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I. INTRODUCTION 

In this paper we present an algorithm for the solution to the integer linear 
programming problem: find X = (x1 ,..., x,) that 

minimizes 

CX 

when 

AX=B 

0 < xj < 6, ) xj integer, j = I,..., n, (1) 

where C is an n-vector, B is an m-vector, A is an m by n matrix, and the bi 
are integers. We assume that the components of C, B, and the elements of A 
are integers. We consider the case where some or all of the variables have 
upper bounds. Thus, the solution to (1) includes the case where the xj are 
restricted to being either zero or one. 

The continuous linear programming solution to (1) is found first. If the 
continuous solution is fractional, we develop a linear congruence that is 
added as a constraint. We then form an equivalent knapsack problem, which 
is solved by means of a dynamic programming enumeration. 

The equivalent knapsack problem has been treated in [l] and [2] to round 
the non-integer values of the variables into an optimal integer solution after 
obtaining the continuous solution to (1). The method of [l] requires that the 
fractional parts of the coefficients, obtained in the continuous solution, attain 
a certain group property. The method of [2] is presented in a network context 
of considerable complexity. Neither of the methods achieves solution to the 
integer program (1) in all cases. In contrast, the method presented here solves 
the equivalent knapsack problem in a simple manner and then provides a 
solution to the integer program (1). 
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II. THE EQUIVALENT KNAPSACK PROBLEM AND INTEGER SOLUTION 

We use a bounded variable linear programming technique [3] to trans- 
form (1) to the equivalent problem: 

minimize 

x, + 1 ffjxj = 010 
jcH 

0 < xj < 6j , xj integer, j = l,..., 71 (2) 

where the vector Xo = {xi 1 i E G}, G is the set of indices of the basic 
variables, and His the set of indices of the nonbasic variables. Further, some 
of the nonbasic variables may be at their upper bounds in the continuous 
solution of (1). For those variables we would have their corresponding Cj 
values as non-positive. We also have cj 3 0 for nonbasic variables that are at 
the zero value. For ease of computation, we make the transformation 
xi = hi - xj for those nonbasic variables at their upper bound. Thus we may 
assume a form like (2) with all cj > 0 and all nonbasic variables at zero 
values. The vectors 01~ ( j = 0 and j E H) are column vectors. The components 
of a0 are then nonnegative. If CQ, is all integer, then xi = 0 (j E H); X, = a,, 
is an optimal solution (if any of the xi , j E H, are really the xi under the trans- 
formation, we naturally would have xj = bJ. 

If any of the 01s are fractional, then the equivalent knapsack problem is [l]: 
find the xj that 

minimize 

& cixj 

when 

gHPjxj = PO Cmod l) 

0 < xj < 6j , Xj integer, jEH 

where the & are the columns of fractional parts of the aj from (2). 
To compute the solutions to (3), we form the knapsack function 

(3) 

c &xi = /3 (mod l), xj < bj 1 , jex 
which may be written as the dynamic programming recursion 

(5) 

where the arguments of F are taken module 1. 
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The recursion in (5) may be solved as a simple enumeration by noting that 

where 

c, = min ci 
3EH (7) 

We then form F@ - &.) by replacing p by /3 - ,L3r in (5), and we substitute 
the result for the F(fl - /3,.) term on the right side of (5). We then can produce 
another immediate solution. We also take care that the upper bounds bj 
are not violated while performing the enumeration. 

We note that the enumeration process, using (7), produces increasing 
values of the objective function (3) while obtaining all possible integer solu- 
tions to the congruence in (3). Thus to solve the integer program give by (2), 
we stop the enumeration when F&J is calculated. We then check to see if 
the constraints in (2) are satisfied by the xj( j E H) values found in the enumer- 
ation. If the constraints are not satisfied, we simpIy continue the enumeration 
until another F(j3,) is produced. This entire procedure is contained in the 
following algorithm: - 

1. Suppose the indices in H are 1, 2 ,..., m, 
problem as 

1 2 3 0.. m 

xj = 0 

Go to 2. 

then list the values of the 

2. Given the list, find c, = min q for all unmarked columns in all sec- 
tions. If /3r = & , mark the column and go to 4. Otherwise, mark the column 
and go to 3. 

. 

3. Add a new section of columns to the list, if possible, as follows: 

(a) Calculate c; = c, + cj , & = /$ + & (mod 1) for all values j E H 
(i.e., the values are taken from the list in step 1) where x, < ZJ, for j # Y and 
where x, + 1 < 6, for j = I for the section containing the newly marked 
column. 

(b) Add the columns headed by j in the new section with values c; and /3; . 

(c) Underneath the section added write the xj values from the section 
containing the newly marked column. Increase x, by one for the section. 
Go to 2. 
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(4) Take as a trial solution the values of the variables found below the 
section where &. = /I,, appears, with x, increased by one. See if the constraints 
in (2) are satisfied. If they are, the solution found is the optimal integer 
solution to (1). If not, go to 3. 

This completes the algorithm. An integer solution is sure to be found 
because all integer solutions to the congruence in (3) are systematically 
produced in order of increasing objective function value. 

EXAMPLE. We take the problem given in [4]. 
minimize 

when 
5x1 + 7x2 + 10-Q + 3x, + x5 

x, - 3x, + 5x, + x, - 4x, > 2 

- 2x, + 6x, - 3x, - 2x, + 2x, 3 0 
- x2 + 2x, - x, - x, 3 1 

0 <Xj < 1, x, integer, j = l,..., 5. 

We introduce surplus variables x, > 0, x, > 0, and xs > 0 (i.e., with co as 
upper bounds) and find the continuous solution and equivalent problem: 

minimize 

g++Fx1 + y x* + 9 xg + y x, + w x, 

when 

- 8x1 - 288 x4 + y xg + X6 + 8 x, - $Xa==$ 

- 8% + XQ - 3x4 - 8 xg - 4x, - Qx,=$ 
- 6x1 +x2 - Q x, + +x5 - Q x7 - +x*=* 

O<Xj<l, xj integer, j = l,..., 5 

0 < xj , j = 6,7, 8. 

We list the numerators for the problem (with 9 as denominator): 

1 457 8 

93 156 42 24 137 
2 841 6 
7 158 3 
5 2 17 6 

* * 

xi = 0 

(8) 

where /30 = 0, Q , 4) and the @j are as listed. 
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We have 24 = min cj , i.e., c, = 24, with Y = 7. We mark the 7 column 
in (8) and add the section 

1 457 8 
-- 

117 180 66 48 161 
3 052 7 
6 047 2 
3 0 8 5 4 

* * 

x, = 1 

We have min cj = 42 from (8); we add the section: 

1 4 8 

135 198 179 
6 3 1 
3 6 8 

(9) 

(10) 
6 3 7 

xg = 1 

We need not add a column headed by 7 in (10) because it would duplicate 
the 5 column in (9) (the use of either column would require xs = 1 
and x, = 1). We do not add a 5 column in (10) since xs is at its upper bound 
in (10). We have min cj = 48 in (9). We add the section: 

1 457 8 

141 204 90 72 185 
4 163 8 
5 836 1 
1 763 2 

(11) 

* 

x, = 2 
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We have min cj = 66 from (9). We add the section: 

159 222 203 
7 4 2 
2 5 7 
4 1 5 

x, = 1, xg = 1 

459 

(12) 

The solution is now possible in the 7 column in (11). We have x, = 3. 
Substituting x, = 3 into the constraint equations, we obtain xs = 0, xs = 1, 
and x2 = 1. Thus we have achieved the optimal solution with objective value 
9 + I02 = 17. Note that if xs , x, , or x2 are not feasible, other solutions are 
possible; e.g., the 1 column of (9), the 4 column of (lo), plus others if the 
enumeration is continued. 
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