
JOURNAL OF MATHEMATICAL ANALYSIS AKD APPLICATIONS 26, 454-459 (1969)

A Dynamic Programming Solution
to Integer Linear Programs

HAROLD GREENBERG

Department of Operations Analysis, Naval Postgraduate School,
Monterey, California 93940

Submitted by Richard Bellman

I. INTRODUCTION

In this paper we present an algorithm for the solution to the integer linear
programming problem: find X = (x1 ,..., x,) that

minimizes

CX

when

AX=B

0 < xj < 6,) xj integer, j = I,..., n, (1)

where C is an n-vector, B is an m-vector, A is an m by n matrix, and the bi
are integers. We assume that the components of C, B, and the elements of A
are integers. We consider the case where some or all of the variables have
upper bounds. Thus, the solution to (1) includes the case where the xj are
restricted to being either zero or one.

The continuous linear programming solution to (1) is found first. If the
continuous solution is fractional, we develop a linear congruence that is
added as a constraint. We then form an equivalent knapsack problem, which
is solved by means of a dynamic programming enumeration.

The equivalent knapsack problem has been treated in [l] and [2] to round
the non-integer values of the variables into an optimal integer solution after
obtaining the continuous solution to (1). The method of [l] requires that the
fractional parts of the coefficients, obtained in the continuous solution, attain
a certain group property. The method of [2] is presented in a network context
of considerable complexity. Neither of the methods achieves solution to the
integer program (1) in all cases. In contrast, the method presented here solves
the equivalent knapsack problem in a simple manner and then provides a
solution to the integer program (1).

454

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82231107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DYNAMIC PROGRAMMING SOLUTION 455

II. THE EQUIVALENT KNAPSACK PROBLEM AND INTEGER SOLUTION

We use a bounded variable linear programming technique [3] to trans-
form (1) to the equivalent problem:

minimize

x, + 1 ffjxj = 010
jcH

0 < xj < 6j , xj integer, j = l,..., 71 (2)

where the vector Xo = {xi 1 i E G}, G is the set of indices of the basic
variables, and His the set of indices of the nonbasic variables. Further, some
of the nonbasic variables may be at their upper bounds in the continuous
solution of (1). For those variables we would have their corresponding Cj
values as non-positive. We also have cj 3 0 for nonbasic variables that are at
the zero value. For ease of computation, we make the transformation
xi = hi - xj for those nonbasic variables at their upper bound. Thus we may
assume a form like (2) with all cj > 0 and all nonbasic variables at zero
values. The vectors 01~ (j = 0 and j E H) are column vectors. The components
of a0 are then nonnegative. If CQ, is all integer, then xi = 0 (j E H); X, = a,,
is an optimal solution (if any of the xi , j E H, are really the xi under the trans-
formation, we naturally would have xj = bJ.

If any of the 01s are fractional, then the equivalent knapsack problem is [l]:
find the xj that

minimize

& cixj

when

gHPjxj = PO Cmod l)

0 < xj < 6j , Xj integer, jEH

where the & are the columns of fractional parts of the aj from (2).
To compute the solutions to (3), we form the knapsack function

(3)

c &xi = /3 (mod l), xj < bj 1 , jex
which may be written as the dynamic programming recursion

(5)

where the arguments of F are taken module 1.

456 GREENBERG

The recursion in (5) may be solved as a simple enumeration by noting that

where

c, = min ci
3EH (7)

We then form F@ - &.) by replacing p by /3 - ,L3r in (5), and we substitute
the result for the F(fl - /3,.) term on the right side of (5). We then can produce
another immediate solution. We also take care that the upper bounds bj
are not violated while performing the enumeration.

We note that the enumeration process, using (7), produces increasing
values of the objective function (3) while obtaining all possible integer solu-
tions to the congruence in (3). Thus to solve the integer program give by (2),
we stop the enumeration when F&J is calculated. We then check to see if
the constraints in (2) are satisfied by the xj(j E H) values found in the enumer-
ation. If the constraints are not satisfied, we simpIy continue the enumeration
until another F(j3,) is produced. This entire procedure is contained in the
following algorithm: -

1. Suppose the indices in H are 1, 2 ,..., m,
problem as

1 2 3 0.. m

xj = 0

Go to 2.

then list the values of the

2. Given the list, find c, = min q for all unmarked columns in all sec-
tions. If /3r = & , mark the column and go to 4. Otherwise, mark the column
and go to 3.

.

3. Add a new section of columns to the list, if possible, as follows:

(a) Calculate c; = c, + cj , & = /$ + & (mod 1) for all values j E H
(i.e., the values are taken from the list in step 1) where x, < ZJ, for j # Y and
where x, + 1 < 6, for j = I for the section containing the newly marked
column.

(b) Add the columns headed by j in the new section with values c; and /3; .

(c) Underneath the section added write the xj values from the section
containing the newly marked column. Increase x, by one for the section.
Go to 2.

DYNAMIC PROGRAMMING SOLUTION 457

(4) Take as a trial solution the values of the variables found below the
section where &. = /I,, appears, with x, increased by one. See if the constraints
in (2) are satisfied. If they are, the solution found is the optimal integer
solution to (1). If not, go to 3.

This completes the algorithm. An integer solution is sure to be found
because all integer solutions to the congruence in (3) are systematically
produced in order of increasing objective function value.

EXAMPLE. We take the problem given in [4].
minimize

when
5x1 + 7x2 + 10-Q + 3x, + x5

x, - 3x, + 5x, + x, - 4x, > 2

- 2x, + 6x, - 3x, - 2x, + 2x, 3 0
- x2 + 2x, - x, - x, 3 1

0 <Xj < 1, x, integer, j = l,..., 5.

We introduce surplus variables x, > 0, x, > 0, and xs > 0 (i.e., with co as
upper bounds) and find the continuous solution and equivalent problem:

minimize

g++Fx1 + y x* + 9 xg + y x, + w x,

when

- 8x1 - 288 x4 + y xg + X6 + 8 x, - $Xa==$

- 8% + XQ - 3x4 - 8 xg - 4x, - Qx,=$
- 6x1 +x2 - Q x, + +x5 - Q x7 - +x*=*

O<Xj<l, xj integer, j = l,..., 5

0 < xj , j = 6,7, 8.

We list the numerators for the problem (with 9 as denominator):

1 457 8

93 156 42 24 137
2 841 6
7 158 3
5 2 17 6

* *

xi = 0

(8)

where /30 = 0, Q , 4) and the @j are as listed.

458 GREENBERG

We have 24 = min cj , i.e., c, = 24, with Y = 7. We mark the 7 column
in (8) and add the section

1 457 8
--

117 180 66 48 161
3 052 7
6 047 2
3 0 8 5 4

* *

x, = 1

We have min cj = 42 from (8); we add the section:

1 4 8

135 198 179
6 3 1
3 6 8

(9)

(10)
6 3 7

xg = 1

We need not add a column headed by 7 in (10) because it would duplicate
the 5 column in (9) (the use of either column would require xs = 1
and x, = 1). We do not add a 5 column in (10) since xs is at its upper bound
in (10). We have min cj = 48 in (9). We add the section:

1 457 8

141 204 90 72 185
4 163 8
5 836 1
1 763 2

(11)

*

x, = 2

DYNAMIC PROGRAMMING SOLUTION

We have min cj = 66 from (9). We add the section:

159 222 203
7 4 2
2 5 7
4 1 5

x, = 1, xg = 1

459

(12)

The solution is now possible in the 7 column in (11). We have x, = 3.
Substituting x, = 3 into the constraint equations, we obtain xs = 0, xs = 1,
and x2 = 1. Thus we have achieved the optimal solution with objective value
9 + I02 = 17. Note that if xs , x, , or x2 are not feasible, other solutions are
possible; e.g., the 1 column of (9), the 4 column of (lo), plus others if the
enumeration is continued.

REFERENCES

1. R. E. GOMORY. On the relation between integer and non-integer solutions to linear
programs. Proc. Nat. Acad. Science 53 (1965), 26&65.

2. J. F. SHAPIRO. Dynamic programming algorithms for the integer programming
problem-I: the integer programming problem viewed as a knapsack type
problem. Operations Research 16 (1968), 103-21.

3. G. B. DANTZIG. “Linear Programming and Extensions.” Princeton University
Press, Princeton, New Jersey, 1963.

4. E. BALAS. Discrete programming by the filter method. Operations Research 15

(1967), 915-57.

