Constructing Pointed Hopf Algebras by Ore Extensions

M. Beattie ${ }^{1}$
Department of Mathematics and Computer Science, Mount Allison University,

S. Dăscălescu
 University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-70109 Bucharest 1, Romania E-mail: sdascal@al.math.unibuc.ro

and

L. Grünenfelder

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, N.S., Canada B3H 3J5

E-mail: luzius@mscs.dal.ca
Communicated by Van den Bergh
Received January 12, 1999

We present a general construction producing pointed co-Frobenius Hopf algebras and give some classification results for the examples obtained.
(C) 2000 Academic Press

0. INTRODUCTION AND PRELIMINARIES

In recent years a serious effort has been made to understand and classify Hopf algebras over an algebraically closed field of characteristic zero. Nevertheless, the classification of finite dimensional Hopf algebras has been completed only for some small dimensions and for prime dimensions ([24]).

[^0]A nice survey of the present state of the classification of finite dimensional Hopf algebras with emphasis on the semisimple case is given in [16]. The main purpose of this paper is to present a general construction producing pointed Hopf algebras.

Many current papers have defined interesting pointed Hopf algebras by generators and relations. In [18] two families of such Hopf algebras are constructed. The first, denoted by $H_{n, q, N, \nu}$, includes the classical four dimensional Sweedler Hopf algebra and the Taft Hopf algebra of dimension n^{2}. The second is a family of finite dimensional pointed unimodular ribbon Hopf algebras, denoted by $U_{(N, \nu, \omega)}$, generating invariants of knots and 3-manifolds. A special object in the second class is $U_{q}(s l(2))^{\prime}$, where q is a root of unity (see [20]). These examples were further studied in [9]. In [22] an example of a unimodular Hopf algebra, whose antipode is not inner, is constructed. An example of an infinite dimensional co-Frobenius Hopf algebra which is not the tensor product of a cosemisimple Hopf algebra and a finite dimensional Hopf algebra was given in [23]. This example was generalized in [3], where a large class of such examples was constructed using Ore extensions of a group algebra. In [4] examples constructed by Ore extensions were used to classify pointed Hopf algebras of dimension p^{n}, p prime, with the coradical the group algebra of an abelian group of order p^{n-1}. Pointed Hopf algebras of dimension p^{3} were classified in [7], [2], and [21]. Hopf algebras of dimension 2^{n} with coradical $k C_{2}$ were described in [8].

Our general construction produces pointed co-Frobenius Hopf algebras which are generated by grouplikes and (g, h)-primitives. Briefly, we start with a group algebra (the coradical), add indeterminates (the (g, h)primitives) by repeated Ore extensions and then factor by a Hopf ideal. The idea is very simple, but it sheds some light on many complicated examples, providing a natural algebraic framework for their construction. In particular, all the examples mentioned above may be obtained by this construction, as well as other infinite dimensional co-Frobenius Hopf algebras, and finite dimensional quantum groups. We remark that a very different approach to constructing bialgebras may be found in [14] where an example of a noncommutative noncocommutative bialgebra of dimension 5 over a field of characteristic 2 is given.

In many cases we can determine explicitly when two Hopf algebras constructed as described above are isomorphic. This leads to a proof that infinite families of non-isomorphic Hopf algebras of the same finite dimension exist, generalizing the counter-example in [5] to Kaplansky's tenth conjecture [11]. This conjecture that there exist only finitely many types of Hopf algebras of a given finite dimension over an algebraically closed field has only recently been refuted independently, and with different approaches, in $[5,2,10]$.

The paper is organized as follows. In Sect. 1 we develop the general construction, i.e., we start with a group algebra $A=k C$, where C is a finitely generated abelian group, then we form a sequence of Ore extensions which we endow with a Hopf algebra structure. The Hopf algebra obtained after t steps, denoted by A_{t}, is pointed. By computing the injective envelopes of the simple subcomodules, we see that A_{t} is not co-Frobenius. In order to produce a pointed co-Frobenius Hopf algebra, we factor A_{t} by a Hopf ideal. Section 2 contains some classification results; in many cases an isomorphism between two such Hopf algebras essentially reduces to an automorphism of the group C. The classification of our "Ore extension Hopf algebras" is complete in the case where each Ore extension has zero derivation. If there are non-zero derivations, we still get a classification result which is sufficient to produce infinitely many types of Hopf algebras with the same dimension. In Sect. 3, we compute the duals of some finite dimensional Ore extension Hopf algebras defined with zero derivations; these duals are also Ore extension Hopf algebras with zero derivations. We remark that duals of Ore extension Hopf algebras with non-zero derivations may not even be pointed. The special case of C cyclic is discussed in Sect. 4. We determine when Ore extension Hopf algebras can be constructed starting with $k C$ and how many. The result depends on the arithmetic properties of the order of C. Since $\operatorname{Aut}(C)$ is easy to describe when C is cyclic, the classification of the Hopf algebras that we obtain is more precise. In Sect. 5 we consider a special class of examples of the general construction, namely those constructed using a non-zero derivation with each Ore extension after the first. These, also, can be classified. A large class of quantum groups arises here. In Sect. 6 we list all pointed Hopf algebras of dimension p^{3} produced by the preceding constructions, and count how many non-isomorphic Hopf algebras occur. By [7], these are indeed all pointed Hopf algebras of dimension p^{3}.

Throughout, k will be an algebraically closed field of characteristic 0 although, in fact, we only need that k contain enough roots of unity. The set of non-zero elements of k is denoted by k^{*}. All maps, \otimes, etc., are k-linear. We use \mathbf{N} to denote the non-negative integers and \mathbf{Z}^{+}for the positive integers.

In order to compute comultiplication on products and powers of (g, h) primitives, we will require q-binomial coefficients, $\binom{n}{l}_{q}, q \in k^{*}$. Note that this is a formal notation; $\binom{n}{l_{1}}_{q}$ is a polynomial in q. For n, l integers with $0 \leq$ $l \leq n$, the q-binomial coefficients are defined by $\binom{n}{l}_{q}=(n)_{q}!/(l)_{q}!(n-l)_{q}!$. If l is a positive integer, $(l)_{q}=1+q+\cdots+q^{l-1}$, and $(l)_{q}!=(l)_{q}(l-$ $1_{q} \cdots(1)_{q}$. By definition, $(0)_{q}!=1$. For more detail, we refer the reader to [12, Chap. 4].

Suppose a and b are elements of a k-algebra and $b a=q a b$. Then the expansion of $(a+b)^{n}$ is described by the following.

Lemma 0.1. For $q \neq 0, b a=q a b$,

$$
\begin{equation*}
(a+b)^{n}=\sum_{l=0}^{n}\binom{n}{l}_{q} a^{n-l} b^{l} . \tag{i}
\end{equation*}
$$

(ii) $(a+b)^{n}=a^{n}+b^{n}$ if q is a primitive nth root of unity.

Remark 0.2. Note that in Lemma 0.1 (ii), it is essential that q be a primitive nth root. For example, if $q=-1$ and $n=4, b a=-a b,(a+b)^{4}=$ $\left(a^{2}+b^{2}\right)^{2}=a^{4}+2 a^{2} b^{2}+b^{4}$. The coefficients of $a^{n-i} b^{i}, 0<i<n$, in the expansion of $(a+b)^{n}$ are all 0 if and only if q is a primitive nth root.

We follow the standard notation in [15]. For H a Hopf algebra, $G(H)$ will denote the group of grouplike elements and $H_{0}, H_{1}, H_{2}, \ldots$ will denote the coradical filtration of H. H is called pointed if $H_{0}=k G(H)$. If g and h are group-like elements of a Hopf algebra H, then x is called a (g, h)-primitive of H if

$$
\Delta(x)=x \otimes g+h \otimes x ;
$$

$P_{g, h}$ denotes the k-vector space of (g, h)-primitives of H. Then $P_{g, h}=$ $k(g-h) \oplus P_{g, h}^{\prime}$ for some vector space $P_{g, h}^{\prime}$. If H is a pointed Hopf algebra then by the Taft-Wilson Theorem ([15, Theorem 5.4.1]), $H_{1}=H_{0} \oplus P^{\prime}$, where H_{0} is the coradical, H_{1} the next term of the coradical filtration and $P^{\prime}=\oplus_{g, h \in G} P_{g, h}^{\prime}$. If H is finite dimensional, then $P_{1,1}=0$. This implies that if H is also pointed of dimension >1, then $G(H)$ is not trivial. A Hopf algebra is co-Frobenius if it has a left (and a right) integral in H^{*}.

1. THE ORE EXTENSION CONSTRUCTION

Recall (for example, from [19, 1.6.16]) that for a k-algebra A, an algebra endomorphism φ of A, and a φ-derivation δ of A (i.e., a linear map $\delta: A \rightarrow$ A such that $\delta(a b)=\delta(a) b+\varphi(a) \delta(b)$ for all $a, b \in A)$, the Ore extension $A[X, \varphi, \delta]$ is $A[X]$ as an abelian group, with multiplication induced by $X a=\delta(a)+\varphi(a) X$ for all $a \in A$. The following is an obvious extension of the universal property for polynomial rings.

Lemma 1.1. Let $A[X, \varphi, \delta]$ be an Ore extension of A and $i: A \rightarrow$ $A[X, \varphi, \delta]$ the inclusion morphism. Then for any algebra B, any algebra morphism $f: A \rightarrow B$ and every element $b \in B$ such that $b f(a)=$ $f(\delta(a))+f(\varphi(a)) b$ for all $a \in A$, there exists a unique algebra morphism $\bar{f}: A[X, \varphi, \delta] \rightarrow B$ such that $f(X)=b$ and the following diagram
is commutative:

In this section, we construct pointed Hopf algebras by starting with the coradical, forming Ore extensions, and then factoring out a Hopf ideal.

Let $A=k C$ be the group algebra of a finitely generated abelian group C with the usual Hopf algebra structure, and let C^{*} be the character group of C. Let $c_{1} \in C$ and $c_{1}^{*} \in C^{*}$.

Let φ_{1} be an algebra automorphism of A defined by $\varphi_{1}(g)=\left\langle c_{1}^{*}, g\right\rangle g$ for all $g \in C$. Consider the Ore extension $A_{1}=A\left[X_{1}, \varphi_{1}, \delta_{1}\right]$, where $\delta_{1}=0$. Apply Lemma 1.1 first with $B=A_{1} \otimes A_{1}, f=(i \otimes i) \cdot \Delta_{A}, b=$ $c_{1} \otimes X_{1}+X_{1} \otimes 1$ and then with $B=k, f=\epsilon_{A}, b=0$, to define algebra homomorphisms $\triangle: A_{1} \rightarrow A_{1} \otimes A_{1}$ and $\epsilon: A_{1} \rightarrow k$ by

$$
\begin{equation*}
\Delta\left(X_{1}\right)=c_{1} \otimes X_{1}+X_{1} \otimes 1 \quad \text { and } \epsilon\left(X_{1}\right)=0 . \tag{1.2}
\end{equation*}
$$

It is easily checked that Δ and ϵ define a bialgebra structure on A_{1}. The antipode S of A extends to an antipode on A_{1} by $S\left(X_{1}\right)=-c_{1}^{-1} X_{1}$.

Next, let $c_{2}^{*} \in C^{*}, \gamma_{12} \in k^{*}$, and let $\varphi_{2} \in$ Aut $\left(A_{1}\right)$ be defined by

$$
\varphi_{2}(g)=\left\langle c_{2}^{*}, g\right\rangle g \quad \text { for } g \in C, \quad \varphi_{2}\left(X_{1}\right)=\gamma_{12} X_{1} .
$$

We seek a φ_{2}-derivation δ_{2} of A_{1}, such that δ_{2} is zero on $k C$ and $\delta_{2}\left(X_{1}\right) \in$ $k C$. (The assumption that δ_{2} is zero on $k C$ will be at least partially justified by Proposition 1.20.) We want the Ore extension $A_{2}=A_{1}\left[X_{2}, \varphi_{2}, \delta_{2}\right]$ to have a Hopf algebra structure with X_{2} a $\left(1, c_{2}\right)$-primitive for some $c_{2} \in C$, i.e., $\Delta\left(X_{2}\right)=c_{2} \otimes X_{2}+X_{2} \otimes 1$. Then

$$
\begin{equation*}
X_{2} X_{1}=\delta_{2}\left(X_{1}\right)+\gamma_{12} X_{1} X_{2} . \tag{1.3}
\end{equation*}
$$

Applying Δ to both sides of (1.3), we see that

$$
\begin{aligned}
\gamma_{12} & =\left\langle c_{1}^{*}, c_{2}\right\rangle^{-1}=\left\langle c_{2}^{*}, c_{1}\right\rangle \quad \text { and } \\
\Delta\left(\delta_{2}\left(X_{1}\right)\right) & =c_{1} c_{2} \otimes \delta_{2}\left(X_{1}\right)+\delta_{2}\left(X_{1}\right) \otimes 1 .
\end{aligned}
$$

Thus $\delta_{2}\left(X_{1}\right)$ is a ($1, c_{1} c_{2}$)-primitive in $k C$ and so we must have

$$
\delta_{2}\left(X_{1}\right)=b_{12}\left(c_{1} c_{2}-1\right)
$$

for some scalar b_{12}. If $c_{1} c_{2}-1=0$, then we define b_{12} to be 0 . If $b_{12}=$ 0 , then δ_{2} is clearly a φ_{2}-derivation. Suppose that $\delta_{2} \neq 0$. In this case it remains to check that δ_{2} is a φ_{2}-derivation of A_{1}. In order that δ_{2} be well defined we must have, for all $g \in C$,

$$
\delta_{2}\left(g X_{1}\right)=\varphi_{2}(g) \delta_{2}\left(X_{1}\right)=\delta_{2}\left(\left\langle c_{1}^{*}, g\right\rangle^{-1} X_{1} g\right)=\left\langle c_{1}^{*}, g\right\rangle^{-1} \delta_{2}\left(X_{1}\right) g .
$$

Thus $\varphi_{2}(g)=\left\langle c_{2}^{*}, g\right\rangle g=\left\langle c_{1}^{*}, g\right\rangle^{-1} g$ and therefore $c_{1}^{*} c_{2}^{*}=1$ and $\gamma_{12}=$ $\left\langle c_{1}^{*}, c_{2}\right\rangle^{-1}=\left\langle c_{2}^{*}, c_{2}\right\rangle=\left\langle c_{2}^{*}, c_{1}\right\rangle=\left\langle c_{1}^{*}, c_{1}\right\rangle^{-1}$.
Now we compute

$$
\begin{aligned}
\delta_{2}\left(X_{1}^{2}\right) & =\delta_{2}\left(X_{1}\right) X_{1}+\varphi_{2}\left(X_{1}\right) \delta_{2}\left(X_{1}\right) \\
& =b_{12}\left(1+\left\langle c_{1}^{*}, c_{1}\right\rangle\right) c_{1} c_{2} X_{1}-b_{12}\left(1+\left\langle c_{1}^{*}, c_{1}\right\rangle^{-1}\right) X_{1},
\end{aligned}
$$

and, by induction, we see that for every positive integer r, we have

$$
\begin{equation*}
\delta_{2}\left(X_{1}^{r}\right)=b_{12}\left(\sum_{k=0}^{r-1}\left\langle c_{1}^{*}, c_{1}\right\rangle^{k}\right) c_{1} c_{2} X_{1}^{r-1}-b_{12}\left(\sum_{k=0}^{r-1}\left\langle c_{1}^{*}, c_{1}\right\rangle^{-k}\right) X_{1}^{r-1} . \tag{1.4}
\end{equation*}
$$

A straightforward (tedious) computation now ensures that for $g, g^{\prime} \in C$,

$$
\delta_{2}\left(g X_{1}^{r} g^{\prime} X_{1}^{p}\right)=\delta_{2}\left(g X_{1}^{r}\right) g^{\prime} X_{1}^{p}+\varphi_{2}\left(g X_{1}^{r}\right) \delta_{2}\left(g^{\prime} X_{1}^{p}\right)
$$

and our definition of $A_{2}=A_{1}\left[X_{2}, \varphi_{2}, \delta_{2}\right]$ is complete.
Summarizing, A_{2} is a Hopf algebra with generators $g \in C, X_{1}, X_{2}$, such that the elements of C are commuting grouplikes, X_{j} is a $\left(1, c_{j}\right)$-primitive and the following relations hold

$$
\begin{gathered}
g X_{j}=\left\langle c_{j}^{*}, g\right\rangle^{-1} X_{j} g \text { and } X_{2} X_{1}-\gamma_{12} X_{1} X_{2}=b_{12}\left(c_{1} c_{2}-1\right), \\
\text { where } \gamma_{12}=\left\langle c_{1}^{*}, c_{2}\right\rangle^{-1}=\left\langle c_{2}^{*}, c_{1}\right\rangle,
\end{gathered}
$$

and, if $\delta_{2}\left(X_{1}\right) \neq 0$,

$$
c_{1}^{*} c_{2}^{*}=1 \text { and } \gamma_{12}=\left\langle c_{1}^{*}, c_{1}\right\rangle^{-1}=\left\langle c_{1}^{*}, c_{2}\right\rangle^{-1}=\left\langle c_{2}^{*}, c_{1}\right\rangle=\left\langle c_{2}^{*}, c_{2}\right\rangle .
$$

We continue forming Ore extensions. Define an algebra automorphism φ_{j} of A_{j-1} by $\varphi_{j}(g)=\left\langle c_{j}^{*}, g\right\rangle g$ where $c_{j}^{*} \in C^{*}$, and $\varphi_{j}\left(X_{i}\right)=\left\langle c_{j}^{*}, c_{i}\right\rangle X_{i}$ where $c_{i} \in C$, and X_{i} is a $\left(1, c_{i}\right)$-primitive. The derivation δ_{j} of A_{j-1} is 0 on $k C$ and $\delta_{j}\left(X_{i}\right)=b_{i j}\left(c_{i} c_{j}-1\right)$. If $c_{i} c_{j}=1$, we define $b_{i j}=0$. We write X^{p} for $X_{1}^{p_{1}} \cdots X_{t}^{p_{t}}$ where $p \in \mathbf{N}^{t}$. After t steps, we have a Hopf algebra A_{t}.

Definition 1.5. $\quad A_{t}$ is the Hopf algebra generated by $g \in C$ and $X_{j}, j=$ $1, \ldots, t$ where
(i) the elements of C are commuting group-likes;
(ii) the X_{j} are ($1, c_{j}$)-primitives;
(iii) $X_{j} g=\left\langle c_{j}^{*}, g\right\rangle g X_{j}$;
(iv) $X_{j} X_{k}=\left\langle c_{j}^{*}, c_{k}\right\rangle X_{k} X_{j}+b_{k j}\left(c_{k} c_{j}-1\right)$ for $1 \leq k<j \leq t$;
(v) $\left\langle c_{k}^{*}, c_{j}\right\rangle\left\langle c_{j}^{*}, c_{k}\right\rangle=1$ for $j \neq k$;
(vi) If $b_{i j} \neq 0$ then $c_{i}^{*} c_{j}^{*}=1$.

The antipode of A_{t} is given by $S(g)=g^{-1}$ and $S\left(X_{j}\right)=-c_{j}^{-1} X_{j}$.
Note that $S^{2}\left(X_{j}\right)=c_{j}^{-1} X_{j} c_{j}=<c_{j}^{*}, c_{j}>X_{j}$ so that if $t=1, S^{2}$ is inner. The relations show that A_{t} has basis $\left\{g X^{p} \mid g \in C, p \in \mathbf{N}^{t}\right\}$. Since for $q_{j}=\left\langle c_{j}^{*}, c_{j}\right\rangle$,

$$
\left(X_{j} \otimes 1\right)\left(c_{j} \otimes X_{j}\right)=q_{j}\left(c_{j} \otimes X_{j}\right)\left(X_{j} \otimes 1\right),
$$

then, for $k \in \mathbf{Z}^{+}, \Delta\left(X_{j}^{k}\right)=\Delta\left(X_{j}\right)^{k}=\left(c_{j} \otimes X_{j}+X_{j} \otimes 1\right)^{k}$, and expansion of this power follows the rules in Lemma 0.1. For $g \in C, p=\left(p_{1}, \ldots, p_{t}\right) \in$ \mathbf{N}^{t},

$$
\begin{equation*}
\Delta\left(g X_{1}^{p_{1}} \cdots X_{t}^{p_{t}}\right)=\Delta\left(g X^{p}\right)=\sum_{d} \alpha_{d} g c_{1}^{d_{1}} c_{2}^{d_{2}} \cdots c_{t}^{d_{t}} X^{p-d} \otimes g X^{d} \tag{1.6}
\end{equation*}
$$

where $d=\left(d_{1}, \ldots, d_{t}\right) \in \mathbf{Z}^{t}$, the j th entry d_{j} in the t tuple d ranges from 0 to p_{j}, and the α_{d} are scalars resulting from the q-binomial expansion described in Lemma 0.1 and the commutation relations. In particular, for $1 \leq j \leq t, n \in \mathbf{Z}^{+}$,

$$
\begin{equation*}
\Delta\left(X_{j}^{n}\right)=\sum_{k=0}^{n}\binom{n}{k}_{q_{j}} c_{j}^{k} X_{j}^{n-k} \otimes X_{j}^{k} . \tag{1.7}
\end{equation*}
$$

Proposition 1.8. The Hopf algebra A_{t} has the following properties:
(i) The $(n+1)$ th term, $\left(A_{t}\right)_{n}$, in the coradical filtration of A_{t} is generated by $g X^{p}, g \in C, p \in \mathbf{N}^{t}, p_{1}+\cdots+p_{t} \leq n$. In particular, A_{t} is pointed with coradical $k C$.
(ii) For $g \in C$, the injective envelope of kg in the category of right $A_{t^{-}}$comodules is the k-space \mathscr{E}_{g} spanned by all $g c_{1}^{-p_{1}} c_{2}^{-p_{2}} \cdots c_{t}^{-p_{t}} X_{1}^{p_{1}} \cdots X_{t}^{p_{t}}=$ $g c_{1}^{-p_{1}} \cdots c_{t}^{-p_{t}} X^{p}, p=\left(p_{1}, \ldots, p_{t}\right) \in \mathbf{N}^{t}$.
(iii) A_{t} is not a co-Frobenius Hopf algebra.

Proof. (i) An induction argument using Eq. (1.6) shows that for all n,

$$
\left\langle g X^{p} \mid g \in C, p \in \mathbf{N}^{t}, p_{1}+\cdots+p_{t} \leq n\right\rangle \subseteq \wedge^{(n+1)} k C .
$$

Thus, $\wedge^{(\infty)} k C=A_{t}$ and by [1, 2.3.9], Corad $\left(A_{t}\right) \subseteq k C$. Since $k C$ is a cosemisimple coalgebra, it is exactly the coradical of A_{t}.
(ii) Again by Eq. (1.6), \mathscr{E}_{g} is a right A_{t}-subcomodule of A_{t} and kg is essential in \mathscr{E}_{g}. On the other hand, $A_{t}=\oplus_{(g)} \mathscr{E}_{g}, g \in C$. Thus the \mathscr{E}_{g} 's are injective.
(iii) This follows directly from [13, Theorem 10] and the fact that the \mathscr{E}_{g} 's are infinite dimensional.

In order to obtain a co-Frobenius Hopf algebra, we factor A_{t} by a Hopf ideal.

LEMMA 1.9. Let $n_{1}, n_{2}, \ldots, n_{t} \geq 2$ and $a=\left(a_{1}, \ldots, a_{t}\right) \in\{0,1\}^{t}$. The ideal $J(a)$ of A_{t} generated by

$$
\left(X_{1}^{n_{1}}-a_{1}\left(c_{1}^{n_{1}}-1\right), \ldots, X_{t}^{n_{t}}-a_{t}\left(c_{t}^{n_{t}}-1\right)\right)
$$

is a Hopf ideal if and only if $q_{j}=\left\langle c_{j}^{*}, c_{j}\right\rangle$ is a primitive n_{j} th root of unity for $1 \leq j \leq t$.

Proof. Since $c_{j}^{n_{j}}-1$ is a $\left(1, c_{j}^{n_{j}}\right)$-primitive, it follows that $X_{j}^{n_{j}}-a_{j}\left(c_{j}^{n_{j}}-\right.$ $1)$ is a $\left(1, c_{j}^{n_{j}}\right)$-primitive if and only if $X_{j}^{n_{j}}$ is. By (1.7) and Remark 0.2, this occurs if and only if $\binom{n_{j}}{k}_{q_{j}}=0$ for every $0<k<n_{j}$, i.e., if and only if q_{j} is a primitive n_{j} th root of unity. Moreover, since $S\left(X_{j}\right)=-c_{j}^{-1} X_{j}$, induction on n shows that

$$
S\left(X_{j}^{n}\right)=(-1)^{n} q_{j}^{-n(n-1) / 2} c_{j}^{-n} X_{j}^{n}
$$

Now, since $q_{j}^{n_{j}}=1$, checking the cases n_{j} even and n_{j} odd, we see that $(-1)^{n_{j}} q_{j}^{-n_{j}\left(n_{j}-1\right) / 2}=-1$ and hence

$$
S\left(X_{j}^{n_{j}}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right)=-c_{j}^{-n_{j}}\left(X_{j}^{n_{j}}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right)
$$

for $1 \leq j \leq t$, so that the ideal $J(a)$ is invariant under the antipode S, and is thus a Hopf ideal.

By Lemma 1.9, $H=A_{t} / J(a)$ is a Hopf algebra. However, the coradical may be affected by taking this quotient. Since we want H to be a pointed Hopf algebra with coradical $k C$, some additional restrictions are required. We denote by x_{i} the image of X_{i} in H and write x^{p} for $x_{1}^{p_{1}} \cdots x_{t}^{p_{t}}, p=$ $\left(p_{1}, \ldots, p_{t}\right) \in \mathbf{N}^{t}$.

Proposition 1.10. Assume $J(a)$ as in Lemma 1.9 is a Hopf ideal. Then $J(a) \cap k C=0$ if and only if for each i either $a_{i}=0$ or $\left(c_{i}^{*}\right)^{n_{i}}=1$. If this is the case then $\left\{g x^{p} \mid g \in C, p \in \mathbf{N}^{t}, 0 \leq p_{j} \leq n_{j}-1\right\}$ is a basis of $A_{t} / J(a)$.

Proof. By Lemma 1.9, we know that $J(a)$ is a Hopf ideal if and only if $q_{i}=\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a primitive n_{i} th root of unity for $1 \leq i \leq t$. Now suppose that $J(a) \cap k C=0$. Since

$$
\left(X_{i}^{n_{i}}-a_{i}\left(c_{i}^{n_{i}}-1\right)\right) g=\left\langle c_{i}^{*}, g\right\rangle^{n_{i}} g\left(X_{i}^{n_{i}}-\left\langle c_{i}^{*}, g\right\rangle^{-n_{i}} a_{i}\left(c_{i}^{n_{i}}-1\right)\right)
$$

is in $J(a)$ for every $g \in C$, it follows that $X_{i}^{n_{i}}-\left\langle c_{i}^{*}, g\right\rangle^{-n_{i}} a_{i}\left(c_{i}^{n_{i}}-1\right)$ is in $J(a)$. But then for every $g \in C$, both $a_{i}\left(1-\left\langle c_{i}^{*}, g\right\rangle^{-n_{i}}\right)\left(c_{i}^{n_{i}}-1\right)$ and $\left(1-\left\langle c_{i}^{*}, g\right\rangle^{-n_{i}}\right) X_{i}^{n_{i}}$ are in $J(a)$. If $a_{i} \neq 0$, which by our convention implies that $c_{i}^{n_{i}}-1 \neq 0$, then we must have $\left\langle c_{i}^{*}, g\right\rangle^{n_{i}}=1$ for all g, and thus $c_{i}^{* n_{i}}=1$.
Conversely, assume that $c_{i}^{* n_{i}}=1$ whenever $a_{i} \neq 0$. By Definition 1.5 (iii), $X_{i}^{n_{i}} g=\left\langle c_{i}^{*}, g\right\rangle^{n_{i}} g X_{i}^{n_{i}}$. In particular, $X_{i}^{n_{i}} g=g X_{i}^{n_{i}}$ if $a_{i} \neq 0$. Also, if $i<j$ then by (1.4),

$$
\begin{gathered}
X_{j} X_{i}^{n_{i}}=\varphi_{j}\left(X_{i}^{n_{i}}\right) X_{j}+\delta_{j}\left(X_{i}^{n_{i}}\right) \\
=\left\langle c_{j}^{*}, c_{i}\right\rangle^{n_{i}} X_{i}^{n_{i}} X_{j}+b_{i j}\left(\sum_{k=0}^{n_{i}-1}\left\langle c_{i}^{*}, c_{i}\right\rangle^{k}\right) c_{i} c_{j} X_{i}^{n_{i}-1}-b_{i j}\left(\sum_{k=0}^{n_{i}-1}\left\langle c_{i}^{*}, c_{i}\right\rangle^{-k}\right) X_{i}^{n_{i}-1} .
\end{gathered}
$$

So, if $b_{i j}=0$, then $X_{j} X_{i}^{n_{i}}=\left\langle c_{j}^{*}, c_{i}\right\rangle^{n_{i}} X_{i}^{n_{i}} X_{j}$, where $\left\langle c_{j}^{*}, c_{i}\right\rangle^{n_{i}}=\left\langle c_{i}^{*}, c_{j}\right\rangle^{-n_{i}}=$ 1 if $a_{i} \neq 0$. If $b_{i j} \neq 0$ then $c_{i}^{*} c_{j}^{*}=1$, hence $\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a primitive n_{i} th root of unity, so that $X_{j} X_{i}^{n_{i}}=X_{i}^{n_{i}} X_{j}$. A similar argument works for $i>j$. Thus, $X_{i}^{n_{i}}$ is a central element of A_{t} if $a_{i} \neq 0$. It follows that

$$
X_{j}\left(X_{i}^{n_{i}}-a_{i}\left(c_{i}^{n_{i}}-1\right)\right)=\left\langle c_{j}^{*}, c_{i}\right\rangle^{n_{i}}\left(X_{i}^{n_{i}}-a_{i}\left(c_{i}^{n_{i}}-1\right)\right) X_{j},
$$

so that $J(a)$ is equal to the left ideal generated by $\left\{X_{j}^{n_{j}}-a_{j}\left(c_{i}^{n_{j}}-1\right) \mid 1 \leq\right.$ $j \leq t\}$, and A_{t} is a free left module with basis $\left\{X^{p} \mid 0 \leq p_{j} \leq n_{j}-1\right\}$ over the subalgebra B generated by C and $X_{1}^{n_{1}}, \ldots, X_{t}^{n_{t}}$. We now show that no non-zero linear combination of elements of the form $g X^{p}, p \in \mathbf{N}^{t}$, $0 \leq p_{j} \leq n_{j}-1$ lies in $J(a)$. Otherwise there exist $f_{j} \in A_{t}$, not all zero, such that

$$
\sum_{1 \leq j \leq t}\left(X_{j}^{n_{j}}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right) f_{j}=\sum \alpha_{g, p} g X^{p},
$$

where in the second sum $g \in C, p \in \mathbf{N}^{t}, 0 \leq p_{j} \leq n_{j}-1$. Since A_{t} is a free left B-module with basis $\left\{X^{p} \mid 0 \leq p_{j} \leq n_{j}-1\right\}$, each f_{j} can be expressed in terms of this basis, and we find that $\sum_{1 \leq j \leq t}\left(X_{j}^{n_{j}}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right) F_{j} \in k C-\{0\}$ for some $F_{j} \in B$. Now, B is isomorphic to the algebra R obtained from $k C$ by a sequence of Ore extensions with zero derivations in the indeterminates $Y_{i}=X_{i}^{n_{i}}$, so that $Y_{i} g=\left\langle c_{i}^{* n_{i}}, g\right\rangle g Y_{i}$ and $Y_{j} Y_{i}=\left\langle c_{j}^{* n_{j}}, c_{i}^{n_{i}}\right\rangle Y_{i} Y_{j}$. Thus, we have

$$
\sum_{1 \leq j \leq t}\left(Y_{j}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right) G_{j} \in k C-\{0\}
$$

for some $G_{j} \in R$. It follows from Lemma 1.1 by induction on the number of indeterminates that there exists a $k C$-algebra homomorphism $\theta: R \rightarrow$ $k C$ such that $\theta\left(Y_{j}\right)=c_{j}^{n_{j}}-1$ if $a_{j} \neq 0$ and $\theta\left(Y_{j}\right)=0$ otherwise. Then $\theta\left(\sum_{1 \leq j \leq t}\left(Y_{j}-a_{j}\left(c_{j}^{n_{j}}-1\right)\right) G_{j}\right)=0$, a contradiction.

From now on, we assume that $n_{j} \geq 2, q_{j}=\left\langle c_{j}^{*}, c_{j}\right\rangle$ is a primitive n_{j} th root of 1 , and $c_{j}^{* n_{j}}=1$ whenever $a_{j} \neq 0$, and we study the new Hopf algebra $H=A_{t} / J(a)$. We have shown that the following defines a Hopf algebra structure on H.

Definition 1.11. Let $t \geq 1, C$ a finitely generated abelian group, $n \in$ $\mathbf{N}^{t}, c=\left(c_{j}\right) \in C^{t}, c^{*}=\left(c_{j}^{*}\right) \in C^{* t}, a \in\{0,1\}^{t}, b=\left(b_{i j}\right)_{1 \leq i<j \leq t}$ as above. Define $H=A_{t} / J(a)=H\left(C, n, c, c^{*}, a, b\right)$ to be the Hopf algebra generated by the commuting grouplike elements $g \in C$, and the ($1, c_{j}$)-primitives $x_{j}, 1 \leq j \leq t$, where, as well,
(i) $x_{j} g=\left\langle c_{j}^{*}, g\right\rangle g x_{j}$;
(ii) $x_{j}^{n_{j}}=a_{j}\left(c_{j}^{n_{j}}-1\right)$;
(iii) $x_{k} x_{j}=\left\langle c_{k}^{*}, c_{j}\right\rangle x_{j} x_{k}+b_{j k}\left(c_{j} c_{k}-1\right)$ for $1 \leq j<k \leq t$;
(iv) $\left\langle c_{j}^{*}, c_{k}\right\rangle\left\langle c_{k}^{*}, c_{j}\right\rangle=1$ for $j \neq k ;\left\langle c_{j}^{*}, c_{j}\right\rangle$ is a primitive n_{j} th root of unity;
(v) $a_{j}=0$ whenever $c_{j}^{n_{j}}=1$; if $a_{j} \neq 0, c_{j}^{* n_{j}}=1$;
(vi) $b_{i j}=0$ if $c_{i} c_{j}=1$; if $b_{i j} \neq 0, c_{i}^{*} c_{j}^{*}=1$.

Remark 1.12. (i) If $a_{i}=0$ for all i, we write $a=0$. Similarly if $b_{i j}=0$ for all $i<j$, we write $b=0$. If $t=1$ so that no non-zero derivation occurs, we also write $b=0$.
(ii) If $a=0$ and $b=0$, then we write $H=H\left(C, n, c, c^{*}\right)$ instead of $H\left(C, n, c, c^{*}, 0,0\right)$.
(iii) If in Definition 1.11, the a_{i} 's were arbitrary elements of k, then a simple change of variables would reduce to the case where the a_{i} 's are 0 or 1 .

Remark 1.13. In order to construct $H\left(C, n, c, c^{*}, a, b\right)$, it suffices to have c^{*} and c such that $\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a root of unity not equal to 1 , and $\left\langle c_{i}^{*}, c_{j}\right\rangle\left\langle c_{j}^{*}, c_{i}\right\rangle=1$ for $i \neq j$. Then n_{i} is the order of $\left\langle c_{i}^{*}, c_{i}\right\rangle$, and we choose a and b such that $a_{i}=0$ whenever $c_{i}^{n_{i}}=1, a_{i}=0$ whenever $c_{i}^{* n_{i}} \neq 1, b_{i j}=0$ whenever $c_{i} c_{j}=1$, and $b_{i j}=0$ whenever $c_{j}^{*} c_{i}^{*} \neq 1$. The remaining a_{i} 's and $b_{i j}$'s are arbitrary.

By Proposition 1.10, $\left\{g x^{p} \mid g \in C, p \in \mathbf{N}^{t}, 0 \leq p_{j} \leq n_{j}-1\right\}$ is a basis for H. As in Eq. (1.6), comultiplication on a general basis element is given by

$$
\begin{equation*}
\Delta\left(g x^{p}\right)=\sum_{d} \alpha_{d} g c_{1}^{d_{1}} c_{2}^{d_{2}} \cdots c_{t}^{d_{t}} x^{p-d} \otimes g x^{d}, \tag{1.14}
\end{equation*}
$$

where $d=\left(d_{1}, \ldots, d_{t}\right) \in \mathbf{Z}^{t}$ with $0 \leq d_{j} \leq p_{j}$. Here the scalars α_{d} are non-zero products of q_{j}-binomial coefficients and powers of $\left\langle c_{j}^{*}, c_{i}\right\rangle$.

In particular, for $k \in \mathbf{Z}^{+}$,

$$
\begin{equation*}
\Delta\left(x_{j}^{k}\right)=\sum_{0 \leq d \leq k}\binom{k}{d}_{q_{j}} c_{j}^{d} x_{j}^{k-d} \otimes x_{j}^{d} . \tag{1.15}
\end{equation*}
$$

Proposition 1.16. $H=H\left(C, n, c, c^{*}, a, b\right)$ has the following properties.
(i) H is pointed and the $(r+1)$ th term in the coradical filtration of H is $H_{r}=\left\langle g x^{p} \mid g \in C, p \in \mathbf{N}^{t}, p_{1}+\cdots+p_{t} \leq r\right\rangle . H=H_{n}$ where $n=$ $n_{1}+\cdots+n_{t}-t$ so that the coradical filtration has $n_{1}+\cdots+n_{t}-t+1$ terms.
(ii) The elements $g x_{j}$ form a k-basis for P^{\prime}, where $H_{1}=H_{0} \oplus P^{\prime}$ as in Section 0. Thus $P_{1, g}=k(g-1)$ unless $g=c_{j}$ for some $1 \leq j \leq t$. In particular, if C is finite, the k-dimension of P^{\prime} is $m t$ where m is the order of C.

Proof. The proof of (i) is similar to the proof of Proposition 1.8. The second part follows from the fact that the α_{d} are non-zero. Statement (ii) follows from the coradical filtration.

Unlike A_{t}, the Hopf algebra H is co-Frobenius. We compute the left and right integrals in H^{*} explicitly. For $g \in C$, and $w=\left(w_{1}, \ldots, w_{t}\right) \in \mathbf{Z}^{t}$, let $E_{g, w} \in H^{*}$ be the map taking $g x^{w}$ to 1 and all other basis elements to 0 .

Proposition 1.17. The Hopf algebra $H=H\left(C, n, c, c^{*}, a, b\right)$ is co-Frobenius. The space of left integrals in H^{*} is $k E_{l, n-1}$, where $l=$ $c_{1}^{1-n_{1}} c_{2}^{1-n_{2}} \cdots c_{t}^{1-n_{t}}=\prod_{j=1}^{t} c_{j}^{-\left(n_{j}-1\right)}$, and where $n-1$ is the t-tuple ($n_{1}-$ $\left.1, \ldots, n_{t}-1\right)$. The space of right integrals for H is $k E_{1, n-1}$ where 1 denotes the identity in C.

Proof. We show that $E_{l, n-1}$ is a left integral by evaluating $h^{*} E_{l, n-1}$ for $h^{*} \in H^{*}$. This is non-zero only on elements $z \otimes l x^{n-1}$ and such an element can only occur as a summand in $\Delta\left(\prod_{j=1}^{t}\left(c_{j}^{-1} x_{j}\right)^{n_{j}-1}\right)=\Delta\left(\gamma l x^{n-1}\right)$ where $\gamma \in k^{*}$. Now $h^{*} E_{l, n-1}\left(l x^{n-1}\right)=h^{*}(1) E_{l, n-1}\left(l x^{n-1}\right)$.

Similarly $x^{n-1} \otimes z$ only occurs in $\Delta\left(x^{n-1}\right)$. Since $\Delta\left(x^{n-1}\right)=x^{n-1} \otimes 1+$ \cdots, thus $E_{1, n-1} h^{*}=E_{1, n-1} h^{*}(1)$.

Corollary 1.18. H is unimodular, i.e., the spaces of left and right integrals in H^{*} coincide, if and only if $l=1$.

If G is a group and $g \in G^{t}$, we write g^{-1} to denote the t-tuple $\left(g_{1}^{-1}, \ldots, g_{t}^{-1}\right)$.

Example 1.19. (i) If $H=H\left(C, n, c, c^{*}, a, b\right)$ then H^{op} and $H^{\text {cop }}$ are also of this type. Indeed, $H^{\mathrm{op}} \cong H\left(C, n, c, c^{*-1}, a, b^{\prime}\right)$, where $b_{i j}^{\prime}=-\left\langle c_{j}^{*}, c_{i}\right\rangle b_{i j}$ for $i<j$.

Also $H^{\text {cop }} \cong H\left(C, n, c^{-1}, c^{*}, a, b^{\prime \prime}\right)$; the isomorphism is given by the map f taking g to g and x_{j} to $z_{j}=-c_{j}^{-1} x_{j}$. Then z_{j} is a $\left(1, c_{j}^{-1}\right)$-primitive and, using the fact that $(-1)^{n_{j}} q_{j}^{-n_{j}\left(n_{j}-1\right) / 2}=-1$ where q_{j} is a primitive n_{j} th root of 1 , we see that its n_{j} th power is either 0 or $c_{j}^{-n_{j}}-1$. The last parameter, $b^{\prime \prime}$, is given by $b_{i j}^{\prime \prime}=-<c_{j}^{*}, c_{i}>b_{i j}$ for $i<j$.
(ii) In particular if $H=H\left(C, n, c, c^{*}\right)$ then

$$
H^{\mathrm{op}} \cong H\left(C, n, c, c^{*-1}\right) \quad \text { and } H^{\mathrm{cop}} \cong H\left(C, n, c^{-1}, c^{*}\right)
$$

(iii) The Hopf algebras $H_{n, q, N, \nu}$ and $H_{(N, \nu, \omega)}$ defined in [18, 5.1] are of this type. In particular for N, n positive integers with $n \mid N, 1 \leq \nu<N$, q a primitive nth root of 1 and $r=\left|q^{\nu}\right|=\frac{n}{(n, \nu)}$, the Hopf algebra $H_{n, q, N, \nu}$ is, in our notation, $H\left(C_{N}, r=\frac{n}{(n, \nu)}, c^{\nu}, c^{*}\right)^{\operatorname{cop}}=H\left(C_{N}, r, c^{-\nu}, c^{*}\right)$, where $t=1, C_{N}=\langle c\rangle$ is cyclic of order N and $\left\langle c^{*}, c\right\rangle=q$. The Hopf algebras $H_{(N, \nu, \omega)}$ are the $H_{n, q, N, \nu}$ which are self dual; if ω is a primitive N th root of 1 , then $q=\omega^{d}$ and, as Corollary 4.6 will show, we may take $d=\nu$. In our notation, $H_{(N, \nu, \omega)}=H\left(C_{N}, r=\frac{n}{(n, \nu)}=N /\left(N, \nu^{2}\right), c^{\nu}, c^{* \nu}\right)$, where $\left\langle c^{*}, c\right\rangle=\omega$. The Taft Hopf algebras of dimension n^{2}, including Sweedler's four dimensional example, are of this form.
(iv) The Hopf algebras defined in [22] to show that for a unimodular Hopf algebra, the square of the antipode need not be inner, are also Ore extension Hopf algebras. $C=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{s}\right\rangle$ where $\left\langle g_{i}\right\rangle$ has order m_{i}, and $m_{i}=n_{i}$. Also the gcd of m_{1}, \ldots, m_{t} is greater than 1 and for l a divisor of $\operatorname{gcd}\left(m_{1}, \ldots, m_{t}\right), \omega$ is a primitive l th root of 1 . For each i, η_{i} is a primitive m_{i} th root of 1 . Let $c_{j}=\left(1, \ldots, 1, g_{j}^{-1}, 1, \ldots, 1\right) \in C$ and $c_{j}^{*} \in C^{*}$ be defined by

$$
\left\langle c_{j}^{*},\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right)\right\rangle= \begin{cases}\omega^{-1} & \text { if } i<j \\ \eta_{j} & \text { if } i=j \\ \omega & \text { if } i>j\end{cases}
$$

Then the Hopf algebra B defined in [22] is $H\left(C, m, c^{*}, c\right)$.
(v) The infinite dimensional non-unimodular co-Frobenius Hopf algebra defined in [23, 5.6] is also an Ore extension Hopf algebra. Here $C=\langle a\rangle$ is cyclic of infinite order and there is one indeterminate b with $\Delta(b)=a \otimes b+b \otimes a^{-1}, b^{n}=0$. Also λ is a primitive $(2 n)$ th root of 1 and $b a=\lambda^{-1} a b$. It is straightforward to check that the Hopf algebra A generated by a and b is isomorphic to $H\left(C, n, a^{2}, a^{*}\right)$ where $\left\langle a^{*}, a\right\rangle=\sqrt{\lambda}$.
(vi) Let $C=C_{1} \times \cdots \times C_{s}$ be an abelian group of order p^{n-1}, with $C_{i}=\left\langle g_{i}\right\rangle$ of order $m_{i}, \lambda_{i} \in k$ an m_{i} th root of 1 , and $c=\prod_{i=1}^{s} g_{i}^{r_{i}}$ where the r_{i} are such that $\lambda=\prod_{i=1}^{s} \lambda_{i}^{r_{i}}$ is a primitive p th root of 1 . Let $c^{*} \in C^{*}$ be defined by $\left\langle c^{*}, g_{i}\right\rangle=\lambda_{i}^{-1}$. If $c^{p} \neq 1$, then $H\left(C, p, c, c^{*}, 1,0\right)$ is the Hopf algebra with generators g_{1}, \ldots, g_{s}, x, subject to relations

$$
\begin{gathered}
g_{i}^{m_{i}}=1, \quad x g_{i}=\lambda_{i}^{-1} g_{i} x, \quad x^{p}=c^{p}-1 \\
\Delta\left(g_{i}\right)=g_{i} \otimes g_{i}, \quad \Delta(x)=c \otimes x+x \otimes 1, \quad \epsilon\left(g_{i}\right)=1, \quad \epsilon(x)=0 .
\end{gathered}
$$

This Hopf algebra was useful in [4] for the classification of pointed Hopf algebras of dimension p^{n} with abelian coradical of dimension p^{n-1}.
(vii) Let $C=C_{2}=\langle c\rangle$, the cyclic group of order $2,\left\langle c_{j}^{*}, c\right\rangle=-1$, and $c_{j}=c$ for all $1 \leq j \leq t$. Then $H\left(C, n, c, c^{*}\right)$ is the Hopf algebra with generators c, x_{1}, \ldots, x_{t} subject to relations

$$
\begin{array}{cll}
c^{2}=1, & x_{i}^{2}=0, & x_{i} c=-c x_{i}, \quad x_{j} x_{i}=-x_{i} x_{j}, \\
\Delta(c)=c \otimes c, & \Delta\left(x_{i}\right)=c \otimes x_{i}+x_{i} \otimes 1 .
\end{array}
$$

It is proved in [8] that this is the only type of Hopf algebra of dimension 2^{t+1} with coradical $k C_{2}$.
(viii) For $t=2$, the Hopf algebra $U_{(N, \nu, \omega)}$ constructed in $[18,5.2]$ and studied in [18] and [9] is exactly $H\left(C_{N}=\langle g\rangle, r, c=\left(g^{\nu}, g^{\nu}\right), c^{*}, 0, b\right)^{\text {cop }}$, where $b_{12}=1$. The character c_{i}^{*} is defined by $\left\langle c_{1}^{*}, g\right\rangle=q,\left\langle c_{2}^{*}, g\right\rangle=q^{-1}$. Here $\nu \in \mathbf{Z}, 1 \leq \nu<N$ with ν^{2} not divisible by N. For $\omega \in k$ a primitive N th root of $1, q=\omega^{\nu}$ and r is the order of $q^{\nu}=\omega^{\nu^{2}}$.

We end this section by showing that our assumption that the derivations are zero on $k C$ is not unreasonable. Assume that φ is an algebra automorphism of $k C$ of the form $\varphi(g)=\left\langle c^{*}, g\right\rangle g$ for $g \in C$, as usual. Give the Ore extension $(k C)[X, \varphi]$ a Hopf algebra structure such that X is a (1, c)-primitive as in the beginning of this section.

Proposition 1.20. Assume that $\left\langle c^{*}, g\right\rangle \neq 1$ if $g \in C$ has infinite order. If δ is a φ-derivation of $k C$ such that the Ore extension $(k C)[Y, \varphi, \delta]$ has a Hopf algebra structure extending that of $k C$ with $Y a(1, c)$-primitive, then there is a Hopf algebra isomorphism $(k C)[Y, \varphi, \delta] \simeq(k C)[X, \varphi]$.

Proof. Let $U=\left\{g \in C \mid\left\langle c^{*}, g\right\rangle \neq 1\right\}$ and $V=\left\{g \in C \mid\left\langle c^{*}, g\right\rangle=1\right\}$. Thus, if $g \in V$ then by our assumption g has finite order. In this case, $\varphi\left(g^{n}\right)=g^{n}$ for all n, and induction on $n \geq 1$ shows that $\delta\left(g^{n}\right)=n g^{n-1} \delta(g)$. Then $\delta(1)=m g^{-1} \delta(g)$, where m is the order of g, and $\delta(1)=0$ imply that $\delta(g)=0$.

Now let $g \in U$. Applying Δ to the relation $Y g=\left\langle c^{*}, g\right\rangle g Y+\delta(g)$, we find that $\Delta(\delta(g))=c g \otimes \delta(g)+\delta(g) \otimes g$. Thus $\delta(g)$ is a $(g, c g)$-primitive, and so $\delta(g)=\alpha_{g} g(c-1)$ for some scalar α_{g}.

Therefore, for any two elements g and h of U

$$
\begin{aligned}
\delta(g h)=\delta(g) h+\varphi(g) \delta(h) & =\alpha_{g} g(c-1) h+\left\langle c^{*}, g\right\rangle g \alpha_{h} h(c-1) \\
& =\left(\alpha_{g}+\alpha_{h}\left\langle c^{*}, g\right\rangle\right)(c-1) g h,
\end{aligned}
$$

and similarly

$$
\delta(h g)=\left(\alpha_{h}+\alpha_{g}\left\langle c^{*}, h\right\rangle\right)(c-1) g h .
$$

Since C is abelian $\alpha_{g}+\alpha_{h}\left\langle c^{*}, g\right\rangle=\alpha_{h}+\alpha_{g}\left\langle c^{*}, h\right\rangle$, or $\alpha_{g} /\left(1-\left\langle c^{*}, g\right\rangle\right)=$ $\alpha_{h} /\left(1-\left\langle c^{*}, h\right\rangle\right)$. Denote by γ the common value of the $\alpha_{g} /\left(1-\left\langle c^{*}, g\right\rangle\right)$ for $g \in U$. We have $\alpha_{g}-\gamma+\left\langle c^{*}, g\right\rangle \gamma=0$.

Let $Z=Y-\gamma(c-1)$. For any $g \in U$ we have that

$$
\begin{gathered}
Z g=Y g-\gamma(c-1) g=\left\langle c^{*}, g\right\rangle g Y+\alpha_{g} g(c-1)-\gamma(c-1) g \\
\quad=\left\langle c^{*}, g\right\rangle g Z+\left\langle c^{*}, g\right\rangle \gamma g(c-1)+\alpha_{g} g(c-1)-\gamma g(c-1) \\
\quad=\left\langle c^{*}, g\right\rangle g Z+\left(\alpha_{g}-\gamma+\left\langle c^{*}, g\right\rangle \gamma\right) g(c-1)=\left\langle c^{*}, g\right\rangle g Z .
\end{gathered}
$$

Obviously, $Z g=g Z$ if $g \in V$, and thus we have proved that $(k C)[Y, \varphi, \delta] \cong$ $(k C)[Z, \varphi]$ as algebras. Since Z is clearly a (1, c)-primitive, this is also a coalgebra morphism and the proof is complete.

2. CLASSIFICATION RESULTS

We first classify Hopf algebras of the form $H\left(C, n, c, c^{*}, a, 0\right)$, i.e., they are constructed as in Sect. 1 by using Ore extensions with zero derivations. Suppose $H=H\left(C, n, c, c^{*}, a, 0\right) \simeq H^{\prime}=H\left(C^{\prime}, n^{\prime}, c^{\prime}, c^{*^{\prime}}, a^{\prime}, 0\right)$ and write $g, x_{i}\left(g^{\prime}, x_{i}^{\prime}\right)$ for the generators of $H\left(H^{\prime}\right.$, respectively). Let f be a Hopf algebra isomorphism from H to H^{\prime}. Since the coradicals must be isomorphic, we may assume that $C=C^{\prime}$, and the Hopf algebra isomorphism induces an automorphism of C. Also by Proposition 1.16, $t=t^{\prime}$. If π is a permutation of $\{1, \ldots, t\}$ and $v \in \mathbf{Z}^{t}$, we write $\pi(v)$ to denote ($v_{\pi(1)}, \ldots, v_{\pi(t)}$).

Theorem 2.1. Let $H=H\left(C, n, c, c^{*}, a, 0\right)$ and $H^{\prime}=H\left(C^{\prime}, n^{\prime}, c^{\prime}, c^{*^{\prime}}\right.$, $\left.a^{\prime}, 0\right)$ be Hopf algebras as described above. Then $H \cong H^{\prime}$ if and only if $C=$ $C^{\prime}, t=t^{\prime}$ and there is an automorphism f of C and a permutation π of $\{1, \ldots, t\}$ such that for $1 \leq i \leq t$

$$
n_{i}=n_{\pi(i)}^{\prime}, f\left(c_{i}\right)=c_{\pi(i)}^{\prime}, c_{i}^{*}=c_{\pi(i)}^{*^{\prime}} \circ f, \text { and } a_{i}=a_{\pi(i)}^{\prime}
$$

Proof. Let $I=\left\{i \mid 1 \leq i \leq t, c_{i}=c_{1}, c_{i}^{*}=c_{1}^{*}\right\}$ and let

$$
\tilde{J}=\left\{j \mid 1 \leq j \leq t, c_{j}^{\prime}=f\left(c_{1}\right)\right\} \supseteq J=\left\{j \mid 1 \leq j \leq t, j \in \tilde{J}, c_{j}^{*^{\prime}} \circ f=c_{1}^{*}\right\} .
$$

Note that since $\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a primitive n_{i} th root of 1 and for $i \in I,\left\langle c_{i}^{*}, c_{i}\right\rangle=$ $\left\langle c_{1}^{*}, c_{1}\right\rangle$, then $n_{i}=n_{1}$ for $i \in I$. Similarly, since for $j \in J,\left\langle c_{j}^{*^{\prime}}, c_{j}^{\prime}\right\rangle=$ $\left\langle c_{j}^{*^{\prime}}, f\left(c_{1}\right)\right\rangle=\left\langle c_{1}^{*}, c_{1}\right\rangle, n_{j}^{\prime}=n_{1}$ for $j \in J$. Let L be the Hopf subalgebra of H generated by C and $\left\{x_{i} \mid i \in I\right\}$ and L^{\prime} the Hopf subalgebra of H^{\prime} generated by C and $\left\{x_{j}^{\prime} \mid j \in J\right\}$.

Since x_{1} is a ($1, c_{1}$)-primitive, $f\left(x_{1}\right)$ is a ($1, f\left(c_{1}\right)$-primitive and so

$$
f\left(x_{1}\right)=\alpha_{0}\left(f\left(c_{1}\right)-1\right)+\sum_{i=1}^{r} \alpha_{i} x_{j_{i}}^{\prime} \quad \text { with } \alpha_{i} \in k, j_{i} \in \tilde{J}
$$

Then, since $g x_{1}=\left\langle c_{1}^{*}, g\right\rangle^{-1} x_{1} g$ for all $g \in C$, we see that $\alpha_{0}=0$, and

$$
\sum_{i=1}^{r} f(g) \alpha_{i} x_{j_{i}}^{\prime}=\sum_{i=1}^{r} \alpha_{i}\left\langle c_{1}^{*}, g\right\rangle^{-1} x_{j_{i}}^{\prime} f(g)=\sum_{i=1}^{r} \alpha_{i}\left\langle c_{1}^{*}, g\right\rangle^{-1}\left\langle c_{j_{i}}^{*}, f(g)\right\rangle f(g) x_{j_{i}}^{\prime}
$$

and thus $\alpha_{i}=0$ for any i for which $c_{1}^{*} \neq c_{j_{i}}^{*^{\prime}} \circ f$. Thus $f(L) \subseteq L^{\prime}$. The same argument using f^{-1} shows that $f^{-1}\left(L^{\prime}\right) \subseteq L$ and so $f(L)=L^{\prime}$.
If $L \neq H$, we repeat the argument for M, the Hopf subalgebra of H generated by C and the set $\left\{x_{i}: c_{i}=c_{k}, c_{i}^{*}=c_{k}^{*}\right\}$ where x_{k} is the first element in the list x_{2}, \ldots, x_{t} which is not in L. Continuing in this way, we see that there exists a permutation σ such that

$$
n_{i}=n_{\sigma(i)}^{\prime}, f\left(c_{i}\right)=c_{\sigma(i)}, c_{i}^{*}=c_{\sigma(i)}^{*^{\prime}} \circ f .
$$

It remains to find π such that $a_{i}=a_{\pi(i)}^{\prime}$. First suppose $n_{1}>2$. Then $I=$ $\{1\}$. For if $k \in I, k \neq 1$, then $\left\langle c_{1}^{*}, c_{1}\right\rangle=\left\langle c_{k}^{*}, c_{1}\right\rangle=\left\langle c_{1}^{*}, c_{k}\right\rangle^{-1}=\left\langle c_{1}^{*}, c_{1}\right\rangle^{-1}$ and $\left\langle c_{1}^{*}, c_{1}\right\rangle^{2}=1$, a contradiction. Similarly $J=\{\sigma(1)\}$. Hence $f\left(x_{1}\right)=$ $\alpha x_{\sigma(1)}^{\prime}$ for some non-zero scalar α, and the relation $x_{1}^{n_{1}}=a_{1}\left(c_{1}^{n_{1}}-1\right)$ implies $\alpha^{n_{1}} x_{\sigma(1)}^{n_{\sigma}^{\prime}}=a_{1}\left(c_{\sigma(1)}^{\prime n_{1}}-1\right)$, so that $a_{\sigma(1)}^{\prime}=a_{1}$.
Next suppose $n_{1}=2$. Let $I_{1}=\left\{i \in I \mid a_{i}=1\right\}$ and $J_{1}=\left\{j \in J \mid a_{j^{\prime}}=1\right\}$. For any $i \in I$, there exist $\alpha_{i j} \in k$ such that $f\left(x_{i}\right)=\sum_{j \in J} \alpha_{i j} x_{j}^{\prime}$. As above, for all $i \in I,\left\langle c_{i}^{*}, c_{i}\right\rangle=-1$ (for all $j \in J,\left\langle c_{j}^{*^{\prime}}, c_{j}^{\prime}\right\rangle=-1$) and thus the x_{i} (respectively, the x_{j}^{\prime}) anticommute. If $i \in I_{1}, f$ applied to $x_{i}^{2}=c_{1}^{2}-1$ yields $\sum_{j \in J_{1}} \alpha_{i j}^{2}=1$. On the other hand, comparing $f\left(x_{i} x_{k}\right)$ and $f\left(x_{k} x_{i}\right)$ for $i, k \in I_{1}, i \neq k$, we see that

$$
\sum_{j \in J_{1}} \alpha_{i j} \alpha_{k j}=-\sum_{j \in J_{1}} \alpha_{k j} \alpha_{i j}
$$

and thus $\sum_{j \in J_{1}} \alpha_{i j} \alpha_{k j}=0$.
This implies that the vectors $B_{i} \in k^{J_{1}}$, defined by $B_{i}=\left(\alpha_{i j}\right)_{j \in J_{1}}$ for $i \in I_{1}$, form an orthonormal set in $k^{J_{1}}$ under the ordinary dot product. Thus the space $k^{J_{1}}$ contains at least $\left|I_{1}\right|$ independent vectors and so $\left|J_{1}\right| \geq\left|I_{1}\right|$. The reverse inequality is proved similarly. Now define π to be a refinement of
the permutation σ such that for $i \in I_{1}, \pi(i) \in J_{1}$ and then $a_{i}=a_{\pi(i)}^{\prime}$ for all $i \in I$.

Conversely, let f be an automorphism of C and let π be a permutation of $\{1,2, \ldots, t\}$ such that for all $1 \leq i \leq t$,

$$
n_{i}=n_{\pi(i)}^{\prime}, f\left(c_{i}\right)=c_{\pi(i)}^{\prime}, c_{i}^{*}=c_{\pi(i)}^{*} \circ f, \text { and } a_{i}=a_{\pi(i)}^{\prime}
$$

Extend f to a Hopf algebra isomorphism from H to H^{\prime} by $f\left(x_{i}\right)=x_{\pi(i)}^{\prime}$. If we note that

$$
\left\langle c_{\pi(i)}^{*^{\prime}}, c_{\pi(j)}^{\prime}\right\rangle=\left\langle c_{\pi(i)}^{*^{\prime}}, f\left(c_{j}\right)\right\rangle=\left\langle c_{i}^{*}, c_{j}\right\rangle,
$$

the rest of the verification that f induces a Hopf algebra isomorphism is straightforward.
Note that in the proof above, it was shown that if $n_{k}>2$, then $|I|=$ $|J|=1$ where $I=\left\{i \mid 1 \leq i \leq t, c_{i}=c_{k}, c_{i}^{*}=c_{k}^{*}\right\}$ and $J=\{j \mid 1 \leq j \leq$ $\left.t, c_{j}^{\prime}=f\left(c_{k}\right), c_{j}^{*^{\prime}} \circ f=c_{k}^{*}\right\}$. Thus we can also classify Hopf algebras of the form $H\left(C, n, c, c^{*}, a, b\right)$ if all $n_{i}>2$. We revisit the case where some $n_{i}=2$ in Sect. 5.

Theorem 2.2. Let $H=H\left(C, n, c, c^{*}, a, b\right)$ and $H^{\prime}=H\left(C^{\prime}, n^{\prime}, c^{\prime}, c^{*^{\prime}}\right.$, $\left.a^{\prime}, b^{\prime}\right)$ be such that all n_{i} and $n_{i}^{\prime}>2$. Then $H \cong H^{\prime}$ if and only if $C=C^{\prime}$, $t=t^{\prime}$ and there is an automorphism f of C, non-zero scalars $\left(\alpha_{i}\right)_{1 \leq i \leq t}$, and a permutation π of $\{1, \ldots, t\}$ such that

$$
n_{i}=n_{\pi(i)}^{\prime}, f\left(c_{i}\right)=c_{\pi(i)}^{\prime}, c_{i}^{*}=c_{\pi(i)}^{*} \circ f, \text { and } a_{i}=a_{\pi(i)}^{\prime}
$$

$\alpha_{i}^{n_{i}}=1$ for any i such that $a_{i}=1$, and for any $1 \leq i<j \leq t$,

$$
\begin{aligned}
b_{i j}= & \alpha_{i} \alpha_{j} b_{\pi(i) \pi(j)}^{\prime} \text { if } \pi(i)<\pi(j) \\
& \quad \text { and }<c_{i}^{*}, c_{j}>b_{i j}=-\alpha_{i} \alpha_{j} b_{\pi(j) \pi(i)}^{\prime} \text { if } \pi(j)<\pi(i) .
\end{aligned}
$$

Proof. The argument is similar to that in Theorem 2.1. An application of the isomorphism f to the equation $x_{j} x_{i}=\left\langle c_{j}^{*}, c_{i}\right\rangle x_{i} x_{j}+b_{i j}\left(c_{i} c_{j}-1\right)$, $i<j$, yields the relationship between b and b^{\prime}.

The following corollary answers in the negative to Kaplansky's tenth conjecture on Hopf algebras [11].

Corollary 2.3. Suppose that $C, c \in C^{t}, c^{*} \in C^{* t}$, are such that $\left\langle c_{j}^{*}, c_{l}\right\rangle=\left\langle c_{l}^{*}, c_{j}\right\rangle^{-1}$ if $l \neq j,\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a primitive root of unity of order $n_{i}>2$, and there exist $i<j$ such that $c_{i}^{* n_{i}}=c_{j}^{* n_{j}}=1, c_{i}^{n_{i}} \neq 1, c_{j}^{n_{j}} \neq 1$, $c_{i} c_{j} \neq 1$, and $c_{i}^{*} c_{j}^{*}=1$. Then for any a with $a_{i}=a_{j}=1$ and satisfying the conditions of Remark 1.13, there exist infinitely many non-isomorphic Hopf algebras of the form $H\left(C, n, c, c^{*}, a, b\right)$.

Proof. Let b and b^{\prime} be such that $H=H\left(C, n, c, c^{*}, a, b\right)$ and $H^{\prime}=$ $H\left(C, n, c, c^{*}, a, b^{\prime}\right)$ are well defined. By Remark 1.13, infinitely many such b and b^{\prime} exist. If $f: H \rightarrow H^{\prime}$ is a Hopf algebra isomorphism, then the permutation π in Theorem 2.2 is the identity and thus $b_{i j}=\alpha_{i} \alpha_{j} b_{i j}^{\prime}$ for some n_{i} th and n_{j} th roots of unity α_{i} and α_{j}. Since there exist only finitely many such roots, and k is infinite, the result follows.

Example 2.4. To find a concrete example of a class consisting of infinitely many types of Hopf algebras of the same finite dimension, we need some data $\left(C, c, c^{*}\right)$ as in Corollary 2.3, with C finite. The simplest such data are the following.
(i) Let p be an odd prime, and ρ a primitive p-th root of 1 . Take $C=$ $C_{p^{2}}=\langle g\rangle$, the cyclic group of order $p^{2}, t=2, c=(g, g), c^{*}=\left(g^{*}, g^{*-1}\right)$ where $\left\langle g^{*}, g\right\rangle=\rho$ and $a=(1,1)$. Then $n_{1}=n_{2}=p$ and by Corollary 2.3, $H\left(C, n, c, c^{*}, a, b\right) \cong H\left(C, n, c, c^{*}, a, b^{\prime}\right)$ if and only if $b_{12}=\gamma b_{12}^{\prime}$ for γ a primitive p th root of 1 . Thus there are infinitely many types of Hopf algebras of dimension p^{4}. This is the example from [5].
(ii) Let $C=C_{p q}=\langle g\rangle$, the cyclic group of order $p q$ where p is an odd prime, $q>1$, and $t=2, c=(g, g), c^{*}=\left(g^{*}, g^{*-1}\right)$ where $\left\langle g^{*}, g\right\rangle=\rho$, ρ a primitive p th root of 1 . Let $a_{1}=a_{2}=1$. Then again $n_{1}=n_{2}=p$, and as in (i), there are infinitely many types of Hopf algebras $H\left(C, n, c, c^{*}, a, b\right)$ of dimension $p^{3} q$.

We end this section by demonstrating that in case some of the n_{i} 's are equal to 2 , a classification result like Theorem 2.2 does not hold. Although clearly the partial data $\left(C, n, c, c^{*}\right)$ and $\left(C^{\prime}, n^{\prime}, c^{\prime}, c^{*}\right)$ are related as in the proof of Theorem 2.1, $a \in\{0,1\}^{t}$ and $a^{\prime} \in\{0,1\}^{t}$ may contain different numbers of 0 's and 1's. To see this we cite the following examples from [6].

Example 2.5. (i) Let $C=C_{4}=\langle g\rangle, t=2, n=(2,2), c=(g, g), c^{*}=$ $\left(g^{*}, g^{*}\right)$ where $\left\langle g^{*}, g\right\rangle=-1, b_{12}=1, a=(1,1), a^{\prime}=(0,1)$. Then there exists a Hopf algebra isomorphism $f: H\left(C, n, c, c^{*}, a, b\right) \rightarrow$ $H\left(C, n, c, c^{*}, a^{\prime}, b\right)$ defined by $f(g)=g, f\left(x_{1}\right)=-\left(\beta^{2}+\beta\right) x_{1}^{\prime}+\beta x_{2}^{\prime}, f\left(x_{2}\right)$ $=x_{2}^{\prime}$, where $\beta \in k$ is a primitive cube root of -1 .
(ii) Let $C=C_{4}=\langle g\rangle, t=2, n=(2,2), c=(g, g), c^{*}=\left(g^{*}, g^{*}\right)$ where $\left\langle g^{*}, g\right\rangle=-1, a=(1,1)$ and $b_{12}=2, a^{\prime}=(0,1), b_{12}^{\prime}=0$. Then the map f from $H\left(C, n, c, c^{*}, a^{\prime}, b^{\prime}\right)$ to $H\left(C, n, c, c^{*}, a, b\right)$ defined by $f(g)=$ $g, f\left(x_{1}\right)=x_{2}, f\left(x_{2}\right)=x_{1}-x_{2}$, is a Hopf algebra isomorphism. Note that one of the Hopf algebras is an extension with non-trivial derivation while the other is an extension with trivial derivation.

3. DUALS

In this section, we study the duals of the Hopf algebras $H\left(C, n, c^{*}, c\right)$ for C finite. Suppose $C=C_{1} \times C_{2} \times \cdots \times C_{s}=<g_{1}>\times \cdots \times\left\langle g_{s}\right\rangle$ where C_{i} is cyclic of order m_{i}. For $i=1, \ldots, s$, let $\zeta_{i} \in k^{*}$ be a primitive m_{i} th root of 1 . The dual $C^{*}=\left\langle g_{1}^{*}\right\rangle \times \cdots \times\left\langle g_{s}^{*}\right\rangle$, where $\left\langle g_{i}^{*}, g_{i}\right\rangle=\zeta_{i}$ and $\left\langle g_{i}^{*}, g_{j}\right\rangle=1$ for $i \neq j$ is then isomorphic to C. We identify C and $C^{* *}$ using the natural isomorphism $C \cong C^{* *}$ where $\left\langle g^{* *}, g^{*}\right\rangle=\left\langle g^{*}, g\right\rangle$.

Now we show that for C finite, the dual of a Hopf algebra $H=$ $H\left(C, n, c, c^{*}\right)$ constructed via t Ore extensions with zero derivation and with all indeterminates nilpotent, is again an "Ore extension Hopf algebra," and that there is a very natural relationship between H and H^{*}.

Theorem 3.1. $\quad H\left(C, n, c, c^{*}\right)^{*} \cong H\left(C^{*}, n, c^{*}, c\right)$.
Proof. First we determine the grouplikes in H^{*}. Let $g_{i}^{*} \in H^{*}$ be the algebra map defined by $g_{i}^{*}\left(g_{j}\right)=\left\langle g_{i}^{*}, g_{j}\right\rangle$ and $g_{i}^{*}\left(x_{j}\right)=0$ for all i, j. Since the g_{i}^{*} are algebra maps from H to k, H^{*} contains a group of grouplikes generated by the g_{i}^{*}, and so isomorphic to C^{*}.

Now, let $y_{j} \in H^{*}$ be defined by $y_{j}\left(g x_{j}\right)=\left\langle c_{j}^{*-1}, g\right\rangle$, and $y_{j}\left(g x^{w}\right)=0$ for $x^{w} \neq x_{j}$.

We determine the nilpotency degree of y_{j}. Clearly y_{j}^{r} is non-zero only on basis elements $g x_{j}^{r}$. Note that by (1.15) and the fact that $q_{j}=\left\langle c_{j}^{*}, c_{j}\right\rangle$,

$$
\begin{aligned}
y_{j}^{2}\left(g x_{j}^{2}\right) & =\left(y_{j} \otimes y_{j}\right)\left[\binom{2}{1}_{q_{j}} g c_{j} x_{j} \otimes g x_{j}\right] \\
& =\binom{2}{1}_{q_{j}}\left\langle c_{j}^{*}, g^{2} c_{j}\right\rangle^{-1} \\
& =\left(1+q_{j}\right) q_{j}^{-1}\left\langle c_{j}^{*}, g^{2}\right\rangle^{-1} \\
& =\left(1+q_{j}^{-1}\right)\left\langle c_{j}^{*}, g^{2}\right\rangle^{-1} .
\end{aligned}
$$

By induction, using the fact that $\binom{r}{1}_{q_{j}}=\left(1+q_{j}+\cdots+q_{j}^{r-1}\right)$, we see that for $\eta_{j}=q_{j}^{-1}$,

$$
y_{j}^{r}\left(g x_{j}^{r}\right)=\left(1+\eta_{j}\right) \cdots\left(1+\eta_{j}+\cdots+\eta_{j}^{r-1}\right)\left\langle c_{j}^{*}, g^{r}\right\rangle^{-1} .
$$

Since q_{j}, and thus η_{j}, is a primitive n_{j}-th root of 1 , this expression is 0 if and only if $r=n_{j}$. Thus the nilpotency degree of y_{j} is n_{j}.

Let $g^{*} \in H^{*}$ be an element of the group of grouplikes generated by the g_{i}^{*} above. We check how the y_{j} multiply with g^{*} and with each other. Clearly, both $y_{j} g^{*}$ and $g^{*} y_{j}$ are non-zero only on basis elements $g x_{j}$. We compute

$$
g^{*} y_{j}\left(g x_{j}\right)=g^{*}\left(g c_{j}\right) y_{j}\left(g x_{j}\right)=\left\langle g^{*}, g\right\rangle\left\langle g^{*}, c_{j}\right\rangle\left\langle c_{j}^{*}, g\right\rangle^{-1}
$$

and

$$
y_{j} g^{*}\left(g x_{j}\right)=y_{j}\left(g x_{j}\right) g^{*}(g)=\left\langle c_{j}^{*}, g\right\rangle^{-1}\left\langle g^{*}, g\right\rangle
$$

so that

$$
g^{*} y_{j}=\left\langle g^{*}, c_{j}\right\rangle y_{j} g^{*}, \text { or } y_{j} g^{*}=\left\langle c_{j}^{* *-1}, g^{*}\right\rangle g^{*} y_{j}
$$

Let $j<k$. Then $y_{j} y_{k}$ and $y_{k} y_{j}$ are both non-zero only on basis elements $g x_{k} x_{j}=\left\langle c_{k}^{*}, c_{j}\right\rangle g x_{j} x_{k}$. We compute

$$
y_{k} y_{j}\left(g x_{k} x_{j}\right)=y_{k}\left(g x_{k}\right) y_{j}\left(g x_{j}\right)=\left\langle c_{k}^{*-1}, g\right\rangle\left\langle c_{j}^{*-1}, g\right\rangle
$$

and

$$
y_{j} y_{k}\left(\left\langle c_{k}^{*}, c_{j}\right\rangle g x_{j} x_{k}\right)=\left\langle c_{k}^{*}, c_{j}\right\rangle y_{j}\left(g x_{j}\right) y_{k}\left(g x_{k}\right)=\left\langle c_{k}^{*}, c_{j}\right\rangle\left\langle c_{j}^{*-1}, g\right\rangle\left\langle c_{k}^{*-1}, g\right\rangle
$$

Therefore for $j<k$,

$$
y_{k} y_{j}=\left\langle c_{k}^{*-1}, c_{j}\right\rangle y_{j} y_{k}=\left\langle c_{j}^{*-1}, c_{k}^{-1}\right\rangle y_{j} y_{k}=\left\langle c_{k}^{* *-1}, c_{j}^{*-1}\right\rangle y_{j} y_{k}
$$

Finally we confirm that the elements y_{j} are $\left(\epsilon_{H}, c_{j}^{*-1}\right)$-primitives and then we will be done. The maps $c_{j}^{*-1} \otimes y_{j}+y_{j} \otimes \epsilon_{H}$ and $m^{*}\left(y_{j}\right)$ are both only non-zero on elements of $H \otimes H$ which are sums of elements of the form $g \otimes l x_{j}$ or $g x_{j} \otimes l$. We check

$$
\left(c_{j}^{*-1} \otimes y_{j}+y_{j} \otimes \epsilon_{H}\right)\left(g \otimes l x_{j}\right)=\left(c_{j}^{*-1} \otimes y_{j}\right)\left(g \otimes l x_{j}\right)=\left\langle c_{j}^{*-1}, g\right\rangle\left\langle c_{j}^{*-1}, l\right\rangle
$$

and

$$
m^{*}\left(y_{j}\right)\left(g \otimes l x_{j}\right)=y_{j}\left(g l x_{j}\right)=\left\langle c_{j}^{*-1}, g l\right\rangle
$$

Similarly,

$$
\left(c_{j}^{*-1} \otimes y_{j}+y_{j} \otimes \epsilon_{H}\right)\left(g x_{j} \otimes l\right)=y_{j}\left(g x_{j}\right)=\left\langle c_{j}^{*-1}, g\right\rangle
$$

and

$$
y_{j}\left(g x_{j} l\right)=y_{j}\left(\left\langle c_{j}^{*}, l\right\rangle g l x_{j}\right)=\left\langle c_{j}^{*}, l\right\rangle\left\langle c_{j}^{*-1}, g l\right\rangle=\left\langle c_{j}^{*-1}, g\right\rangle .
$$

Thus the Hopf subalgebra of H^{*} generated by the g_{i}^{*}, y_{j} is isomorphic to $H\left(C^{*}, n, c^{*-1}, c^{-1}\right)$ and by a dimension argument it is all of H^{*}. Now we only need note that for any $H=H\left(C, n, c, c^{*}\right)$, the group automorphism of C which maps every element to its inverse induces a Hopf algebra isomorphism from H to $H\left(C, n, c^{-1}, c^{*-1}\right)$, and the statement is proved.

Corollary 3.2. Let $H=H\left(C, n, c, c^{*}\right)$ where C is a finite abelian group. Then $H \cong H^{*}$ if and only if there is an isomorphism $f: C \rightarrow C^{*}$ and a permutation $\pi \in S_{t}$ such that for all $1 \leq j \leq t$,

$$
n_{\pi(j)}=n_{j}, f\left(c_{j}\right)=c_{\pi(j)}^{*}, \quad\left\langle f\left(c_{j}\right), g\right\rangle=\left\langle f(g), c_{\pi^{2}(j)}\right\rangle \quad \text { for all } g \in C
$$

If we work with a general $H=H\left(C, n, c, c^{*}, a, b\right)$ with C finite, then the dual H^{*} is not necessarily an "Ore extension Hopf algebra." In [18, Proposition 11], Radford points out that the duals of the Hopf algebras $U_{(N, \nu, \omega)}$ of Example 1.19 (viii) may have trivial group of grouplikes. Even if $t=1$, the dual may not be pointed. In [17], Radford shows that in the dual, the Hopf algebra of dimension $p n^{2}$ generated by g and x with λ a p th root of 1 and

$$
\begin{aligned}
g^{n p}=1, \quad g x=\lambda x g, \quad x^{n}=g^{n}-1, \quad \Delta(g) & =g \otimes g, \\
\Delta(x) & =g \otimes x+x \otimes 1,
\end{aligned}
$$

the coradical is not a Hopf subalgebra.

4. ORE EXTENSIONS OVER A CYCLIC GROUP

In this section $C=\langle g\rangle$ will be a cyclic group, either of order m, or infinite cyclic. We first determine for which values of the parameters t and m, finite dimensional Hopf algebras $H=H\left(C_{m}, n, c, c^{*}, a, b\right)$ exist. By Remark 1.13, for a given t, in order to construct H, we need $c \in C_{m}^{t}, c^{*} \in\left(C_{m}^{*}\right)^{t}$ such that $\left\langle c_{i}^{*}, c_{i}\right\rangle$ is a root of unity different from 1, and $\left\langle c_{i}^{*}, c_{j}\right\rangle\left\langle c_{j}^{*}, c_{i}\right\rangle=1$ for $i \neq j$. Let ζ be a primitive m th root of unity, and then $g^{*} \in C_{m}^{*}$ defined by $\left\langle g^{*}, g\right\rangle=\zeta$ generates C_{m}^{*}. Thus we may write $c_{i}=g^{u_{i}}$ and $c_{i}^{*}=g^{* d_{i}}$. To find suitable c and c^{*}, we require $u, d \in \mathbf{Z}^{t}$ with $u_{i}, d_{i} \in \mathbf{Z} \bmod m$ such that,

$$
\begin{equation*}
\left(d_{i} u_{j}+d_{j} u_{i}\right) \equiv 0 \text { if } i \neq j \text { and } d_{i} u_{i} \not \equiv 0 . \tag{4.1}
\end{equation*}
$$

Then H will be the Hopf algebra with basis $g^{i} x^{p}, p \in \mathbf{Z}^{t}, 0 \leq p_{i} \leq n_{i}$, and $0 \leq i \leq m-1$, and such that

$$
\begin{array}{cl}
x_{i}^{n_{i}}=a_{i}\left(g^{n_{i} u_{i}}-1\right), \quad x_{i} g^{j}=\zeta^{d_{i} j} g^{j} x_{i}, & \Delta\left(x_{i}\right)=g^{u_{i}} \otimes x_{i}+x_{i} \otimes 1 \\
x_{j} x_{i}=\zeta^{d d_{j} u_{i}} x_{i} x_{j}+b_{i j}\left(g^{u_{i}+u_{j}}-1\right) & \text { for } 1 \leq i<j \leq t .
\end{array}
$$

Proposition 4.2. Let m be a positive integer.
(i) If m is even, then the system (4.1) has solutions for any t.
(ii) If m is odd, then the system (4.1) has solutions if and only if $t \leq 2 s$, where s is the number of distinct primes dividing m.

Proof. (i) If $m=2 r$ then $d_{i}=r, u_{i}=1,1 \leq i \leq t$, is a solution of (4.1).
(ii) We first prove by induction on s that the system has solutions for $t=2 s$ and thus for any $t \leq 2 s$. If $s=1$ then $d_{1}=u_{1}=1=u_{2}, d_{2}=-1$ is a solution of (4.1). Now suppose the assertion holds for $s-1$ and let $m=$ $p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ with the p_{i} prime. Then $m^{\prime}=m / p_{s}^{\alpha_{s}}$ has $s-1$ distinct prime divisors, so by the induction hypothesis there exist d_{i}^{\prime}, u_{i}^{\prime} for $1 \leq i \leq 2 s-$ 2, such that $\left(d_{i}^{\prime} u_{j}^{\prime}+d_{j}^{\prime} u_{i}^{\prime}\right) \equiv 0 \bmod m^{\prime}$ for $1 \leq i \neq j \leq 2 s-2$ and $d_{i}^{\prime} u_{i}^{\prime} \not \equiv$ $0 \bmod m^{\prime}$ for $1 \leq i \leq 2 s-2$. Now a solution of the system for $t=2 s$ is given by $d_{i}=p_{s}^{\alpha_{s}} d_{i}^{\prime}, u_{i}=p_{s}^{\alpha_{s}} u_{i}^{\prime}$ for $1 \leq i \leq 2 s-2$ and $d_{2 s}=d_{2 s-1}=$ $u_{2 s-1}=m^{\prime}, u_{2 s}=-m^{\prime}$.

Next we show that for $m=p^{\alpha}$ and $t=3$ the system has no solutions. Suppose $d, u \in \mathbf{Z}^{3}$ is a solution, and suppose $d_{i}=d_{i}^{\prime} p^{\alpha_{i}}, u_{i}=u_{i}^{\prime} p^{\beta_{i}}$ where $\left(d_{i}^{\prime}, p\right)=\left(u_{i}^{\prime}, p\right)=1$ for $1 \leq i \leq 3$. For $i \neq j, p^{\alpha}$ divides $d_{i} u_{j}+d_{j} u_{i}=$ $p^{\alpha_{i}+\beta_{j}} d_{i}^{\prime} u_{j}^{\prime}+p^{\alpha_{j}+\beta_{i}} d_{j}^{\prime} u_{i}^{\prime}$, and so $\alpha_{i}+\beta_{j}=\alpha_{j}+\beta_{i}$. Since p^{α} does not divide $d_{i} u_{i}$ for any i, then $\alpha_{i}+\beta_{i}<\alpha$, so $\alpha_{i}+\beta_{j}+\alpha_{j}+\beta_{i}<2 \alpha$ for all i, j. Thus $d_{i}^{\prime} u_{j}^{\prime} \equiv-d_{j}^{\prime} u_{i}^{\prime} \bmod p$ for all $i \neq j$. Multiplying these three congruences, we obtain $d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} \equiv 0 \bmod p$, a contradiction.

Now suppose that $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ and $2 s+1 \leq t$. If the system had a solution d, u, then for every i there would exist $j_{i}, 1 \leq j_{i} \leq s$, such that $p_{j_{i}}^{\alpha_{j_{i}}}$ does not divide $d_{i} u_{i}$. By the Pigeon Hole Principle we find i_{1}, i_{2}, i_{3} such that $j_{i_{1}}=j_{i_{2}}=j_{i_{3}}$; denote this integer by j. Then $p_{j}^{\alpha_{j}}$ does not divide any $d_{k} u_{k}$, but divides $d_{k} u_{r}+d_{r} u_{k}$ for all distinct $r, k \in\left\{i_{1}, i_{2}, i_{3}\right\}$, and this contradicts what we proved in the case $m=p^{\alpha}$.

Corollary 4.3. (i) If m is even, then Hopf algebras of the form $H\left(C_{m}, n, c, c^{*}, a, b\right)$ exist for every t.
(ii) If m is odd, then $H\left(C_{m}, n, c, c^{*}, a, b\right)$ exist for any $t \leq 2 s$, where s is the number of distinct prime factors of m.

Now let $C=\langle g\rangle$ be an infinite cyclic group.
Corollary 4.4. Hopf algebras $H\left(C, n, c, c^{*}, a, b\right)$ exist for all t.
Proof. Let t be a positive integer and choose m such that $t \leq 2 s$ where s is the number of distinct prime divisors of m. Then by Proposition 4.2, there exist $d_{i}, u_{i}, 1 \leq i \leq t$ solutions for the system (4.1). Now let $c_{i}=g^{u_{i}}$ and $c_{i}^{*}=g^{* d_{i}}$ for $\left\langle g^{*}, g\right\rangle=\zeta$, a primitive m th root of 1 , as before.

The classification results presented in Sect. 2 depend upon knowledge of the automorphism group of C. In case C is cyclic, $\operatorname{Aut}(C)$ is well known, and Theorem 2.1 specializes to the following.

Proposition 4.5. If $C=\langle g\rangle$ is cyclic, then $H\left(C, n, c, c^{*}, a, 0\right) \cong$ $H\left(C^{\prime}, n^{\prime}, c^{\prime}, c^{*^{\prime}}, a^{\prime}, 0\right)$ if and only if $C=C^{\prime}, t=t^{\prime}$ and there is an automorphism f of C mapping g to g^{h} and a permutation π of $\{1, \ldots, t\}$ such
that

$$
\begin{array}{r}
n_{i}=n_{\pi(i)}^{\prime}, c_{i}^{h}=c_{\pi(i)}^{\prime} \text { i.e., } h u_{i} \equiv u_{\pi(i)}, c_{i}^{*}=\left(c_{\pi(i)}^{*^{\prime}}\right)^{h}, \text { i.e., } d_{i} \equiv h d_{\pi(i)} \\
\text { and } a_{i}=a_{\pi(i)}^{\prime}
\end{array}
$$

If C is cyclic of order m, then $(h, m)=1$; if C is infinite cyclic, then $h=1$ or $h=-1$.

If C is cyclic, then it is easy to see when $H\left(C_{m}, n, c, c^{*}\right)$ is isomorphic to its dual, its opposite or co-opposite Hopf algebra.

Corollary 4.6. Let $C=C_{m}=\langle g\rangle$, finite, and $H=H\left(C_{m}, n, c, c^{*}\right)$ where $c_{i}=g^{u_{i}}, c_{i}^{*}=\left(g^{*}\right)^{d_{i}}$ and $\left\langle g^{*}, g\right\rangle=\zeta$, a fixed primitive m th root of 1 .
(i) $H \cong H^{*}$ if and only if there exist h, π as in Proposition 4.5 such that for all $1 \leq j \leq t$,

$$
n_{\pi(j)}=n_{j}, \quad h u_{j} \equiv d_{\pi(j)} \bmod m, \quad u_{\pi^{2}(j)} \equiv u_{j} \bmod m
$$

(ii) $H \cong H^{\text {cop }}$ if and only if there exist h, π such that for all $1 \leq j \leq t$, $n_{\pi(j)}=n_{j}, h u_{j} \equiv-u_{\pi(j)} \bmod m, d_{j} \equiv h d_{\pi(j)} \bmod m$.
(iii) $H \cong H^{\text {op }}$ if and only if there exist h, π such that for all $1 \leq j \leq t$, $n_{\pi(j)}=n_{j}, h u_{j} \equiv u_{\pi(j)} \bmod m, d_{j} \equiv-h d_{\pi(j)} \bmod m$.
Note that for $t=1$, if $H \cong H^{*}$ and ζ, the fixed primitive m th root of 1 is replaced by ζ^{h}, then $u_{i}=d_{i}$ in the parametrization of H, i.e., $H=H\left(C_{m}, n,\left(g^{u_{1}}, \ldots, g^{u_{t}}\right),\left(g^{* u_{1}}, \ldots, g^{* u_{t}}\right)\right)$. For k algebraically closed, Proposition 8 of [18] follows immediately. Now for such $H \cong H^{*}$, parts (c), (d), (e) of [18, Theorem 4] follow from the theorem above. Similarly Lemma 1.1.2 of [9] follows easily from the above discussion. For with $t=$ $1, H=H\left(C_{m}, n, g^{u}, g^{* d}\right) \cong H\left(C_{m}, n, g^{u}, g^{* d^{\prime}}\right)^{* c o p} \cong H\left(C_{m}, n, g^{-d^{\prime}}, g^{* u}\right)$ if and only if there exists h such that ζ^{h} is also a primitive m th root of unity and $\left(\zeta^{h}\right)^{d}=\left(\zeta^{h}\right)^{-d^{\prime}}$.

5. ORE EXTENSIONS WITH NON-ZERO DERIVATIONS

In this section we study Hopf algebras of the form $H\left(C, n, c^{*}, c, 0,1\right)$, where $b=1$ means that $b_{i j}=1$ for all $i<j$. Thus, the skew-primitives x_{i} are all nilpotent and for $i \neq k, x_{i} x_{k}-\left\langle c_{i}^{*}, c_{k}\right\rangle x_{k} x_{i}$ is a non-zero element of $k C$. It is easy to see that if $a=0$ and all $b_{i j}$ are non-zero, then a change of variables ensures that all $b_{i j}$ equal 1. This class produces many interesting examples.

The following two definitions are particular cases of Definition 1.11.

Definition 5.1. For $t=2$, let $n \geq 2, c=\left(c_{1}, c_{2}\right) \in C^{2}, g^{*} \in C^{*}$ with $\left\langle g^{*}, c_{1}\right\rangle=\left\langle g^{*}, c_{2}\right\rangle$ a primitive nth root of unity, and $c_{1} c_{2} \neq 1$. Denote the pair (n, n) by (n), and, if $c_{1}=c_{2}=g$, denote $\left(c_{1}, c_{2}\right)$ by (g). Then $H\left(C,(n),\left(c_{1}, c_{2}\right),\left(g^{*}, g^{*-1}\right), 0,1\right)$ denotes the Hopf algebra generated by the commuting grouplike elements $g \in C$, and the $\left(1, c_{j}\right)$-primitives x_{j}, $j=1,2$, with multiplication relations

$$
\begin{gathered}
x_{j}^{n}=0, \quad x_{1} g=\left\langle g^{*}, g\right\rangle g x_{1}, \quad x_{2} g=\left\langle g^{*-1}, g\right\rangle g x_{2}, \\
x_{2} x_{1}-\left\langle g^{*-1}, c_{1}\right\rangle x_{1} x_{2}=c_{1} c_{2}-1 .
\end{gathered}
$$

Definition 5.2. Let $t>2$ and let $c \in C^{t}, g^{*} \in C^{*}$ such that $<g^{*}, c_{i}>=$ -1 for all i and $c_{i} c_{j} \neq 1$ if $i \neq j$. We denote the t-tuple ($2, \ldots, 2$) by (2), and the t-tuple $\left(g^{*}, \ldots, g^{*}\right)$ by $\left(g^{*}\right)$. Then $H\left(C,(2),\left(c_{1}, \ldots, c_{t}\right),\left(g^{*}\right), 0,1\right)$ is the Hopf algebra generated by the commuting grouplike elements $g \in C$, and the $\left(1, c_{j}\right)$-primitives x_{j}, with relations

$$
x_{i}^{2}=0, \quad x_{i} g=\left\langle g^{*}, g\right\rangle g x_{i}, \quad x_{k} x_{j}+x_{j} x_{k}=c_{k} c_{j}-1 \quad \text { for } k \neq j .
$$

Remark 5.3. Note that the Hopf algebras in this section have a nonzero derivation at each step of the Ore extension construction after the first. The notation $H\left(C, n, c, c^{*}\right)$ of earlier sections indicates that the derivations are all zero.

In each of the examples below, the coradical is $k C$ for a cyclic group C.
Example 5.4. (i) Let $C_{m}=\langle g\rangle$ be cyclic of finite order $m \geq 2$, let n be an integer ≥ 2, and let $c_{1}=g^{u_{1}}, c_{2}=g^{u_{2}}, g^{*} \in C^{*}$ be such that $\left\langle g^{*}, g\right\rangle=\lambda$ where $\lambda^{m}=1, u_{1}+u_{2} \not \equiv 0 \bmod m$, and $\lambda^{u_{1}}=\lambda^{u_{2}}$, a primitive nth root of 1. Then $H=H\left(C_{m},(n), c,\left(g^{*}, g^{*-1}\right), 0,1\right)$ is a Hopf algebra of dimension $m n^{2}$, with coradical $k C_{m}$ and generators g, x_{1}, x_{2} such that g is grouplike of order m, x_{i} is a ($1, g^{u_{i}}$)-primitive, and

$$
\begin{gathered}
x_{1}^{n}=x_{2}^{n}=0, \quad x_{1} g=\lambda g x_{1}, \quad x_{2} g=\lambda^{-1} g x_{2}, \\
\\
x_{2} x_{1}-\lambda^{-u_{1}} x_{1} x_{2}=g^{u_{1}+u_{2}}-1 .
\end{gathered}
$$

The Hopf algebra $U_{(N, \nu, \omega)}$ (see [18] or Ex. 1.19 (viii)) is just $H\left(C_{N},(r),\left(g^{\nu}\right)\right.$, $\left.\left(g^{*}, g^{*-1}\right), 0,1\right)^{c o p}$.
(ii) Let $m \geq 2, t>2$ be integers, m even, and let $C=C_{m}=\langle g\rangle$. Let u_{1}, \ldots, u_{t} be odd integers such that $u_{i}+u_{j} \not \equiv 0 \bmod m$ if $i \neq j$ and let $c_{i}=g^{u_{i}}, c_{i}^{*}=g^{*}$ where $\left\langle g^{*}, g\right\rangle=-1$. Then the Hopf algebra $H\left(C_{m},(2), c,\left(g^{*}\right), 0,1\right)$ has dimension $2^{t} m$ and has generators g, x_{1}, \ldots, x_{t} such that g is grouplike, x_{i} is a ($\left.1, g^{u_{i}}\right)$-primitive, and

$$
g^{m}=1, \quad x_{i}^{2}=0, \quad x_{i} g=-g x_{i}, \quad x_{j} x_{i}+x_{i} x_{j}=g^{u_{i}+u_{j}}-1 .
$$

(iii) Suppose $C=\langle g\rangle$ is infinite cyclic, and $n \geq 2$. Let u_{1}, u_{2} be integers such that $u_{1}+u_{2} \neq 0$, and let $\lambda \in k$ such that $\lambda^{u_{1}}=\lambda^{u_{2}}$ is a primitive nth root of 1 . Let $g^{*} \in C^{*}$ with $\left\langle g^{*}, g\right\rangle=\lambda$. Then there is an infinite dimensional pointed co-Frobenius Hopf algebra $H\left(C,(n),\left(g^{u_{1}}, g^{u_{2}}\right),\left(g^{*}, g^{*-1}\right), 0,1\right)$ with generators g, x_{1}, x_{2} such that g is grouplike of infinite order, x_{i} is a $\left(1, g^{u_{i}}\right)$-primitive, and

$$
\begin{gathered}
x_{1}^{n}=x_{2}^{n}=0, \quad x_{1} g=\lambda g x_{1}, \quad x_{2} g=\lambda^{-1} g x_{2}, \\
\\
x_{2} x_{1}-\lambda^{-u_{1}} x_{1} x_{2}=g^{u_{1}+u_{2}}-1 .
\end{gathered}
$$

(iv) Let $C=\langle g\rangle$ be infinite cyclic, $t>2$ and let u_{1}, \ldots, u_{t} be odd integers such that $u_{i}+u_{j} \neq 0$ for $i \neq j$. Then there is an infinite dimensional co-Frobenius pointed Hopf algebra $H\left(C,(2), c,\left(g^{*}\right), 0,1\right)$, where $c_{i}=g^{u_{i}}$ and $\left\langle g^{*}, g\right\rangle=-1$. The generators are g, x_{1}, \ldots, x_{t} such that g is group-like of infinite order, x_{i} is a $\left(1, g^{u_{i}}\right)$-primitive, and

$$
x_{i}^{2}=0, \quad x_{i} g=-g x_{i}, \quad x_{j} x_{i}+x_{i} x_{j}=g^{u_{i}+u_{j}}-1 .
$$

By an argument similar to the proof of Theorem 2.1, we can classify the Hopf algebras from Definition 5.1.

Theorem 5.5. There is a Hopf algebra isomorphism from $H=H(C,(n)$, $\left.c,\left(g^{*}, g^{*-1}\right), 0,1\right)$ to $H^{\prime}=H\left(C^{\prime},\left(n^{\prime}\right), c^{\prime},\left(g^{*^{\prime}},\left(g^{*^{\prime}}\right)^{-1}\right), 0,1\right)$ if and only if $C=C^{\prime}, n=n^{\prime}$ and there is an automorphism f of C such that

$$
\begin{array}{lll}
\text { (i) } & f\left(c_{1}\right)=c_{1}^{\prime}, f\left(c_{2}\right)=c_{2}^{\prime} & \text { and } g^{*}=g^{*^{\prime}} \circ f \text {; or } \tag{i}\\
\text { (ii) } & f\left(c_{1}\right)=c_{2}^{\prime}, f\left(c_{2}\right)=c_{1}^{\prime} & \text { and } g^{*}=\left(g^{*}\right)^{-1} \circ f .
\end{array}
$$

Proof. If $H \cong H^{\prime}$, then exactly as in the proof of Theorem 2.1, there exists an automorphism f of C and a bijection π of $\{1,2\}$ such that $f\left(c_{i}\right)=c_{\pi(i)}^{\prime}$ and $c_{i}^{*}=c_{\pi(i)}^{* \prime} \circ f$. The conditions (i) and (ii) in the statement correspond to π the identity and π the nonidentity permutation.
Conversely, if (i) holds, define an isomorphism from H to H^{\prime} by mapping g to $f(g)$ and x_{i} to x_{i}^{\prime}. If (ii) holds, define an isomorphism from H to H^{\prime} by mapping g to $f(g), x_{1}$ to x_{2}^{\prime} and x_{2} to $-\left\langle g^{*}, c_{1}\right\rangle x_{1}^{\prime}$.

Corollary 5.6. If $C=\langle g\rangle$ is cyclic, then the Hopf algebras H and H^{\prime} above are isomorphic if and only if $C=C^{\prime}, n=n^{\prime}$, and there is an integer h such that the map taking g to g^{h} is an automorphism of C and either

$$
\begin{align*}
& c_{i}^{*}=c_{i}^{*^{\prime} h} \text { and } c_{i}^{h}=g^{u_{i} h}=g^{u_{i}^{\prime}}=c_{i}^{\prime} \text { for } i=1,2 ; \text { or } \tag{i}\\
& c_{i}^{*}=\left(c_{i}^{*^{\prime}}\right)^{-h} \text { and } g^{u_{1} h}=g^{u_{2}^{\prime}}, g^{u_{2} h}=g^{u_{1}^{\prime}} .
\end{align*}
$$

For the Hopf algebras of Definition 5.2 there is a similar classification result.

Theorem 5.7. There is a Hopf algebra isomorphism from $H=H(C,(2)$, $\left.c,\left(g^{*}\right), 0,1\right)$ to $H^{\prime}=H\left(C^{\prime},(2), c^{\prime},\left(g^{*}\right), 0,1\right)$ if and only if $C=C^{\prime}, t=t^{\prime}$ and there is a permutation $\pi \in S_{t}$ and an automorphism f of C such that $f\left(c_{i}\right)=c_{\pi(i)}^{\prime}$ and $g^{*}=g^{*^{*}} \circ f$.

Corollary 5.8. Suppose $C=\langle g\rangle$ is cyclic. Then H and H^{\prime} as above are isomorphic if and only if $C=C^{\prime}, t=t^{\prime}$ and there exists a permutation $\pi \in S_{t}$ and an automorphism of C taking g to g^{h}, such that $c_{i}^{h}=g^{u_{i} h}=c_{\pi(i)}^{\prime}$ for all i.

In Example 2.5 we saw that if $a \neq 0$, Ore extension Hopf algebras with non-zero derivations may be isomorphic to Ore extension Hopf algebras with zero derivations. The following theorem shows that if $a=0$, this is impossible.

Theorem 5.9. Hopf algebras of the form $H\left(C, n, c, c^{*}\right)=H(C, n, c$, $\left.c^{*}, 0,0\right)$ cannot be isomorphic to either the Hopf algebras of Definition 5.1 or Definition 5.2.
Proof. Suppose that $f: H\left(C^{\prime},\left(n^{\prime}\right), c^{\prime},\left(g^{*^{\prime}}, g^{*^{\prime}-1}\right), 0,1\right) \rightarrow H\left(C, n, c, c^{*}\right)$ is an isomorphism of Hopf algebras. Then, as in the proof of Theorem 2.1, we see that $C=C^{\prime}, f\left(x_{1}^{\prime}\right)=\sum_{i} \alpha_{i} x_{i}$ and $f\left(x_{2}^{\prime}\right)=\sum_{i} \beta_{i} x_{i}$ for scalars α_{i}, β_{i}. But f applied to the relation

$$
x_{2}^{\prime} x_{1}^{\prime}=\left\langle\left(g^{*^{\prime}}\right)^{-1}, c_{1}^{\prime}\right\rangle x_{1}^{\prime} x_{2}^{\prime}+c_{1}^{\prime} c_{2}^{\prime}-1
$$

yields $\sum_{i, j} \alpha_{i} \beta_{j}\left(x_{j} x_{i}-\left\langle\left(g^{*}\right)^{-1}, c_{1}^{\prime}\right\rangle x_{i} x_{j}\right)=l-1$ in $H\left(C, n, c, c^{*}\right)$, where $l \neq 1$ is a group-like element. The relations of an Ore extension with zero derivations show that this is impossible. Similarly, $H\left(C, n, c, c^{*}\right)$ cannot be isomorphic to a Hopf algebra as in Definition 5.2.

6. POINTED HOPF ALGEBRAS OF DIMENSION p^{3}

We noted in Sect. 1 that the Hopf algebras of dimension p^{2}, p a prime, constructed from $k C_{p}$ are just the Taft Hopf algebras. The purpose of this final section is to list the pointed Hopf algebras of dimension p^{3} that can be obtained using constructions from this paper, and to count how many types there are. If H is a pointed Hopf algebra of dimension p^{3}, then by the Nichols-Zoeller Theorem [15, Theorem 3.1.5], $\operatorname{dim}(\operatorname{Corad}(H)) \in\left\{1, p, p^{2}, p^{3}\right\}$. By the Taft-Wilson theorem, $\operatorname{dim}(\operatorname{Corad}(H)) \neq 1$. Thus $G(H)$ is one of the groups $C_{p}, C_{p} \times C_{p}, C_{p^{2}}, C_{p} \times C_{p} \times C_{p}, C_{p^{2}} \times C_{p}, C_{p^{3}}, G_{1}, G_{2}$, where $G_{1}=C_{p^{2}}>\triangleleft C_{p}$ and $G_{2}=C_{p}>C_{p^{2}}$ are the two types of nontrivial semidirect products. If $G(H)$ is one of the five groups of order p^{3}, then H is just $k G(H)$.

First, we consider the examples with $G(H)=C_{p} \times C_{p}$. By [4, Proposition 4], if a Hopf algebra H over an algebraically closed field k has dimension p^{n} and coradical isomorphic to $k\left(C_{p}^{n-1}\right)=k C_{p} \otimes \cdots \otimes k C_{p}$, then H is isomorphic to $k\left(C_{p}^{n-2}\right) \otimes T$ where T is a Taft Hopf algebra. We present the next result as an application of Theorem 2.1 for the non-cyclic group $C_{p} \times C_{p}$.
Proposition 6.1. $H=H\left(C_{p} \times C_{p}, p, c, c^{*}\right)$ is isomorphic to $H\left(C_{p}, p\right.$, $\left.c^{\prime}, c^{*^{\prime}}\right) \otimes k C_{p}$ for some $c^{\prime} \in C_{p}, c^{*^{\prime}} \in C_{p}^{*}$, and thus there are $p-1$ isomorphism classes of such Hopf algebras, corresponding to the $p-1$ isomorphism classes of the Taft Hopf algebras of dimension p^{2}.

Proof. Let $C_{p} \times C_{p}=\left\langle g_{1}\right\rangle \times\left\langle g_{2}\right\rangle$ and $\left\langle c^{*}, g_{1}\right\rangle=\lambda_{1},\left\langle c^{*}, g_{2}\right\rangle=\lambda_{2}$. If $c=g_{1}^{u_{1}} g_{2}^{u_{2}}$, then $\left\langle c^{*}, c\right\rangle=\lambda_{1}^{u_{1}} \lambda_{2}^{u_{2}}$, a primitive p th root of unity.

We distinguish two cases. If $\lambda_{1}, \lambda_{2} \neq 1$, choose h such that $\lambda_{2}=\lambda_{1}^{h}$ and let f be the automorphism of $C_{p} \times C_{p}$ mapping g_{1} to $g_{1} g_{2}^{-h u_{2}}$ and g_{2} to $g_{1}^{h} g_{2}^{h u_{1}}$. (Note that $\lambda_{1}^{u_{1}+h u_{2}} \neq 1$ implies that f is a bijection.) By Theorem 2.1, f induces an isomorphism from H to $H\left(C_{p} \times C_{p}, p, f(c), c^{*^{\prime}}\right)$ where $f(c)=g_{1}^{u_{1}} g_{2}^{-h u_{1} u_{2}} g_{1}^{h u_{2}} g_{2}^{h u_{1} u_{2}}=g_{1}^{u_{1}+h u_{2}}$, and $\left\langle c^{*^{\prime}}, g_{1}\right\rangle=\lambda_{1},\left\langle c^{*^{\prime}}, g_{2}\right\rangle=$ 1 so that $c^{*}=c^{*} \circ f$. Clearly this last Hopf algebra is isomorphic to $H\left(C_{p}, p, g_{1}^{u_{1}+h u_{2}}, c^{*}\right) \otimes k C p$, i.e., the tensor product of a Taft Hopf algebra and a group algebra.

If λ_{1} or λ_{2} is 1 , say $\lambda_{2}=1$, then the automorphism of $C_{p} \times C_{p}$ mapping g_{1} to $g_{1} g_{2}^{u_{2}}$ and g_{2} to $g_{2}^{-u_{1}}$ induces in a similar way an isomorphism of Hopf algebras from H to $H\left(C_{p} \times C_{p}, p, g_{1}^{u_{1}}, c^{*^{\prime}}\right), c^{*^{\prime}}$ as above.

It is easy to see that the Hopf algebras $H\left(C_{p} \times C_{p}, p, g_{1}^{u}, c^{*}\right)$ and $H\left(C_{p} \times\right.$ $C_{p}, p, g_{1}^{v}, c^{*}$) where $\left\langle c^{*}, g_{1}\right\rangle=\lambda \neq 1,\left\langle c^{*}, g_{2}\right\rangle=1$, are isomorphic if and only if $u=v$. Therefore we obtain exactly $p-1$ types of Hopf algebras in this way.

Examples with $G(H)=C_{p}$ are obtained by starting with $k C_{p}$ and making a double Ore extension with zero or non-zero derivation.

Proposition 6.2. If p is an odd prime then there exist precisely $(p-1)^{2} / 2$ non-isomorphic Hopf algebras of the form $H\left(C_{p},(p, p), c, c^{*}\right)$. For $p=2$ there is only one such Hopf algebra.

Proof. Let p be an odd prime, let $C_{p}=\langle g\rangle$, and let $C_{p}^{*}=\left\langle g^{*}\right\rangle$ where $\left\langle g^{*}, g\right\rangle=\lambda, \lambda \neq 1$ a p th root of unity. Let $c_{1}=g^{u_{1}}, c_{2}=g^{u_{2}}$. By Proposition 4.5, we may assume $c_{1}^{*}=g^{*}$ and $c_{2}^{*}=g^{* d}$. Since $u_{2} \equiv-d u_{1} \bmod p, d$ and u_{1} determine u_{2}. Thus we have $(p-1)^{2}$ Hopf algebras $H\left(C_{p},(p, p), c, c^{*}\right)$, and we must determine which are isomorphic. Fix $H=H\left(C_{p},(p, p), c, c^{*}\right)$ as above and suppose there is an isomorphism f from H to $H^{\prime}=H\left(C_{p},(p, p), c^{\prime}, c^{*^{\prime}}\right)$ where $c_{i}^{\prime}=g^{u_{i}^{\prime}}, c_{1}^{c^{*}}=g^{*}$ and $c_{2}^{\prime *}=g^{* d^{\prime}}$.

Suppose $f(g)=g^{h}$. If the permutation π of $\{1,2\}$ associated with f is the identity, then $\left\langle g^{*}, g\right\rangle=\left\langle g^{*}, g^{h}\right\rangle$ so $h=1$. If π is the nontrivial permutation of $\{1,2\}$, then $\left\langle g^{* d}, g\right\rangle=\left\langle g^{*}, g^{h}\right\rangle$ so $d=h$. Then $\left(c_{1}^{\prime}, c_{2}^{\prime}\right) \neq$ $\left(c_{1}, c_{2}\right)$. For $u_{2}^{\prime}=d u_{1}=-u_{2}$ and for p odd, $u_{2} \not \equiv-u_{2} \bmod p$.

If $p=2$, it is clear that there is only one choice for d and c.
Proposition 6.3. For any odd prime p there exist $p-1$ types of Hopf algebras of the form $H\left(C_{p},(p, p),\left(g^{u_{1}}, g^{u_{2}}\right),\left(g^{* d_{1}}, g^{*-d_{1}}\right), 0,1\right)$ where $\left.<g^{*}, g\right\rangle=\lambda$, a nontrivial pth root of 1 . If $p=2$, then there are no double Ore extension with non-zero derivations.

Proof. Since $\lambda^{u_{1} d_{1}}=\lambda^{u_{2} d_{1}}$, we may assume $u_{1}=u_{2}$, and by Corollary 5.6 we may assume $c=(g, g)$. Again by Corollary $5.6, H\left(C_{p},(p, p),(g, g)\right.$, $\left.\left(g^{*}, g^{*-1}\right), 0,1\right)$ is isomorphic to $H\left(C_{p},(p, p),(g, g),\left(g^{* h}, g^{*-h}\right), 0,1\right)$ if and only if $h=1$.

Examples with $G(H)=C_{p^{2}}$ can be obtained by a single Ore extension starting with $k C_{p^{2}}$. The following is an immediate consequence of Theorem 2.1.

Proposition 6.4. There exist $2(p-1)$ types of Hopf algebras of the form $H\left(C_{p^{2}}, p, c, c^{*}\right)$, and $p-1$ types of the form $H\left(C_{p^{2}}, p, c, c^{*}, 1,0\right)$.

Adding all the types described, we have a total of $\frac{(p-1)(p+9)}{2}+5$ types when p is odd, and 10 types when $p=2$. In fact the results of [4] describing pointed Hopf algebras of dimension p^{n} with coradical $k C, C$ abelian of order p^{n-1}, together with those of [7] or [2] which classify pointed Hopf algebras of dimension p^{3} with coradical of dimension p, combine to show that these are all the types of pointed Hopf algebras of dimension p^{3}.

REFERENCES

1. E. Abe, "Hopf Algebras," Cambridge University Press, Cambridge, MA, 1977.
2. N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p^{3}, J. Algebra 209 (1998), 658-691.
3. M. Beattie, S. Dăscălescu, L. Grünenfelder, and C. Năstăsescu, Finiteness Conditions, Co-Frobenius Hopf Algebras and Quantum Groups, J. Algebra 200 (1998), 312-333.
4. M. Beattie, S. Dăscălescu, and L. Grünenfelder, On pointed Hopf algebras of dimension p^{n}, Proc. Amer. Math. Soc. 128 (2000), 361-367.
5. M. Beattie, S. Dăscălescu, and L. Grünenfelder, On the number of types of finite dimensional Hopf algebras, Invent. Math. 136 (1999), 1-7.
6. S. Caenepeel, S. Dăscălescu, and Ş. Raianu, Pointed Hopf algebras of dimension 16, Comm. Algebra, 28, to appear.
7. S. Caenepeel and S. Dăscălescu, Pointed Hopf algebras of dimension p^{3}, J. Algebra 209 (1998), 622-634.
8. S. Caenepeel and S. Dăscălescu, On pointed Hopf algebras of dimension 2^{n}, Bull. London Math. Soc. 31 (1999), 17-24
9. S. Gelaki, On pointed ribbon Hopf algebras, J. Algebra 181 (1996), 760-786.
10. S. Gelaki, Pointed Hopf algebras and Kaplansky's 10th conjecture, J. Algebra 209 (1998), 635-657.
11. I. Kaplansky, "Bialgebras," University of Chicago Lecture Notes, Chicago, Ill, 1975.
12. C. Kassel, "Quantum Groups," Graduate Texts in Mathematics 155, Springer-Verlag, Berlin, 1995.
13. B. I. P. Lin, Semiperfect coalgebras, J. Algebra 49 (1977), 357-373.
14. G. Militaru, The Hopf modules category and the Hopf equation, Comm. Aljebra 26 (1998), 3071-3097.
15. S. Montgomery, "Hopf Algebras and their Actions on Rings," CBMS Reg. Conference Series 82, Providence, R.I., 1993.
16. S. Montgomery, Classifying finite dimensional semisimple Hopf algebras, in "Trends in the Representation Theory of Finite-dimensional Algebras," Proceedings of the AMS-IMS-SIAM Summer Research Conference on Finite Dimensional Algebras, Seattle, 1997, AMS Contemp. Math. 229 (1998), 265-279.
17. D. E. Radford, On the coradical of a finite-dimensional Hopf algebra, Proc. Amer. Math. Soc. 53 (1975), 9-15.
18. D. E. Radford, On Kauffman's knot invariants arising from finite-dimensional Hopf algebras, in "Advances in Hopf algebras," Lecture Notes in Pure \& Applied Mathematics, Vol. 158, pp. 205-266, Dekker, New York, 1994.
19. L. Rowen, "Ring Theory," Vol. I, Academic Press, San Diego, 1988.
20. N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
21. D. Stefan and F. Van Oystaeyen, Hochschild cohomology and coradical filtration of pointed coalgebras: Applications, J. Algebra 210 (1998), 535-556.
22. S. Suzuki, Unimodularity of finite dimensional Hopf algebras, Tsukuba J. Math. 20 (1996), 231-238.
23. A. Van Daele, An algebraic framework for group duality, Advances Math. 140 (1998), 323-366.
24. Y. Zhu, Hopf algebras of prime dimension, Int. Math. Research Notices 1 (1994), 53-59.

[^0]: ${ }^{1}$ Research partially supported by NSERC.

