasuhiro Itsuia, d, Mina Nakagawaa, b, Megumi Tasaka-Fujita a, Yusuke Funaoka a, Takako Watanabe a, Sayuri Nittaa, Kei Kiyohashia, Seishin Azumaa, Sei Kakinumaa, Kiichiro Tsuchiya b, Michio Imamurac, Nobuhiko Hiragac, Kazuaki Chayamac, Mamoru Watanabea

a Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
b Department for Hepatitis Control, Tokyo Medical and Dental University, Tokyo, Japan
c Department of Medicine and Molecular science, Division of Frontier Medical Sciences, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
d Department of Internal Medicine, Soka Municipal Hospital, Saitama, Japan

1 G.S. and N.S. contributed equally to this work.

∗ Corresponding author. Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
Fax: +81 3 5803 0268.
E-mail address: nsakamoto.gast@tmd.ac.jp (N. Sakamoto).

Mechanisms of difference in interferon sensitivity between hepatitis C virus (HCV) strains have yet to be clarified. Here, we constructed an infectious genotype2b clone and analyzed differences in interferon-alpha sensitivity between HCV-2b and 2a-JFH1 clones using intergenotypic homologous recombination. The HCV-2b/JFH1 chimeric virus able to infect HuH7.5.1 cells and was significantly more sensitive to IFN than JFH1. IFN-induced expression of MxA and 25-OAS was significantly lower in JFH1 than in 2b/JFH1-infected cells. In JFH1-infected cells, expression of SOCS3 and its inducer, IL-6, was significantly higher than in 2b/JFH1-infected cells. The IFN-resistance of JFH1 cells was negated by siRNA-knock down of SOCS3 expression and by pretreatment with anti-IL6 antibody. In conclusion, intergenotypic differences of IFN sensitivity of HCV may be attributable to the sequences of HCV structural proteins and can be determined by SOCS3 and IL-6 expression levels.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Hepatitis C virus (HCV) is one of the most important pathogens causing liver-related morbidity and mortality (Alter, 1997). There is no therapeutic or prophylactic vaccine available for HCV and type I interferons have been the mainstay of HCV therapeutics (Hoofnagle and di Bisceglie, 1997). Antiviral therapeutic options against HCV are limited and yield unsatisfactory responses (Fried et al., 2002). Given these situations, gaining a detailed understanding of the molecular mechanisms of interferon resistance has been a high priority in academia and industry.

Molecular studies of HCV have been hampered by the lack of efficient in vitro and in vivo models of infection, which has been partly overcome by the development of HCV subgenomic replicons (Blight et al., 2000; Kato et al., 2003; Lohmann et al., 1999) and the HCV-JFH1 cell culture system (Wakita et al., 2005). HCV-JFH1 is an isolate of HCV genotype 2a that was obtained from a patient with fulminant hepatitis C. The full-length JFH1 genome has been shown to produce infectious particles in cell culture. Simultaneously, a robustly replicating intragenotypic chimera has been reported, which consists of the structural region of a genotype 2a, J6-clone and non-structural region of JFH-1 (Lindenbach et al., 2005).

HCV isolates are classified into seven major genotypes and multiple subtypes (Gottwein et al., 2009). In infected individuals, HCV exists as quasispecies of closely related genomes (Bukh et al., 1995). A number of studies have suggested that the outcome of HCV infection, as well as the response to interferon treatment, depends on the genotype or quasispecies with which the patient is infected. However, it is not clear how these subtle genetic differences of HCV affect viral replication, infectivity and host responses. Thus, it is important to establish multiple cell culture-permissive strains of different genotypes and isolates of the same genotype for their potential value for characterizing the virus life cycle, drug sensitivity and virus-related cell signaling.

Our present work describes the generation of chimeric viruses with their structural regions from genotype 2b and non-structural genes from the HCV-JFH1 strain. The intergenotypic 2b/JFH1 viruses were compared in terms of intracellular replication, infectious virus production and sensitivity to interferon-alpha. Here we show that the differences in sensitivity to interferon are attributable to upregulated expression of the cellular interferon signal attenuator, SOCS3, and that this upregulation is caused by overexpression of interleukin-6 (IL-6).
Results

In vitro and in vivo infectivity analyses of HCV-2b and 2b/JFH1 intragenotypic chimeras

First, we investigated the infectivity of the full-length genotype 2b clone in vitro and in vivo. The full-length genotype 2b HCV clone was infectious after direct injection of RNA transcribed in vitro into the livers of human hepatocyte engrafted albumin-uPA/SCID mice (see the Supplementary Fig. 1). However, transfection of the HCV RNA into Huh7.5.1 cells did not lead to replication or secretion of virions. Knowing that the full-length genotype 2b HCV was not infectious in vitro, we constructed genotype2b/JFH1 intergenotypic recombinants. We constructed three recombinant clones of 2b/JFH1 (Fig. 1A), which were joined between E2 and p7 (JE31F), NS2 and NS3 (JE39F), and within NS2 at nt. 2867 (JEC3F). After transfection of these chimeric HCV RNAs and JFH-1 RNAs into Huh7.5.1 cells, all four clones expressed detectable amounts of HCV core protein in the cells (Fig. 1B) and culture fluid (Fig. 1C). Among the four clones, JEC3F produced the highest level of core protein in the cells and culture fluid. Similarly, in the reinfection assays, JEC3F infected naïve cells most efficiently (Figs. 1D and E). We then compared the infectivity of JEC3F with the other chimeric viruses, genotype 2a J6/JFH1 and the JFH1 clone (Supplementary Fig. 2). Transfection of the individual clones into Huh7.5.1 cells showed that JEC3F and the 2b/JFH1 chimera secreted core protein into the medium most efficiently (Fig. 1C). We measured HCV core antigen and HCV-RNA levels in culture supernatant of JEC3F and JFH-1 infected cells. As shown in Fig. 1F, the ratio between supernatant HCV core antigen and HCV-RNA between JEC3F and JFH1 was well correlated each other.

Comparisons of sensitivity to IFN between intragenotypic chimeras and JFH1

Next, we investigated the interferon-alpha sensitivity of the three 2b/JFH1 chimeric viruses with different junctions, JE31F, JE39F and JEC3F, as well as JFH1. The four viral RNAs were transfected separately into Huh7.5.1 cells and were treated with 0, 1, 3 or 9 IU/mL of interferon-alpha-2b. Seventy-two hours after addition of interferon, core antigen was measured in the culture fluid. As shown in Fig. 2, all 2b/JFH1 chimeric clones showed significantly higher responses to interferon than JFH1 (p < 0.01). These results indicate that the relative interferon sensitivity of 2b/JFH1 clones over JFH1 could be attributable to the sequences of HCV-2b-derived structural proteins, especially core, E1 or E2 protein.

Expression of IFN stimulated genes and STAT1 and 2 phosphorylation in HCV-infected cells

Knowing that the 2b/JFH1 chimeric clones are more sensitive to interferon than JFH1, we next analyzed the effects on cellular interferon signaling. We investigated the expression levels of the interferon-stimulated genes (ISGs), 25OAS and MxA mRNAs that mediate antiviral effects (Itsui et al., 2009; Itsui et al., 2006). Induction of 25OAS and MxA by IFN was significantly suppressed in cells infected with HCV-JFH1 and the JEC3F clones. Of note was that the induction of these ISGs was suppressed substantially in JFH1-infected cells compared to JEC3F-infected cells (Figs. 3A and B). We then detected IFN-induced phosphorylation of STAT1 and STAT2 at pSTAT1 and pSTAT2 in uninfected and JFH1- and JEC3F-infected cells. Phosphorylation of STAT1 and STAT2 occurs within minutes after addition of IFN and substantially decreased at time points later than 8 hours (Itsui, 2006 #1025). Thus, we detected pSTAT1 and pSTAT2 before and at 15 minutes after IFN treatment. As shown in Figs. 3C and D, production of pSTAT1 and pSTAT2 was decreased substantially in JFH1-infected cells, compared with uninfected and JEC3F-infected cells. These finding indicated that the differences in sensitivity to interferon of JFH1 and JEC3F were closely associated with attenuation of the cellular IFN signaling pathway.

SOCS 3 is up-regulated in JFH-infected, IFN-resistant cells

We next investigated the effects of HCV replication on the expression of SOCS1 and SOCS3 that suppress IFN receptor-mediated signaling (Song and Shuai, 1998; Vlotides et al., 2004). While SOCS1 mRNA expression did not differ significantly between uninfected and JFH1- and JEC3F-infected cells, the SOCS3 mRNA expression level was significantly higher in JFH1-infected cells than in uninfected and JEC3F-infected cells (Figs. 4A and B).

Knock down of the SOCS3 gene

To verify that SOCS3 was the key molecule determining the sensitivity to IFN, we performed siRNA knock down of SOCS3 in the virus-infected cells. A SOCS3-directed siRNA was cotransfected with HCV-JFH1 or -JEC3F RNA into Huh7.5.1 cells. Three days after transfection we measured SOCS3 mRNA expression in JFH1 and JEC3F-transfected cells with or without SOCS3-siRNA. Interestingly, SOCS3-knock down in JFH1-transfected cells restored sensitivity of IFN to the same levels as JEC3F-transfected cells (Figs. 5A and B).

Interleukin-6 is involved in SOCS-mediated interferon resistance

It has been reported that SOCS3 is induced principally by phosphorylated STAT3 (pSTAT3) (Hanada et al., 2002) and that interleukin-6 (IL-6) is a strong inducer of pSTAT3 via receptor-mediated Janus kinase activation in the liver (Ramadori and Christ, 1999). This background led us to investigate whether overexpression of SOCS3 is associated with overproduction of IL-6. We investigated Phosphorylated STAT3 (pSTAT3) expression and IL-6 mRNA expression in JFH1- and JEC3F-transfected Huh7.5.1 cells. Phosphorylated STAT3 level was significantly higher in JFH1-transfected cells than JEC3F-transfected cells and naive Huh7.5.1 cells (Fig. 6A). Moreover IL-6 gene expression level was significantly higher in JFH1-transfected cells than JEC3F-transfected cells (Fig. 6B). Consistent with previous reports, treatment of the Huh7.5.1 cells with IL-6 induced expression of SOCS3 and SOCS1 mRNAs with SOCS3 being much stronger than SOCS1 (Fig. 6C).

Anti-IL-6 antibody restored IFN-resistance to HCV-infected cells

To investigate whether IL-6 is responsible for HCV infection-induced upregulation of SOCS and for resistance to interferon, JFH1 and JEC3F-infected Huh7.5.1 cells were pretreated with antibodies directed against IL-6 and subsequently treated with interferon. Interestingly, anti-IL-6-treated HCV-infected cells became significantly more susceptible to IFN treatment (Fig. 6D) without affecting viral expression levels in the absence of interferon (Fig. 6E). Cellular levels of SOCS3 mRNA were significantly lower in anti-IL-6-treated cells than untreated cells (Fig. 6F). These results strongly suggested that the interferon resistance of HCV-infected cells and the difference between the two viral strains are partly mediated by internal overproduction of IL-6 and subsequent upregulation of SOCS3.

Determination of the HCV structural region that induced SOCS3 and IL6

We studied further which part of HCV structural polyprotein is responsible for the difference in interferon-sensitivity. We constructed two additional chimeric clones between HCV-2b and JFH1. The 2bCore/JFH1 had the 2b-core region followed by the JFH1-structural and nonstructural regions. JCore3F was derived from JEC3F by exchanging the 2b-core with the JFH1-core (Fig. 7A). As
A

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>E1</th>
<th>E2</th>
<th>P7</th>
<th>NS2</th>
<th>NS3</th>
<th>NS4</th>
<th>NS5A</th>
<th>NS5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE31F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE39F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEC3F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JFH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- JEC3F: 20.9% (62/297)
- JE31F: 13.7% (83/608)
- JE39F: 5.8% (42/722)
- JFH1: 5.5% (27/492)

C

Sup core Ag (fmol/L) vs. Days post transfection

D

- JEC3F: 3.9% (25/633)
- JE39F: 0.29% (2/693)
- JE31F: 0.32% (2/621)

E

Sup core Ag (fmol/L) vs. Days post transfection

F

Sup core Ag (fmol/L), Sup HCV-RNA Titre
shown in Fig. 7B JFH1 and JCoreC3F, which had a JFH1-derived core region, were significantly more resistant to IFN than JEC3F and 2bCoreJFH1, with a 2b-derived core (Fig. 7B). Consistent with the interferon sensitivity results, JFH1 and JcoreC3F-infected cells expressed SOCS3 and IL6 mRNAs at significantly higher levels than JEC3F and 2bCoreJFH1-infected cells (Figs. 7C and D). These differences in gene expression were inversely associated with the cellular expression levels of each HCV chimeric clone (Fig. 7E). These results indicate that the amino acid sequence of the core protein is responsible for IL-6 and SOCS3-mediated interferon resistance.

Discussion

In this study, we succeeded in establishing a new genotype 2b infectious HCV clone and genotype 2b/JFH1 cell culture–competent intrageneric chimeric viruses (Fig. 1). Relative interferon sensitivities of 2b/JFH1 chimeras, compared with HCV-JFH1 virus (Fig. 2), led us to conduct a series of assays to investigate the molecular mechanisms of IFN-related response pathways. We found that IFN-α receptor–mediated cellular responses were more attenuated in HCV-JFH1- and 2b/JFH1 chimer-infected than in uninfected Huh7.5.1 cells, but more potently for HCV-JFH1. Precise intragenotypic recombination analyses showed that the amino acid sequence of the HCV core protein is responsible for the differences in interferon sensitivity (Figs. 2, 7). The differences in the interferon-mediated antiviral effects were demonstrated further by the different rates of induction of interferon-inducible MxA and 25-OAS mRNAs (Figs. 3A and B) and IFN induced phosphorylation of STAT1 and STAT2 (Figs. 3D and E). We have demonstrated further that the expression of an interferon signal attenuator, SOCS3, was significantly higher in JFH1 than in 2b/JFH1-infected cells (Song and Shuai, 1998; Vlotides et al., 2004). Indeed, the siRNA knockdown of SOCS3 in JFH1 and 2b/JFH1-infected cells resulted in responsiveness to IFN (Fig. 5). Moreover, cellular expression of IL-6, which increases cytoplasmic phospho-STAT3 (Fig. 6A) and induces SOCS3 expression (Ramadori and Christ, 1999) was significantly higher in JFH1 transfected cells (Fig. 6B). Furthermore, by pretreatment with anti-IL-6 antibody, JFH1- and 2b/JFH1-infected cells partially recovered elevation of SOCS3 expression and unresponsiveness to IFN (Fig. 6D). Taking all these things together, it is strongly suggested that the differences in IFN sensitivity between genotypes or isolates could be explained by SOCS3-mediated attenuation of interferon responses and, more importantly, IL-6 may constitute a molecular target to reverse such cellular interferon resistance.

Vast numbers of studies have failed to construct infectious HCV clones, other than HCV-JFH1. Murayama, et al. have conducted intragenotypic homologous recombination analyses between HCV-J6 and -JFH1 and have reported that the NS3 protease and NS5B polymerase are essential for replication of the recombinant virus (Murayama et al., 2007). Up to now, several JFH1-based chimeric viruses have been reported, which include genotypes 4a (Scheel et al., 2008), genotype 1a, 1b, 2a (Pietschmann et al., 2006), genotype 3a (Gottwein et al., 2007), genotype 5 a (Jensen et al., 2008) and, genotype 2b, 6a, 7a (Gottwein et al., 2009). Gottwein, et al. constructed intergeneric chimeric HCV from JFH1 and genotypes 1 through 7 and analyzed differences in sensitivity to antiviral drugs (Gottwein et al., 2009). However, intergeneric differences in sensitivity to IFN-α and the molecular mechanisms involved have not been well characterized. In this study, we constructed several chimeric virus clones between HCV-2b and HCV-JFH1 (2a), which showed variable sensitivity to IFN and confirmed that the core region is responsible for such IFN sensitivity. This study may support the feasibility of such inter- and intragenotypic homologous recombination approaches to characterize differences in viral kinetics and drug responses.

Type I IFNs and their responsive ISGs are the principal mediators of host defense against virus infections, including HCV (Chang et al., 1991; Kalvakolanu, 2003; Ronni et al., 1998). On binding of IFNs to their receptors, IFNAR1 and IFNAR2, Janus kinases-1 and -2 phosphorylate STAT1 and STAT2 to form ISGF-3, which translocates to the nucleus and activates transcription of ISGs (Samuel, 2001; Taniguchi et al., 2001; Taniguchi and Takaoka, 2002). Members of the SOCS family are potent inhibitors of type I and type III IFN-induced activation of the Jak–STAT pathway and subsequent expression of ISGs (Vlotides et al., 2004). In HCV subgenomic replicon-expressing cells, expression levels of SOCS3 were inversely correlated with sensitivity to IFN to suppress viral RNA replication (Zhu et al., 2005).
HCV, on the other hand, counteracts such IFN-mediated antiviral pathways. The NS5A and E2 proteins interfere with the action of IFN by inhibiting the activity of PKR (He and Katze, 2002; Taylor et al., 1999). NS5A also induced expression of IL-8 and attenuated expression of ISGs (Polyak et al., 2001). HCV core protein has been reported to bind the STAT1-SH domain (Lin et al., 2006) or destabilize STAT1 (Lin et al., 2005) to block IFN signaling. It also has been reported that overexpression of core protein upregulated SOCS3 expression (Bode et al., 2003). In this study, we used full-length HCV cell culture and found, for the first time, that SOCS3 expression is upregulated differently depending on the genetic sequences of HCV strains and that these differences in SOCS3 expression are associated with sensitivity to IFN. Moreover, overexpression and knock down of SOCS3 expression were closely associated with the IFN sensitivity of the HCV-infected cells. These results indicate that interferon-resistance of HCV-infected cells is directed by overexpression of SOCS3, which may be upregulated by HCV proteins as reported (Bode et al., 2003) (Kawaguchi et al., 2004). A sequence comparison of our HCV2b and JFH1 clones has found 16 amino acid differences. These structural differences of the core protein might affect cellular responses to interferon (see the Supplementary Fig. 4).

It has been reported that IL-6 is the principal activator of STAT3 in hepatocytes through binding its receptor (Hanada et al., 2003; Ramadori and Christ, 1999). Furthermore, plasma IL-6 levels are elevated in
chronic hepatitis C patients (Malaguarnera et al., 1997). Consistent with those reports, we found that IL-6 strongly induced SOCS3 expression in Huh7.5.1 cells (Fig. 6C). More importantly, cellular IL6 expression levels were in the order of uninfected JEC3F cells, which correlated well with SOCS3 expression (Fig. 4) and with cellular responses to IFN (Fig. 2). In addition, the IFN-resistant JcoreC3F, in which the core region of JEC3F had been re-substituted by the JFH1-core, induced comparatively higher levels of IL-6 and SOCS3 mRNA to JFH1 (Fig. 7). Taken together, our results indicate that the amino acid sequence of the core protein determines IL-6 and SOCS3 expression levels and, as a consequence, resistance to IFNs.

It remains to be clarified what are the inducers of IL-6. There are reports that HCV core protein activates toll-like receptor (TLR)-2 in Huh7 cells and in adult human hepatocytes (Hoffmann et al., 2009; Mozer-Lisewska et al., 2005). TLRs are known to activate downward NF-kappaB signaling that upregulates IL-6 expression. Alternatively, IL-6 may be secreted in response to cellular steatosis and insulin resistance. HCV patients with obesity or insulin resistance are refractory to IFN treatments. Such patients have higher levels of hepatic SOCS3 expression than those without obesity or insulin resistance (Miyaaki et al., 2009; Walsh et al., 2006). More recently, Sabio, et al have reported that fatty acid-induced secretion of IL-6 from adipocytes upregulates hepatic SOCS3, leading to insulin-resistance (Sabio et al., 2008).

In conclusion, our study demonstrates that HCV intragenotypic and inter-strain differences in IFN sensitivity can be, in most part, attributable to the amino acid sequence of the HCV core protein and that such IFN sensitivities are determined by cellular expression levels of SOCS3 and IL-6. Therapeutic targeting of IL-6 potentially may be a key to targeting IFN-resistance and improving antiviral chemotherapeutics against HCV.

Materials and Methods

Reagents and antibodies

Recombinant human interferon alpha-2b was from Schering-Plough (Kenilworth, NJ). Anti-CD 81 antibody (JS-81) was from BD Biosciences (Franklin Lakes, NJ) (Morikawa et al., 2007), anti-IL6 receptor antibody was from Chugai pharmaceutical Co (Tokyo, Japan), anti-SOCS3 was from Cell Signaling (Beverly, MA), and anti-IL6 antibody was from R&D Systems (Minneapolis, MN).

Cloning of HCV cDNA from patient serum

A serum sample was obtained from a 32-year-old male who developed acute hepatitis after intravenous drug injection. Serum was obtained one week after the onset of symptoms. Total RNA was extracted from 150 μl of serum using ISOGEN (Nippon Gene, Osaka, Japan). cDNA was synthesized using SuperScript II (Invitrogen, Carlsbad, CA) reverse transcriptase. PCR primers, based on a genotype 2b prototype sequence, HC-J8 (accession number: D10988), were used to amplify 14 fragments of HCV cDNA covering nt. 13-9478 (nucleotide numbers corresponded to HC-J8) by PCR. All amplicons were purified and cloned into the pGEM-T EASY vector (Promega, Madison, WI) and nucleotide sequences were determined using Big Dye Terminator Cycle Sequencing Ready Reaction kits (Applied Biosystems, Foster City, CA) and an automated DNA sequencer (ABI PRISM® 310 Genetic Analyzer; Applied Biosystems). The consensus sequence of five clones was adopted for each region. Each consensus sequence segment of HCV was assembled into pJFH1-full (Wakita et al., 2005) by substituting the insert sequence of pJFH1-full.
Fig. 6. IL-6 expression in HCV infected cells and change in IFN sensitivity by treatment with anti-IL6 antibody. A. Expression of cytoplasmic phospho-STAT3 in uninfected and HCV-infected Huh7 cells. JEC3F, JFH1 10 μg RNA and MOCK was transfected into Huh7.5.1 cells. Forty eight hours total cellular protein was isolated. Ten μg of extracted protein were used for analysis of phosphorylated STAT3, STAT protein and β-actin as controls. B. Expression of Interleukin-6 mRNA in uninfected and HCV-infected Huh7 cells. Forty-eight hours after transfection, total RNA was isolated. Relative gene expression level of IL6 were determined by real time PCR. Values are shown as relative to those of uninfected Huh 751 cells. Assays were done in triplicate and the data are shown as mean±sd. C. IL-6 induces SOCS3 strongly in uninfected Huh7.5.1 cells. Uninfected Huh7.5.1 cells were treated with 10 ng/ml recombinant human IL6 (PEPRO TEC EC, London, England). Fifteen minutes after treatment, total RNA was isolated. Relative gene expression levels of SOCS1 and SOCS3 were determined by real time PCR. Uninfected Huh7.5.1 cells that were not treated with IL6 were used as a control. Values are shown as relative to those of uninfected Huh 751 cells. Assays were done in triplicate and the data are shown as mean±sd. D. Dose-dependent suppression of HCV replication by IFN in HCV-infected cells pre-treated with anti-IL-6 antibody. Immediately after electroporation, HCV RNA-transfected cells were divided into 12 wells and pretreated with 1 μg/ml anti-IL6 antibody. Forty eight hours after transfection, the cells were washed with PBS and treated with 0, 1, 5 and 25 U/ml of IFN-alpha 2b. Seventy two hours after treatment, quantification of HCV core antigen was carried out in culture fluids. Assays were done in triplicate and the data are shown as mean±sd. E. Core protein secretion levels following treatment of HCV-transfected cells with anti-IL-6 antibody. After treatment with anti-IL-6 antibody, HCV RNA-transfected cells were divided into 12 wells. Five days after transfection, quantification of HCV core antigen was carried out in culture fluids. Assays were done in triplicate and the data are shown as mean±sd. F. Expression of SOCS3 mRNA in uninfected and HCV-infected Huh7 cells. Forty-eight hours after transfection, total RNA was isolated. Relative SOCS3 gene to beta-actin gene expression were determined by real time PCR. Values are shown as relative to those of uninfected Huh 751 cells. Assays were done in triplicate and the data are shown as mean±sd. Asterisks indicate p-values of less than 0.05.
Construction of 2b/JFH-1 based intragenotypic chimeras and transfection

Chimeric HCV constructs of HCV-2b and JFH1 were shown in Figs. 1A and 7A. To construct 2b/JFH1-based intragenotypic chimera, JE31F, the 2b sequence of core through E2 (nt. 342-2541) was fused to the EcoRI-JFH1-5′-untranslated region (UTR) DNA by fusion PCR. The fused 5′UTR-E2 fragment and JFH1-E2-NS3 (nt2541 through 5324) were assembled by fusion PCR and cloned into pGEM-T EASY. The product was digested by EcoRI and AfeI and insert into pJFH1. Plasmids pJE39F, pJE3CF, pJC3F and p2bcore JFH1 were constructed using a similar procedure. Plasmids pJE3CF and pJE39F were joined between NS2 and NS3, and within NS2 at nt. 2867, respectively. Plasmid pJC3F was made by substitution of the core region of 2b/JFH1 with that of JFH1. The plasmid p2bcoreJFH1 was made by substitution of the core region of JFH1 with that of 2b/JFH1.

Cells and cell culture

Huh7.5.1 cells were maintained in Dulbecco’s modified minimal essential medium (Sigma, St. Louis, MO) supplemented with 10% fetal calf serum at 37 °C under 5% CO2.

HCV cell culture system

Full-length HCV expression plasmids were as follows: pJFH1-full (Wakita et al., 2005), pJE31F, pJE39F, pJC3F, pJC3F, p2bcoreJFH1, and pFL-H77/JFH1, pFL-J6/JFH1 (Lindenbach et al., 2005). These plasmids were linearized at their 3′ ends and used as templates for HCV RNA synthesis using the RiboMax Large Scale RNA Production System (Promega, Madison, WI). After DNase I (RQ-1, RNase-free DNase, Promega) treatment, the HCV RNA was purified using ISOGEN (Nippon Gene, Tokyo, Japan). For the RNA transfection, Huh7.5.1 cells were washed twice with PBS, and 5 × 10^6 cells were suspended in 1 ml of OptiMEMI (Invitrogen Carlsbad, CA) containing 10 μg of HCV RNA, transferred into a 4 mm electroporation cuvette and finally subjected to an electric pulse (1,050 μF and 270 V) using the Easy jet system (EquiBio, Middlesex, UK). After electroporation, the cell suspension was left for 5 min at room temperature and then incubated under normal culture conditions in a cell culture dish.

Quantification of HCV core antigen in culture supernatants

Culture supernatants of HCV RNA transfected Huh7.5.1 cells were collected on the days indicated, passed through a 0.45 μm filter (MILLEX-HA, Millipore, Bedford, MA) and stored at -80 °C. The concentrations of core antigen in the culture supernatants were measured using a chemiluminescence enzyme immunoassay (CLEIA) according to the manufacturer’s protocol (Lumipulse Ortho HCV Antigen, Ortho-Clinical Diagnostics, Tokyo, Japan).

Re-infection analyses

Titer-adjusted supernatants (including 0.03 fmol HCV core antigen) from HCV RNA-transfected cells were inoculated onto naïve Huh7.5.1 cells plated on a 6 cm plate at a density of 3 × 10^5 cells per plate. Forty-eight hours after inoculation, anti-core immunostaining was carried out with mouse anti-HCV core protein monoclonal antibody and the numbers of infected cells were counted. HCV core antigen in culture supernatants was measured at 24 hours, 48 hours, 72 hours and 144 hours after inoculation.

Real-time RT-PCR analysis

For the detection of HCV RNA in culture supernatant, supernatant was passed through a 0.45 μm filter (MILLEX-HA, Millipore, Bedford, MA) and stored at -80 °C until use. Protocol and primers for the realtime RT-PCR analysis of HCV-RNA has been described previously (Sekine-Osajima et al., 2008). For the detection of endogenous mRNAs, total cellular RNA was isolated using ISOGEN (Nippon Gene). Two micrograms of total cellular RNA were used to generate cDNA from each sample using SuperScript II. Expression of mRNA was quantified using the TaqMan Universal PCR Master Mix and the ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City CA). Some primers have been described (Sekine-Osajima et al., 2008). SOCS3; forward, 5′-CAC ATG GCACAA GCA AAA GAA G-3′ and reverse,
Fig. 7. Replacement of the HCV-2b-core region with JFH1-core causes upregulation of SOCS3 and IL-6 and restores resistance to IFN. A. Genome maps of JFH-1, JEC3F, J core C3F, 2b core JFH recombinant cDNA. J core C3F was made by substitution of the core region of 2b/JFH1 with that of JFH1. The 2b core JFH was made by substitution of the core region of JFH1 with that of 2b/JFH1. B. Comparison of IFN-alpha sensitivity among JFH1 and JEC3F and core region substitution chimeric viruses. Ten μg of J core C3F, 2b core JFH1, JEC3F, JFH1 RNA were transfected into 5×10⁶ Huh-7.5.1 cells and were divided into 12 wells. Forty eight hours after transfection, the cells were treated with 0, 1, 5 and 25 U/ml of IFN-alpha 2b. Seventy two hours after treatment, quantification of HCV core antigen was carried out in culture fluids. Assays were done in triplicate and the data are shown as mean ± sd. Asterisks indicate p-values of less than 0.05. C, D. Core substitution leads to SOCS3 and IL-6 mRNA over-expression. Forty eight hours after transfection into cells, total RNA was isolated. Relative gene expression level SOCS3 (panel C) and IL6 (panel D) were determined by real time PCR. Values are shown as relative to those of uninfected Huh 751 cells. Assays were done in triplicate and the data are shown as mean ± sd. Asterisks indicate p-values of less than 0.05. E. Change of secretion of core protein following core protein substitution. HCV RNA-transfected cells were divided into 12 wells. Five days after transfection, quantification of HCV core antigen was carried out in culture fluids. Assays were done in triplicate and the data are shown as mean ± sd. Asterisks indicate p-values of less than 0.05.
intravenously into human liver engrafted albumin-uPA/SCID mice. Serum samples were obtained from the mice every 2 weeks after infection and the HCV RNA titer was determined. B. Fig. 1B Challenge of human liver-engrafted albumin-uPA/SCID mice by intrahepatic injection of in vitro synthesized, full-length 2b HCV RNA. Five hundred μl of RNA solution containing 30 μg of in vitro synthesized full-length 2b HCV RNA was injected into the livers of anesthetized chimeric mice through a small abdominal incision. Serum samples were obtained from the mice every 2 weeks after infection and the HCV RNA titer was determined.

Supplementary Fig. 2. Comparisons of replication efficiency of JFH1 and J6/JFH1, 2b/JFH1 chimeras after transfection into Huh7.5.1-cells. A. Structures of the J6/JFH1 and 2b/JFH1 genomes. J6 is joined between NS2 and NS3 with JFH1. 2b/JFH1 is joined with JFH1 within NS2 at nt. 2867. B Measurements of core protein in cell culture fluids. Ten μg of JFH1, J6/JFH1, 2b/JFH1 RNA were transfected into 5 × 10^6 Huh7.5.1 cells and the cells were cultured in 100 mm-diameter plates. The culture fluids from JFH1, J6/JFH1, H77/JFH1or 2b/JFH1-transfected Huh7.5.1 cells were collected separately on the days indicated and the levels of core antigen were measured. These experiments were done three times with similar results independently. Panel B shows representative date.

Supplementary Fig. 3. Inhibition of infection by blocking CD81. Huh 7.5.1 cells were plated into a 6 well plate at 1.4 × 10^5 cells per well. After 48 hours, the cells were incubated with anti-CD81 or isotypematched control antibody at the concentration indicated for 1 hour. Subsequently, cells were infected with 1 ml of JEC3F stock cell culture fluids at day 2 for 4 hours and washed with PBS. 48 hours after inoculation, anti-core immunostaining was performed with mouse anti-HCV core protein monoclonal antibody (Panels B and C). Quantification of HCV core antigen was carried out in culture fluids at 48 hours after infection (Panel A).

Supplementary Fig. 4. Comparison between 2b and JFH1 core amino acid sequence.

Note: Supplementary materials related to this article can be found online at doi:10.1016/j.virol.2010.07.041.

References

Itooi, Y., Sakamoto, N., Kakinuma, S., Nakagawa, M., Sekine-Osajima, Y., Tatsuka-Fujita, M., Nishimura-Sakurai, Y., Suda, G., Karakama, Y., Yamamoto, M., Watanabe, T.,

