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We present a general construction producing pointed co-Frobenius Hopf algebras
and give some classification results for the examples obtained.  © 2000 Academic Press

0. INTRODUCTION AND PRELIMINARIES

In recent years a serious effort has been made to understand and clas-
sify Hopf algebras over an algebraically closed field of characteristic zero.
Nevertheless, the classification of finite dimensional Hopf algebras has been
completed only for some small dimensions and for prime dimensions ([24]).

! Research partially supported by NSERC.

743

0021-8693/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82231078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

744 BEATTIE, DASCALESCU, AND GRUNENFELDER

A nice survey of the present state of the classification of finite dimensional
Hopf algebras with emphasis on the semisimple case is given in [16]. The
main purpose of this paper is to present a general construction producing
pointed Hopf algebras.

Many current papers have defined interesting pointed Hopf algebras by
generators and relations. In [18] two families of such Hopf algebras are
constructed. The first, denoted by H, , v, includes the classical four di-
mensional Sweedler Hopf algebra and the Taft Hopf algebra of dimension
n®. The second is a family of finite dimensional pointed unimodular rib-
bon Hopf algebras, denoted by Uy, ), generating invariants of knots and
3-manifolds. A special object in the second class is U,(s/(2))’, where g is a
root of unity (see [20]). These examples were further studied in [9]. In [22]
an example of a unimodular Hopf algebra, whose antipode is not inner,
is constructed. An example of an infinite dimensional co-Frobenius Hopf
algebra which is not the tensor product of a cosemisimple Hopf algebra
and a finite dimensional Hopf algebra was given in [23]. This example was
generalized in [3], where a large class of such examples was constructed us-
ing Ore extensions of a group algebra. In [4] examples constructed by Ore
extensions were used to classify pointed Hopf algebras of dimension p”,
p prime, with the coradical the group algebra of an abelian group of or-
der p"~!. Pointed Hopf algebras of dimension p® were classified in [7], [2],
and [21]. Hopf algebras of dimension 2" with coradical £C, were described
in [8].

Our general construction produces pointed co-Frobenius Hopf alge-
bras which are generated by grouplikes and (g, /)-primitives. Briefly, we
start with a group algebra (the coradical), add indeterminates (the (g, 4)-
primitives) by repeated Ore extensions and then factor by a Hopf ideal.
The idea is very simple, but it sheds some light on many complicated ex-
amples, providing a natural algebraic framework for their construction. In
particular, all the examples mentioned above may be obtained by this con-
struction, as well as other infinite dimensional co-Frobenius Hopf algebras,
and finite dimensional quantum groups. We remark that a very different
approach to constructing bialgebras may be found in [14] where an exam-
ple of a noncommutative noncocommutative bialgebra of dimension 5 over
a field of characteristic 2 is given.

In many cases we can determine explicitly when two Hopf algebras con-
structed as described above are isomorphic. This leads to a proof that infi-
nite families of non-isomorphic Hopf algebras of the same finite dimension
exist, generalizing the counter-example in [5] to Kaplansky’s tenth conjec-
ture [11]. This conjecture that there exist only finitely many types of Hopf
algebras of a given finite dimension over an algebraically closed field has
only recently been refuted independently, and with different approaches,
in [5, 2, 10].
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The paper is organized as follows. In Sect. 1 we develop the general con-
struction, i.e., we start with a group algebra A = kC, where C is a finitely
generated abelian group, then we form a sequence of Ore extensions which
we endow with a Hopf algebra structure. The Hopf algebra obtained after
t steps, denoted by A,, is pointed. By computing the injective envelopes of
the simple subcomodules, we see that A4, is not co-Frobenius. In order to
produce a pointed co-Frobenius Hopf algebra, we factor 4, by a Hopf ideal.
Section 2 contains some classification results; in many cases an isomorphism
between two such Hopf algebras essentially reduces to an automorphism
of the group C. The classification of our “Ore extension Hopf algebras”
is complete in the case where each Ore extension has zero derivation. If
there are non-zero derivations, we still get a classification result which is
sufficient to produce infinitely many types of Hopf algebras with the same
dimension. In Sect. 3, we compute the duals of some finite dimensional Ore
extension Hopf algebras defined with zero derivations; these duals are also
Ore extension Hopf algebras with zero derivations. We remark that duals
of Ore extension Hopf algebras with non-zero derivations may not even be
pointed. The special case of C cyclic is discussed in Sect. 4. We determine
when Ore extension Hopf algebras can be constructed starting with £C and
how many. The result depends on the arithmetic properties of the order
of C. Since Aut(C) is easy to describe when C is cyclic, the classification
of the Hopf algebras that we obtain is more precise. In Sect. 5 we con-
sider a special class of examples of the general construction, namely those
constructed using a non-zero derivation with each Ore extension after the
first. These, also, can be classified. A large class of quantum groups arises
here. In Sect. 6 we list all pointed Hopf algebras of dimension p* pro-
duced by the preceding constructions, and count how many non-isomorphic
Hopf algebras occur. By [7], these are indeed all pointed Hopf algebras of
dimension p3.

Throughout, k£ will be an algebraically closed field of characteristic 0
although, in fact, we only need that k contain enough roots of unity. The
set of non-zero elements of k is denoted by k*. All maps, ®, etc., are
k-linear. We use N to denote the non-negative integers and Z* for the
positive integers.

In order to compute comultiplication on products and powers of (g, 4)-
primitives, we will require g-binomial coefficients, (’;)q, q € k*. Note that
this is a formal notation; (’;)q is a polynomial in g. For n, [ integers with 0 <
[ < n, the g-binomial coefficients are defined by (’;)q = (n),!/(D),N(n—1),!.
If [ is a positive integer, (1), = 1+q+---+ ¢, and (I),! = (1),(l —
1), -+ (1), By definition, (0),! = 1. For more detail, we refer the reader
to [12, Chap. 4].
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Suppose a and b are elements of a k-algebra and ba = gab. Then the
expansion of (a + b)" is described by the following.

Lemma 0.1.  For g # 0, ba = gab,

(i) (a+by =Y0,(),av.
(i) (a+b)" = a" + b" if q is a primitive nth root of unity.

REMARK 0.2. Note that in Lemma 0.1 (ii), it is essential that g be a
primitive nth root. For example, if ¢ = —1 and n = 4, ba = —ab, (a + b)* =
(a®> + b*)? = a* + 2a’b? + b*. The coefficients of a"~'b’, 0 < i < n, in the
expansion of (a + b)" are all 0 if and only if g is a primitive nth root.

We follow the standard notation in [15]. For H a Hopf algebra, G(H) will
denote the group of grouplike elements and H,, H;, H,, ... will denote the
coradical filtration of H. H is called pointed if Hy = kG(H). If g and & are
group-like elements of a Hopf algebra H, then x is called a (g, /)-primitive
of H if

Ax)=x®g+h®x;

P, denotes the k-vector space of (g, h)-primitives of H. Then P, =
k(g —h) & P, for some vector space P, . If H is a pointed Hopf alge-
bra then by the Taft—Wilson Theorem ([15, Theorem 5.4.1]), H, = Hy® P,
where Hj is the coradical, H; the next term of the coradical filtration and
P =a, heGPé, - If H is finite dimensional, then P, ; = 0. This implies that
if H is also pointed of dimension > 1, then G(H) is not trivial. A Hopf
algebra is co-Frobenius if it has a left (and a right) integral in H*.

1. THE ORE EXTENSION CONSTRUCTION

Recall (for example, from [19, 1.6.16]) that for a k-algebra A, an algebra
endomorphism ¢ of A, and a ¢-derivation & of A (i.e., a linear map 6: 4 —
A such that §(ab) = 8(a)b + ¢(a)8(b) for all a, b € A), the Ore extension
A[X, ¢, 8] is A[X] as an abelian group, with multiplication induced by
Xa = 8(a) + ¢(a)X for all a € A. The following is an obvious extension
of the universal property for polynomial rings.

LemmMma 1.1. Let A[X, ¢, 8] be an Ore extension of A and i: A —
A[X, ¢, 8] the inclusion morphism. Then for any algebra B, any algebra
morphism f: A — B and every element b € B such that bf(a) =
f(8(a)) + f(e(a))b for all a € A, there exists a unique algebra mor-
phism f: A[X, ¢, 8] — B such that f(X) = b and the following diagram



CONSTRUCTING POINTED HOPF ALGEBRAS 747

Is commutative:

A AlX, ¢, 6]

B

In this section, we construct pointed Hopf algebras by starting with the
coradical, forming Ore extensions, and then factoring out a Hopf ideal.

Let A = kC be the group algebra of a finitely generated abelian group
C with the usual Hopf algebra structure, and let C* be the character group
of C. Let ¢; € C and ¢} € C*.

Let ¢, be an algebra automorphism of 4 defined by ¢(g) = (¢}, g)g
for all g € C. Consider the Ore extension A; = A[X;, ¢;, 8;], where
6, = 0. Apply Lemma 1.1 first with B= A4, ® A, f = (i®i)- A b =
¢, ® X;+X;®1 and then with B =k, f = €,,b =0, to define algebra
homomorphisms A: 4, - A; @ Ay and e : 4] — k by

A(Xl)zcl ®X1+X1®1 and E(Xl):O (12)

It is easily checked that A and e define a bialgebra structure on A;. The
antipode S of A4 extends to an antipode on 4, by S(X;) = —¢; ' X.
Next, let ¢; € C*, vy, € k*, and let ¢, € Aut (A4,) be defined by

#2(8) = (3, 8)8 for g € C, P2(X1) = y2 X

We seek a ¢,-derivation 8, of A, such that 8, is zero on kC and 8,(X;) €
kC. (The assumption that 6, is zero on kC will be at least partially justified
by Proposition 1.20.) We want the Ore extension A, = A[X,, ¢,, 6,] to
have a Hopf algebra structure with X, a (1, ¢,)-primitive for some ¢, € C,
ie, AX;) = ® X, + X, ®1. Then

Xy X) = 8,(X)) + v X1 X, (1.3)
Applying A to both sides of (1.3), we see that
Yz = (¢}, ) = (e, 1) and
A(8y(X1)) = €16 ® 85(X) + 6,(X) ® 1.
Thus 6,(X) is a (1, ¢;¢;)-primitive in kC and so we must have

8,(X1) = bpp(cic, — 1)
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for some scalar by,. If ¢;c; — 1 = 0, then we define by, to be 0. If by, =
0, then 8, is clearly a ¢,-derivation. Suppose that 6, # 0. In this case it
remains to check that §, is a ¢,-derivation of A;. In order that 6§, be well
defined we must have, for all g € C,

8,(8X1) = @2(8)8,(X1) = 8,((cf, 8) ' X18) = (cf, 8) 7' 82(X1)g.
Thus ¢,(g) = (¢}, 8)g = (c},g)"'g and therefore cfc; = 1 and y;, =
<CT7 CZ>_1 = (C;, CZ) = (C;, Cl) = <CT7 Cl>_1'
Now we compute
82(X7) = 5(X )X + ¢5(X1)8,(X,)
= bp(1+ (¢}, e1))erea Xy — bp(1+ (¢}, ¢1) "Xy,

and, by induction, we see that for every positive integer r, we have

r—1 r—1
8,(X7) = b12<2<c>1k’ Cl)k)clchfl - bu(Z@, C1>k>Xfl- (1.4)

k=0 k=0

A straightforward (tedious) computation now ensures that for g, g’ € C,
8,(8X1g' X)) = 8,(¢X7)g' X[ + 02(8X7)8,(8' XT)
and our definition of 4, = A,[X,, ¢,, §,] is complete.
Summarizing, A, is a Hopf algebra with generators g € C, X, X,, such
that the elements of C are commuting grouplikes, X is a (1, ¢;)-primitive
and the following relations hold

8X; = (Cf, g)ilng and X, X| — v, X1 X, = byp(ccp — 1),

where i, = (¢}, ) = (¢, ¢1),
and, if 6,(X;) # 0,
CTC; =1 and Y2 = (Cika Cl>_1 = (cik’ 62>_1 = <C;7 cl) = (c>2ks Cz).
We continue forming Ore extensions. Define an algebra automorphism
@; of A;_; by ¢;(g) = (¢}, g)g where ¢; € C* , and ¢;(X;) = (¢}, ;) X;
where ¢; € C, and X; is a (1, ¢;)-primitive. The derivation §; of A, ; is

0 on kC and §;(X;) = b;j(c;c; — 1). If ¢;c; = 1, we define b; = 0. We

write X7 for X f '...XP" where p e N'. After ¢ steps, we have a Hopf
algebra A,.

DEFINITION 1.5. A, is the Hopf algebra generated by g € C and X, j =
1,...,t where

(i) the elements of C are commuting group-likes;
(i) the X; are (1, ¢;)-primitives;



CONSTRUCTING POINTED HOPF ALGEBRAS 749

(iii) X;g=(c},8)8X};
(iv) XX = (], ) Xi Xj+byj(cre; — ) for 1l <k <j<g
V) (e /)(,—,Cﬁ—lfor]#k,
(vi) If by # 0 then ¢fcf = 1.
The antipode of A4, is given by S(g) = ¢! and S(X,) = —c]-*lXj.

Note that $2(X;) = ¢;' X;¢c; =< ¢}, ¢; > X; so that if =1, §? is inner.
The relations show that A, has basis {gX?|g € C, p € N'}. Since for
= (¢, ),

(X;01)(¢; ® X;) = q;(c; ® X;)(X; ® 1),

then, for k € Z*+, A(X}) = A(X))* = (¢;® X;+ X; ® 1), and expansion of
this power follows the rules in Lemma 0.1. For g€ C, p=(py,..., p;) €
N¢,

AGXT - X[ = AgXP) = Y aygeficy - ¢ XP @ gX!,  (16)
d

where d = (dy, ..., d,) € Z', the jth entry d; in the t-tuple d ranges from
0 to pj, and the a, are scalars resulting from the g-binomial expansion
described in Lemma 0.1 and the commutation relations. In particular, for
l<j<t,nelZlt

n - n -

AW&=ZQ)#Wk®W- (1.7)
k=0 q;j

PROPOSITION 1.8.  The Hopf algebra A, has the following properties:

(i) The (n+ 1)th term, (A,),, in the coradical filtration of A, is gener-
ated by gX?, g€ C, p e N', p+---+ p, < n. In particular, A, is pointed
with coradical kC.

(i) For g € C, the injective envelope of kg in the category of right A,-
comodules is the k-space €, spanned by all g, e XD X =
ge e X, _(pl,...,p,)eN’

(iii) A, is not a co-Frobenius Hopf algebra.
Proof. (i) An induction argument using Eq. (1.6) shows that for all #,
(8X7|g € C, peN', py+---+ p, < n) € A"DkC.

Thus, A kC = A, and by [1, 2.3.9], Corad (A,) € kC. Since kC is a
cosemisimple coalgebra, it is exactly the coradical of A4,.
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(i) Again by Eq. (1.6), &, is a right A,-subcomodule of A, and kg
is essential in €,. On the other hand, A, = &,%€,, § € C. Thus the €,’s
are injective.

(iif) This follows directly from [13, Theorem 10] and the fact that the
%g’s are infinite dimensional. |

In order to obtain a co-Frobenius Hopf algebra, we factor A, by a Hopf
ideal.

LEmMA 1.9. Let ny,ny,...,n, > 2 and a = (ay,...,a,) € {0,1}. The
ideal J(a) of A, generated by

(X' —ay(ci' =1),..., X" —a(c = 1))

is a Hopf ideal if and only if q; = (c}, ¢;) is a primitive n;th root of unity for
I<j=t

Proof.  Since c;lj —lisa(l, c;’ )-primitive, it follows that X;’j —a j(c;f —

1)isa (1, c;-l’ )-primitive if and only if X;j is. By (1.7) and Remark 0.2, this
occurs if and only if ('I’{f)qj =0 for every 0 < k < n;, i.e., if and only if ¢; is
a primitive 7;th root of unity. Moreover, since S(X;) = —cj_lX j» induction
on n shows that
. n_—n(n—1)/2 _
S(X}) = (-1)"q; c; "X},

Now, since q;lj = 1, checking the cases n; even and n; odd, we see that
(—1)”/q;"”(""71)/2 = —1 and hence

n; n; —n: n: n:
S(X;" —aj(c;’ = 1)) = —¢; (X;" —aj(c;’ = 1))
for 1 < j < t, so that the ideal J(a) is invariant under the antipode S, and
is thus a Hopf ideal. 1

By Lemma 1.9, H = A,/J(a) is a Hopf algebra. However, the coradical
may be affected by taking this quotient. Since we want H to be a pointed
Hopf algebra with coradical kC, some additional restrictions are required.
We denote by x; the image of X; in H and write x? for xlp1 cxlp =

(p1 ..., p;) €N

PROPOSITION 1.10.  Assume J(a) as in Lemma 1.9 is a Hopf ideal. Then
J(a) N kC = 0 if and only if for each i either a; = 0 or (c})" = 1. If this is
the case then {gx?|g € C, p e N',0 < p; < n; — 1} is a basis of A,/J(a).
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Proof. By Lemma 1.9, we know that J(a) is a Hopf ideal if and only if
q; = (¢}, ¢;) is a primitive n;th root of unity for 1 < i < ¢. Now suppose
that J(a) N kC = 0. Since

(X;" = ai(c;" = 1))g = (¢}, 8)"g(X;" — (cf, ) a,(c;" — 1))

is in J(a) for every g € C, it follows that X" — (c}, g) "a;(c;" — 1) is
in J(a). But then for every g € C, both a;(1 — (¢, g)™")(c" — 1) and
(1 —(cf, g)™™)X;" are in J(a). If a; # 0, which by our convention implies
that ¢;” — 1 # 0, then we must have (¢}, g)" =1 for all g, and thus ¢; " = 1.

Conversely, assume that ¢;* = 1 whenever a; # 0. By Definition 1.5 (iii),
X"g = (cf,g)"gX.". In particular, X|'g = gX" if a; # 0. Also, if i < j
then by (1.4),

Xinn' = @Dj(Xin[)Xj + Sj(X;Ii)
n;—1 n;—1
= (c}, )" XX + bij(Z (cis ci>k>CiCinni_l - bij( > {ct, Ci>k)Xfi_l'
k=0 k=0
. . . ., . ']
Lif a; # 0. If b;; # 0 then ¢j¢; = 1, hence (c}, ¢;) is a primitive n;th root

of unity, so that X;X;" = X;"X,. A similar argument works for i > j. Thus,
X" is a central element of A, if a; # 0. It follows that

Xi(X" = ai(c)" = 1) = (¢, &)"(X]" = a,(ci" = 1))X;;,

So, if b; =0, then X, X" = ﬁc}*, )" X' X, where (¢}, ¢;)" = (¢}, ;)" =
L

so that J(a) is equal to the left ideal generated by {X?j —a j(c?j -1 <
J < t}, and A, is a free left module with basis {X?[0 < p; < n; — 1}
over the subalgebra B generated by C and X7',..., X;". We now show
that no non-zero linear combination of elements of the form gX7, p € N/,
0< pj<n;—1 lies in J(a). Otherwise there exist fj € A,, not all zero,
such that

¥ (X —ai(e = 1)f; = Yag 8 X7,

1<j<t

where in the second sum g € C, p e N, 0 < p; < n; — 1. Since A4, is a free

left B-module with basis {X?|0 < p; < n; — 1}, each f; can be expressed in
. . n; n;
terms of this basis, and we find that 3, _;_,(X;" —a;(¢;," = 1))F; € kC —{0}
for some F; € B. Now, B is isomorphic to the algebra R obtained from kC
by a sequence of Ore extensions with zero derivations in the indeterminates
Y, = X/, so that Y;g = (¢, g)gY; and Y,Y; = (cjnj, ¢;')Y;Y;. Thus, we
have
n;
> (Y- aj(c;' —1))G; € kC —{0}

1<j<t
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for some G; € R. It follows from Lemma 1.1 by induction on the number
of indeterminates that there exists a kC-algebra homomorphism 6: R —
kC such that 6(Y;) = c;lj —1if a; # 0 and 6(Y;) = 0 otherwise. Then
0 << (Y} — aj(c;l’ —1))G;) =0, a contradiction. |

From now on, we assume that n; > 2, g; = (cj, ¢;) is a primitive n;th root
of 1, and c;n’ = 1 whenever a; # 0, and we study the new Hopf algebra
H = A,/J(a). We have shown that the following defines a Hopf algebra
structure on H.

DeFINITION 1.11. Let # > 1, C a finitely generated abelian group, n €
Nic=(c) e Clic* = (cf) € C*, a e {0,1}, b = (b)1ij< as above.
Define H = A,/J(a) = H(C, n, ¢, c*, a, b) to be the Hopf algebra gener-
ated by the commuting grouplike elements g € C, and the (1, ¢;)-primitives
xj, 1 < j <t, where, as well,

(1) xjg={(c,g8)gx;;
. n; n;
(i) x;/ =aj(c;' —1);
(i)  xpx; = (e, ¢j)xjxp +by(cicp =D for 1 <j<k <t
(iv) (cf, c)(cg, ;) = 1for j # k; (c}, ¢;) is a primitive n;th root of
unity;
(v) a; =0 whenever c]r»'] =1L ifa; #0, c_;-m’ =1

(Vl) bl] - 0 lf Cicj - 1, lf bl] # O, C?C;( - 1

REMARK 1.12. (i) If a; = 0 for all i, we write a = 0. Similarly if b;; = 0

for all i < j, we write b = 0. If t = 1 so that no non-zero derivation occurs,
we also write b = 0.

(i) If a =0 and b = 0, then we write H = H(C, n, ¢, c*) instead of
H(C,n,c,c*0,0).

(iii) If in Definition 1.11, the a;’s were arbitrary elements of k, then
a simple change of variables would reduce to the case where the a;’s are 0
or 1.

REMARK 1.13. In order to construct H(C, n, ¢, ¢*, a, b), it suffices to
have ¢* and c such that (c/,c;) is a root of unity not equal to 1, and
(i ¢j){ci, ¢;) = 1for i # j. Then n; is the order of (¢}, ¢;), and we choose
a and b such that a; = 0 whenever ¢;" = 1, a;, = 0 whenever ¢; " # 1, b;;=0
whenever ¢;c; = 1, and b;; = 0 whenever c;¢; # 1. The remaining a;’s and
b;’s are arbitrary. 1

By Proposition 1.10, {gx?|g € C, p e N', 0 < p; < n; — 1} is a basis for
H. As in Eq. (1.6), comultiplication on a general basis element is given by
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A(gx?) = Zadgcfl cgz e ctd’xp_d ® gx, (1.14)
d

where d = (d,,...,d,) € Z' with 0 < d; < p;. Here the scalars «, are
non-zero products of g;-binomial coefficients and powers of (c7, ¢;).
In particular, for k € Z*,

k _
A(xf): > (d)qrcj-’x;‘ d®x§’. (1.15)

0<d<k
ProposiTiON 1.16. H = H(C, n, ¢, ¢*, a, b) has the following properties.

(i) H is pointed and the (r + 1)th term in the coradical filtration of
His H = (gxP|ge C, pe N, pj+---+p, <r). H=H, where n =
ny+---+n, —t so that the coradical filtration has n; + ---+n, —t + 1
terms.

(i) The elements gx; form a k-basis for P', where H; = H, ® P’ as in
Section 0. Thus Py, = k(g — 1) unless g = c; for some 1 < j < t. In par-
ticular, if C is finite, the k-dimension of P’ is mt where m is the order of C.

Proof. The proof of (i) is similar to the proof of Proposition 1.8. The
second part follows from the fact that the «; are non-zero. Statement (ii)
follows from the coradical filtration. i

Unlike A,, the Hopf algebra H is co-Frobenius. We compute the left and
right integrals in H* explicitly. For g € C, and w = (wy, ..., w;) € Z', let

E, ., € H* be the map taking gx" to 1 and all other basis elements to 0.

ProrosiTION 1.17. The Hopf algebra H = H(C,n,c,c*,a,b) is
co-Frobenius. The space of left integrals in H* is kE;, ,, where | =

1-n 1- 1- —(nj—1 .
¢ Mo, = 1‘[54:1(:'(”] ), and where n — 1 is the t-tuple (n; —

1,...,n, —1). The space of right integrals for H is kE; , | where 1 denotes
the identity in C.

Proof. We show that E;, ; is a left integral by evaluating h*E,,_; for
h* € H*. This is non-zero only on elements z ® [x"~! and such an element
can only occur as a summand in A(]‘[;zl(cj_lxj)”f_l) = A(ylx"') where
y € k*. Now W*Ep,_(Ix"") = h*(1)E, ,_ (Ix"~1).

Similarly x"~! ® z only occurs in A(x"7!). Since A(x" 1) = x"1®1+
oo, thus Ey ,  h* =E;, (h*(1). 1

COROLLARY 1.18. H is unimodular, i.e., the spaces of left and right inte-
grals in H* coincide, if and only if | =1. |

If G is a group and g € G', we write g~! to denote the ¢-tuple
(&' 8
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ExampLE 1.19. (i) If H = H(C,n,c,c*, a,b) then H°® and HP
are also of this type. Indeed, H® = H(C,n,c,c* ', a,b’), where

= _<C7, Ci>bij fori < ]

Also H®P = H(C, n, ¢!, ¢*, a, b"); the isomorphism is given by the map
f taking g to g and x; to z; = —¢j 'x;. Then z; is a (1, ¢;')-primitive and,
using the fact that (—1)"g; 2 _ 1 Where q; is a primitive 7;th root
of 1, we see that its n]th power is either 0 or ¢;
b”, is given by bj; = — < ¢, ¢; > b fori < j.
(i) In particular if H = H(C, n, ¢, ¢*) then

" _ 1. The last parameter,

H® = H(C,n,c,c*™')  and H*P = H(C,n,c”}, c*).

(iif) The Hopf algebras H,, , v, and Hy,, , defined in [18, 5.1] are
of this type. In particular for N, n positive integers with n|N,1 <v < N,
q a primitive nth root of 1 and r = |¢"| = (n > the Hopf algebra H, , v,
is, in our notation, H(Cy,r = o V),c , )P = H(Cy,1r,c?, c*), where
t =1, Cy = {c) is cyclic of order N and (c*, ¢) = q. The Hopf algebras
H,y,) are the H, , n, which are self dual; if w is a primitive Nth root
of 1, then ¢ = »? and, as Corollary 4.6 will show, we may take d = v.
In our notation, Hy, ,) = H(Cy,r = (n”—v) = N/(N v?), ¢”, ¢*), where
(c*, ¢) = w. The Taft Hopf algebras of dimension 7, including Sweedler’s
four dimensional example, are of this form.

(iv) The Hopf algebras defined in [22] to show that for a unimodular
Hopf algebra, the square of the antipode need not be inner, are also Ore
extension Hopf algebras. C = (g;) x --- x (g,) where (g;) has order m;,

and m; = n;. Also the ged of my,...,m, is greater than 1 and for / a
divisor of gcd (my,...,m;), o is a primitive Ith root of 1. For each i, n;
is a primitive m,th root of 1. Let ¢; = (1,...,1 g‘1 1,...,1) € C and

¢; € C* be defined by

ol ifi<j
(c]’f,(l,...,l,g,-,1,...,1))= n; if i=j
1) if i>].

Then the Hopf algebra B defined in [22] is H(C, m, c*, ¢).

(v) The infinite dimensional non-unimodular co-Frobenius Hopf al-
gebra defined in [23, 5.6] is also an Ore extension Hopf algebra. Here
C = {(a) is cyclic of infinite order and there is one indeterminate b with
Ay =a®b+b®a"!,b" = 0. Also A is a primitive (2n)th root of 1
and ba = A~lab. It is straightforward to check that the Hopf algebra A
generated by a and b is isomorphic to H(C, n, a*, a*) where (a*, a) = v/A.
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(vi) Let C =C, x --- x C, be an abelian group of order p"~!, with
C; = (g;) of order m;, A; € k an m;th root of 1, and ¢ = [[_, g where the

r; are such that A = [[_, A/ is a primitive pth root of 1. Let ¢* € C* be
defined by (c*, g;) = A;L. If ¢? # 1, then H(C, p, c, ¢*, 1,0) is the Hopf
algebra with generators gy, ..., g;, X, subject to relations

g'=1  xg=\'gx, x=c’-1
Ag) =8 ® &> Ax)=c®x+x®1, €(g) =1, e(x) = 0.

This Hopf algebra was useful in [4] for the classification of pointed Hopf
algebras of dimension p” with abelian coradical of dimension p"~!.

(vii) Let C = G, = (c), the cyclic group of order 2, (¢}, c) = —1,
and ¢; = c for all 1 < j <1 Then H(C, n, c, c*) is the Hopf algebra with
generators c, xq, ..., X, subject to relations

=1, x? =0, X;c = —cx;, XjX; = —X;iXj,
Alc)=c®c, A(x))=c®x;+x;®1.

It is proved in [8] that this is the only type of Hopf algebra of dimension
21+1 with coradical kC,.

(viii) For # = 2, the Hopf algebra Uy, ,) constructed in [18, 5.2] and
studied in [18] and [9] is exactly H(Cy = (g),r,c=1(g",8"),c"0, b)c"P,
where by, = 1. The character c is defined by (¢}, g) = ¢, (¢}, 8) = ¢!
Here v € Z,1 < v < N with »? not divisible by N. For weka pr1m1t1ve
Nth root of 1, ¢ = " and r is the order of ¢" = w”

We end this section by showing that our assumption that the derivations
are zero on kC is not unreasonable. Assume that ¢ is an algebra auto-
morphism of kC of the form ¢(g) = (c*, g)g for g € C, as usual. Give
the Ore extension (kC)[X, ¢] a Hopf algebra structure such that X is a
(1, ¢)-primitive as in the beginning of this section.

PropOSITION 1.20.  Assume that (c*, g) # 1 if g € C has infinite order.
If 6 is a ¢-derivation of kC such that the Ore extension (kC)[Y, ¢, 8] has
a Hopf algebra structure extending that of kC with Y a (1, ¢)-primitive, then
there is a Hopf algebra isomorphism (kC)[Y, ¢, 8] >~ (kC)[ X, ¢].

Proof. Let U = {g € C|{(c*,g) # 1} and V = {g € C|{(c*, g) = 1}.
Thus, if g € V' then by our assumption g has finite order. In this case,
¢(g") = g" for all n, and induction on n > 1 shows that §(g") = ng"~15(g).
Then 8(1) = mg~'8(g), where m is the order of g, and §(1) = 0 imply that
8(g)=0.

Now let g € U. Applying A to the relation Yg = (c*, g)gY + 8(g), we
find that A(8(g)) = cg ® 6(g) + 6(g) ® g. Thus 8(g) is a (g, cg)-primitive,

and so 8(g) = a,g(c — 1) for some scalar a,.
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Therefore, for any two elements g and 4 of U

8(gh) = 8(g)h + ¢(8)d(h)= apg(c — Dh +(c", g)ga,h(c — 1)
= (ay +ay(c”, g))(c — 1)gh,

and similarly
6(hg) = (aj, + ag(c”, h))(c — 1)gh.

Since C is abelian a, + a;(c*, g) = aj, + a,(c*, h), or a,/(1 —(c*, g)) =
a;,/(1 = {c*, h)). Denote by y the common value of the «,/(1 — (c*, g))
for g € U. We have e, —y + (c*, g)y = 0.

Let Z=Y — y(c —1). For any g € U we have that

Zg =Yg —y(c—1)g=(c", 8)8Y +a,g(c—1)—y(c—1)g
=(c", 8)8Z + (", g)vg(c — 1) + a,8(c — 1) — yg(c — 1)
=(c",8)8Z + (ag — v+ (c", 8)y)g(c — 1) = (c*, g)gZ.

Obviously, Zg = gZ if g € VV, and thus we have proved that (kC)[Y, ¢, 6] =
(kC)[Z, ¢] as algebras. Since Z is clearly a (1, ¢)-primitive, this is also a
coalgebra morphism and the proof is complete.

2. CLASSIFICATION RESULTS

We first classify Hopf algebras of the form H(C, n, c, c*, a, 0), i.e., they
are constructed as in Sect. 1 by using Ore extensions with zero derivations.
Suppose H = H(C,n,c,c*,a,0) ~ H = H(C',n',c,c*,a’,0) and write
8, x; (g, x}) for the generators of H (H’, respectively). Let f be a Hopf al-
gebra isomorphism from H to H’. Since the coradicals must be isomorphic,
we may assume that C = (’, and the Hopf algebra isomorphism induces an
automorphism of C. Also by Proposition 1.16, t = ¢'. If 7 is a permutation
of {1,..., t} and v € Z, we write 7(v) to denote (V1y, - -+ V(r))-

THEOREM 2.1. Let H = H(C,n,c,c*,a,0) and H = H(C',n', c, ¢,
a’, 0) be Hopf algebras as described above. Then H = H' if and only if C =
C',t =t and there is an automorphism f of C and a permutation m of
{1,...,t} such that for 1 <i <t

ng = n,, f(¢;) = ¢y, ¢ = o f, and a;=a’ ;).
Proof. Letl={ill<i<t, ¢;=c,cf =c{} and let

F={il<j<t c=fle)y 2T ={il<j=t jel.cfof=ci}
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Note that since (c], ¢;) is a primitive 7;th root of 1 and for i € I, (c ¢) =
(cf,c), then n; = n; for i € I. Similarly, since for j € J, (j €)=
(c;-*/,f(cl)) = (c], 1), nj = ny for j € J. Let L be the Hopf subalgebra
of H generated by C and {x;|i € I} and L’ the Hopf subalgebra of H’
generated by C and {x}|j € J}.

Since x; is a (1, ¢;)-primitive, f(x;) is a (1, f(c;)-primitive and so
f(xl) = ao(f(q) — 1) + Zaix}i Wlth ai S k, ji (S j
i=1
Then, since gx; = (¢}, g)'x,g for all g € C, we see that ¢y = 0, and

S f(g)anx, = Za ¢t 8) "', f(g) = Za ¢t g) el s FN (),
i=1

and thus «; = 0 for any i for which ¢ # cj"z o f. Thus f(L) € L'. The same
argument using f~! shows that f~!(L’) € L and so f(L) =L'.

If L # H, we repeat the argument for M, the Hopf subalgebra of H
generated by C and the set {x; : ¢; = ¢, ¢f = ¢;} where x; is the first
element in the list x,, ..., x, which is not in L. Continuing in this way, we
see that there exists a permutation o such that

= Ny (6) = Coiys € = Chpy o f-

It remains to find 7 such that a; = a/, (i)- First suppose ny > 2. Then I =
{1}. For if k € I, k # 1, then (¢}, ¢;) = (¢}, ¢;) = (¢}, cx) ™t = (¢}, ¢) 7!
and (c}, ¢;)? = 1, a contradiction. Similarly J = {0(1)} Hence f(x;) =
ax! o(1) for some non-zero scalar @, and the relation x|' = a,(c|" — 1) implies

n]x,ujz(ll)) a](cg(l) 1), so that ao_ H= =a.

Next suppose ny = 2. Let I} = {i € I|la; = 1} and J; = {j € J|a; = 1}.
For any i € I, there exist «;; € k such that f(x ) = Yjes ;X' As above,
for all i € I, {(c},¢;) = —1 (for all j € J, (¢j,c;) = —1) and thus the
x; (respectively, the x}) anticommute. If 7 € [;, f applied to xF=c -1
yields e, a%j = 1. On the other hand, comparing f(x;x;) and f(x;x;) for
i,k el,i+#k,we see that

D ajay == ) oy

jeJy jeJy

and thus °;c; ajay; = 0.

This implies that the vectors B; € k/1, defined by B; = («;;);¢;, fori € I,
form an orthonormal set in k’t under the ordinary dot product. Thus the
space k’1 contains at least |I,| independent vectors and so |J,| > |I;]. The
reverse inequality is proved similarly. Now define 7 to be a refinement of
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the permutation o such that for i € I, (i) € J; and then a; = a’ﬂ(l.) for all
iel.

Conversely, let f be an automorphism of C and let 77 be a permutation
of {1,2,...,t} such that for all 1 <i <1,

np=n ;. f(¢;) = crpys 6 = cw(l) of, and a; = ;.

Extend f to a Hopf algebra isomorphism from H to H' by f(x;) = x;(i).
If we note that

(C::(i)a C;T(,)) = (Ci(i)’ f(e)) = (i, ¢p),

the rest of the verification that f induces a Hopf algebra isomorphism is
straightforward. |

Note that in the proof above, it was shown that if n, > 2, then |I| =
[J|=1where I = {ill <i<t ¢ =c¢,c =c}tandJ ={j|l <j<
t, ¢; = f(c), c;-k/ of = c,’;}. Thus we can alsp ‘classify Hopf algebras of the
form H(C, n, ¢, ¢*, a, b) if all n; > 2. We revisit the case where some n; = 2

in Sect. 5.

THEOREM 2.2. Let H = H(C,n,c,c*,a,b) and H = H(C',n', c, c*,
a',b') be such that all n; and n); > 2. Then H = H' if and only if C = C/,
t = t' and there is an automorphism f of C, non-zero scalars (a;),<;<,, and
a permutation m of {1, ..., t} such that

n; = n;(i), flc) = c;(i), = ch/(i) of, and a; = a;(i),
o' =1 for any i such that a; = 1, and forany 1 <i < j<t,

bij aj 71'(1)77(]) lf 7T(l) < 77(.])
and < cf, ¢; > by = —aa;b o if w(j) < (D).

Proof. The argument is similar to that in Theorem 2.1. An application
of the isomorphism f to the equation x;x; = (c}, ¢;)x;x; + b;(c;c; — 1),
i < j, yields the relationship between b and b’.

The following corollary answers in the negative to Kaplansky’s tenth con-
jecture on Hopf algebras [11].

COROLLARY 2.3. Suppose that C,c € C',c* € C*, are such that
(cisa) =, ¢,y L if 1 # j, (¢}, ¢;) is a primitive root of unity of order
n; > 2, and there exist i < j such that c:m" = c;f’ =1, c”’ #1, c £,
cicj # 1, and cic; = 1. Then for any a with a; = a; = 1 and satzsﬁ/mg the
conditions of Remark 1.13, there exist infinitely many non-isomorphic Hopf
algebras of the form H(C, n, c, c¢*, a, b).
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Proof. Let b and b’ be such that H = H(C, n,c,c*,a,b) and H' =
H(C,n,c,c* a,b) are well defined. By Remark 1.13, infinitely many such
b and b exist. If f:H — H’ is a Hopf algebra isomorphism, then the
permutation 7 in Theorem 2.2 is the identity and thus b; = a;a;b;; for
some n;th and n;th roots of unity «; and «;. Since there exist only finitely

many such roots, and k is infinite, the result follows. 1

ExampLE 2.4. To find a concrete example of a class consisting of in-
finitely many types of Hopf algebras of the same finite dimension, we need
some data (C, ¢, c*) as in Corollary 2.3, with C finite. The simplest such
data are the following.

(i) Let p be an odd prime, and p a primitive p-th root of 1. Take C =
C,» = (g), the cyclic group of order pLt=2c=(gg),c =(g5g ")
where (g*, g) = p and a = (1, 1). Then n; = n, = p and by Corollary 2.3,
H(C,n,c,c*,a,b) = H(C,n,c,c*, a,b') if and only if b, = yb}, for v
a primitive pth root of 1. Thus there are infinitely many types of Hopf
algebras of dimension p*. This is the example from [5].

(i) Let C = C,, = (g), the cyclic group of order pqg where p is an
odd prime, ¢ > 1, and t =2, ¢ = (g, g), ¢* = (g*, g~ ') where (g*, g) = p,
p a primitive pth root of 1. Let a; = a, = 1. Then again n; = n, = p, and
as in (i), there are infinitely many types of Hopf algebras H(C, n, c, c¢*, a, b)
of dimension p3q.

We end this section by demonstrating that in case some of the n;’s are
equal to 2, a classification result like Theorem 2.2 does not hold. Although
clearly the partial data (C, n, ¢, ¢*) and (C’, ’, ¢, ¢*) are related as in the
proof of Theorem 2.1, a € {0, 1}’ and &’ € {0, 1}’ may contain different
numbers of 0’s and 1’s. To see this we cite the following examples from [6].

ExampLE 2.5. (i) LetC=Cy=(g),t=2,n=(2,2),c=(g, 8),c" =
(g%, g") where (g*,g) = —-1,b, = 1,a = (1,1),a = (0,1). Then
there exists a Hopf algebra isomorphism f : H(C,n,c,c*,a,b) —
H(C7 n,c,c*,d, b) defined by f(g) =8 f(xl) = _(BZ +B)X/1 +Bx/2’ f(x2)
= x}, where B € k is a primitive cube root of —1.

(11) Let C =C = (g),t =2,n= (27 2),c=1(88),c = (g*’g*)
where (g*, g) = —1,a=(1,1) and b\, = 2,4’ = (0, 1), b}, = 0. Then the
map f from H(C, n,c,c*,da,b) to H(C, n, c, c*, a, b) defined by f(g) =
g, f(x1) = x5, f(x,) = x; — x,, is a Hopf algebra isomorphism. Note that
one of the Hopf algebras is an extension with non-trivial derivation while
the other is an extension with trivial derivation.
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3. DUALS

In this section, we study the duals of the Hopf algebras H(C, n, c*, c¢) for
C finite. Suppose C = C; x C; x --- x C; =< g; > x .-+ X {g,) wWhere C;
is cyclic of order m;. For i =1, ..., s, let {; € k* be a primitive m;th root
of 1. The dual C* = (g]) x --- x (g;), where (g}, g;) = {; and (g}, g;) =1
for i # j is then isomorphic to C. We identify C and C** using the natural
isomorphism C = C** where (g**, g*) = (g*, g).

Now we show that for C finite, the dual of a Hopf algebra H =
H(C, n, ¢, c¢*) constructed via ¢ Ore extensions with zero derivation and
with all indeterminates nilpotent, is again an “Ore extension Hopf algebra,”
and that there is a very natural relationship between H and H*.

THEOREM 3.1. H(C,n,c, c*)* = H(C*, n, c*, c).

Proof.  First we determine the grouplikes in H*. Let gf € H* be the
algebra map defined by g;(g;) = (g}, g;) and g;(x;) = 0 for all i, j. Since
the g are algebra maps from H to k, H* contains a group of grouplikes
generated by the g7, and so isomorphic to C*.

Now, let y; € H* be defined by y;(gx;) = (cj’-‘*l, g), and y;(gx") = 0 for
XV £ X,

We dleterrnine the nilpotency degree of y;. Clearly y; is non-zero only on
basis elements gx7. Note that by (1.15) and the fact that g; = (¢}, ¢;),

2
yi(gx)) =(y® y,-)[(l) 8ex; ® gx;]
qj

2 _
~(7) e
q;

=(1+q))q;"(c, &)
=1+q;"){c, g5
By induction, using the fact that (;)q =(1+q;+ - +4;"), we see that
7

for n; = g5,
yi(gxp) = (L4 m) - (Ltm;+-+n e, )7

Since g;, and thus 7, is a primitive n;-th root of 1, this expression is 0 if
and only if r = n;. Thus the nilpotency degree of y; is n;.

Let g* € H* be an element of the group of grouplikes generated by
the g; above. We check how the y; multiply with g* and with each other.
Clearly, both y;g* and g*y; are non-zero only on basis elements gx;. We

compute

gyi(gx;) = g*(gc))y;(gx)) = (g*, &)(g* ¢;) (¢}, g) !
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and
g (gx;) = yi(gx)g*(g) = (¢}, &) (g%, &)
so that
gy = (g% ¢))y;g", or yig* = (¢, g gy
Let j < k. Then y;y, and y,y; are both non-zero only on basis elements
gxix; = (c;, ¢;)gx,;x;. We compute

1

Yeyi(8xex)) = yi(gxi)y;(8x;) = (", g) e 8)

and

Yivi((cks ;) gxxi) = (¢ ¢;) (8% )y (8xk) = (k> ¢j){cj™
Therefore for j < k,

-1 sox—1

vy = ey = (7 ey = (e Ty

x—1

Finally we confirm that the elements y; are (e, ¢j " )-primitives and then

we will be done. The maps c}“l ® y; + y; ® €y and m*(y;) are both only
non-zero on elements of H ® H which are sums of elements of the form
g®lx; or gx; ® I. We check
(' @y +y@e)g@lx) = (' @y)g®@lx)) = (i, g) (e, 1),
and
m*(y)(g ® Ix;) = y;(glx;) = (¢, gl).
Similarly,
(' @y +y®en)gx; @1 =y(gx;) = (], 8)s

and

yi(gx;l) = yi({cf, Dglxy) = (ef, ){c; ™, gl) = (", g).

Thus the Hopf subalgebra of H* generated by the g7, y; is isomorphic to
H(C*,n,c*!,¢7!) and by a dimension argument it is all of H*. Now we
only need note that for any H = H(C, n, ¢, ¢*), the group automorphism
of C which maps every element to its inverse induces a Hopf algebra iso-
morphism from H to H(C, n,c™!, ¢*71), and the statement is proved. |1

COROLLARY 3.2. Let H = H(C, n, c, c*) where C is a finite abelian group.
Then H = H* if and only if there is an isomorphism f:C — C* and a
permutation a € S, such that forall 1 < j <t,

Mgy = Nj» F(¢) = Copy (f(cj), 8) = (f(8), crr(jy)  forall g e C.



762 BEATTIE, DASCALESCU, AND GRUNENFELDER

If we work with a general H = H(C, n, c, c*, a, b) with C finite, then
the dual H* is not necessarily an “Ore extension Hopf algebra.” In [18,
Proposition 11], Radford points out that the duals of the Hopf algebras
U(N,v,) of Example 1.19(viii) may have trivial group of grouplikes. Even if
t = 1, the dual may not be pointed. In [17], Radford shows that in the dual,
the Hopf algebra of dimension pn? generated by g and x with A a pth root
of 1 and

g =1, gx = Axg, "=g"-1, A(g)=g®g
Ax)=g®@x+x®1,

the coradical is not a Hopf subalgebra.

4. ORE EXTENSIONS OVER A CYCLIC GROUP

In this section C = (g) will be a cyclic group, either of order m, or infinite
cyclic. We first determine for which values of the parameters ¢ and m, finite
dimensional Hopf algebras H = H(C,,, n, ¢, ¢*, a, b) exist. By Remark 1.13,
for a given ¢, in order to construct H, we need ¢ € C’,, ¢* € (C%)" such
that (c}, ¢;) is a root of unity different from 1, and (¢}, ¢;){c}, ¢;) =1 for
i # j. Let { be a primitive mth root of unity, and then g* € C}; defined
by (g*,g) = ¢ generates C%. Thus we may write ¢; = g% and ¢} = g*%.
To find suitable ¢ and ¢*, we require u, d € Z' with u;, d; € Z mod m such
that,

Then H will be the Hopf algebra with basis g'x?, p € Z', 0 < p; < n;, and
0 <i <m—1, and such that
X =a,(g"" - 1), xgl ={"glx, Ax)=g8"®x;+x;®1

Xjx; = {di“fx,-xj +b;(gh " —1) forl<i<j<t

PROPOSITION 4.2. Let m be a positive integer.

(i) If mis even, then the system (4.1) has solutions for any t.
(ii) If mis odd, then the system (4.1) has solutions if and only if t < 2s,
where s is the number of distinct primes dividing m.

Proof. (i) If m=2rthend, =ru,=1,1<i <t,is a solution of
(4.1).
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(i) We first prove by induction on s that the system has solutions for
t =2sand thus forany ¢t <2s. If s=1thend, =u;=1=u,,d, = —1is
a solution of (4.1). Now suppose the assertion holds for s — 1 and let m =
pi'--- ps* with the p; prime. Then m’ = m/ps* has s — 1 distinct prime
divisors, so by the induction hypothesis there exist d;, u; for 1 < i < 2s —
2, such that (dju; + dju;) = 0 mod m’ for 1 < i # j < 2s —2 and dju; #
0 mod m’ for 1 < i < 2s—2. Now a solution of the system for ¢ = 2s
is given by d; = ps dl,u = psul for 1 <i <2s—2and dy; = dyy_; =
Uy 1 = m Uy = -m'.

Next we show that for m = p* and ¢ = 3 the system has no solutions.
Suppose d, u € Z? is a solution, and suppose d; = d;p%, u; = u.pP where
(d;, p) = (u;, p) = 1 for 1 <i < 3. For i # j, p* divides d;u; + dju; =
petPidiu; + p*tPidiu;, and so a; + B; = a; + B;. Since p* does not divide
d;u; for anyz thena ~|—,8,- <a,80 a;+ B +a;+ B; < 2a for all i, j. Thus
dgu} = —d;u; mod p for all i # j. Multiplying these three congruences, we
obtain didzdgu/ uyuy = 0 mod p, a contradiction.

Now suppose that m = p{'--- ps* and 2s + 1 < . If the system had a
solution d, u, then for every i there would exist j;,, 1 < j; < s, such that
pZ“ does not divide d;u;. By the Pigeon Hole Principle we find iy, i,, i3
such that j; = j; = j;,; denote this integer by j. Then p?j does not divide
any duy, but divides d,u, + d,u, for all distinct r, k € {ij, i,, i3}, and this
contradicts what we proved in the case m = p*.

COROLLARY 4.3. (i) If m is even, then Hopf algebras of the form
H(C,,, n,c,c*, a,b) exist for every t.
(i) If mis odd, then H(C,,, n, c, c*, a, b) exist for any t < 2s , where
s is the number of distinct prime factors of m.

Now let C = (g) be an infinite cyclic group.
COROLLARY 4.4. Hopf algebras H(C, n, c, c*, a, b) exist for all t.

Proof. Let t be a positive integer and choose m such that ¢t < 2s where
s is the number of distinct prime divisors of m. Then by Proposition 4.2,
there exist d;, u;, 1 < i <t solutions for the system (4.1). Now let ¢; = g
and ¢} = g*% for (g*, g) = ¢, a primitive mth root of 1, as before. 1

The classification results presented in Sect. 2 depend upon knowledge of
the automorphism group of C. In case C is cyclic, Aut(C) is well known,
and Theorem 2.1 specializes to the following.

ProrosiTiON 4.5. If C = (g) is cyclic, then H(C,n,c,c*,a,0) =
H(C',n,c,c*,a,0) if and only if C = C',t = t' and there is an auto-
morphism f of C mapping g to g" and a permutation 7 of {1, ..., t} such
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that

np = ;) ch = iy 1€, huy = uqgy, cf = (cf;(i))h, ie., d; = hd,,

and a; = a, ;.
If C is cyclic of order m, then (h, m) = 1; if C is infinite cyclic, then h = 1 or
h=-1.

If C is cyclic, then it is easy to see when H(C,,, n, ¢, ¢*) is isomorphic to
its dual, its opposite or co-opposite Hopf algebra.

COROLLARY 4.6. Let C = C,, = (g), finite, and H = H(C,,, n, ¢, c*)
where ¢; = g, ¢ = (g")% and (g*,g) = ¢, a fixed primitive mth root
of 1.

(i) H = H* if and only if there exist h, 1 as in Proposition 4.5 such
that forall 1 < j <t,
I’lﬂ.(j) = I’lj, hl/l] = dﬂ.(]) mod m, uﬂ,z(j) = I/tj mod m.
(i) H = H°P if and only if there exist h, w such that forall 1 < j <t,
Ny = Nj, hu;=—uy; mod m, d; = hd ;) mod m.
(i) H = H°P if and only if there exist h, 7 such that forall 1 < j <,
7(j) mod m, dj = _hdﬂ'(l

Note that for t = 1, if H = H* and ¢, the fixed primitive mth root
of 1 is replaced by ¢", then u; = d; in the parametrization of H, i.e.,
H=H(C,, n,(g",...,g"), (g™, ..., g")). For k algebraically closed,
Proposition 8 of [18] follows immediately. Now for such H = H*, parts
(c), (d), (e) of [18, Theorem 4] follow from the theorem above. Similarly
Lemma 1.1.2 of [9] follows easily from the above discussion. For with ¢ =
LLH = H(Cma n, gu7 g*d) = H(Cm’ n, gu’ g*d,)*mp = H(Cma n, gid; g*u) if
and only if there exists / such that ¢ is also a primitive mth root of unity

and (¢")! = (£").

Ny =nj, hu;=u y mod m.

5. ORE EXTENSIONS WITH NON-ZERO DERIVATIONS

In this section we study Hopf algebras of the form H(C, n, c¢*, ¢, 0, 1),
where b = 1 means that b;; =1 for all i < j. Thus, the skew-primitives x;
are all nilpotent and for i # k, x;x;, — (¢}, ¢; )X, x; is a non-zero element of
kC. It is easy to see that if a = 0 and all b;; are non-zero, then a change of
variables ensures that all b;; equal 1. This class produces many interesting
examples.

The following two definitions are particular cases of Definition 1.11.
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DEFINITION 5.1. For t =2, let n > 2,¢ = (¢, ¢,) € C?, g" € C* with
(g%, ¢c;) = (g%, ;) a primitive nth root of unity, and c¢;c, # 1. Denote
the pair (n, n) by (n), and, if ¢, = ¢, = g, denote (¢, ¢;) by (g). Then
H(C, (n),(c;, ), (g", g*1),0,1) denotes the Hopf algebra generated by
the commuting grouplike elements g € C, and the (1, ¢;)-primitives x;,
j =1, 2, with multiplication relations

xi =0, x;8=(g", 8)gx1, X8 = (g, 8)gx,
xpx; — (g7, e)xyxy = ¢ — 1.

DEFINITION 5.2. Let ¢t > 2 and let ¢ € C', g* € C* such that < g*, ¢; >=
—1 for all i and ¢;c; # 1 if i # j. We denote the t-tuple (2, ..., 2) by (2),
and the #-tuple (g%, ..., g*) by (g*). Then H(C, (2), (¢1,.-.,¢),(g),0,1)
is the Hopf algebra generated by the commuting grouplike elements g € C,
and the (1, ¢;)-primitives x;, with relations

x? =0, x;g = (g% g)gx;, XieXj+ XX = cpc;— 1 for k # j.

REMARK 5.3. Note that the Hopf algebras in this section have a non-
zero derivation at each step of the Ore extension construction after the first.
The notation H(C, n, ¢, c*) of earlier sections indicates that the derivations
are all zero.

In each of the examples below, the coradical is kC for a cyclic group C.

ExampLE 54. (i) Let C,, = (g) be cyclic of finite order m > 2, let n be
an integer > 2, and let ¢; = g1, ¢, = g2, g* € C* be such that (g*, g) = A
where A" =1, u; + u, % 0 mod m, and A"t = A*2, a primitive nth root of
1. Then H = H(C,,, (n), ¢, (g%, g*™"), 0, 1) is a Hopf algebra of dimension
mn?, with coradical kC,, and generators g, x;, x, such that g is grouplike
of order m, x; is a (1, g")-primitive, and

-1
xXf=x3=0, xig=Mx;,  x0g=X\ gx,
XoXx; — A Mxyx, = gt — 1,

The Hopf algebra Uy, (see [18] or Ex. 1.19(viii)) is just H(Cy, (r), (g"),
(g*’ g*fl)’ 0’ 1)c0p.

(i) Let m > 2,t > 2 be integers, m even, and let C = C,, = (g).
Let uy,...,u, be odd integers such that u; + u; # O mod m if i # j
and let ¢; = g%, ¢/ = g* where (g*,g) = —1. Then the Hopf algebra
H(C,, (2),c,(g*),0,1) has dimension 2’m and has generators g, xi, ..., X,
such that g is grouplike, x; is a (1, g*)-primitive, and

m 2 uitu;
g" =1, x; =0, X8 = —8x;, XX+ xx; =g — 1.



766 BEATTIE, DASCALESCU, AND GRUNENFELDER

(iii) Suppose C = (g) is infinite cyclic, and n > 2. Let uy, u,
be integers such that u; + u, # 0, and let A € k such that A"t = A™2
is a primitive nth root of 1. Let g* € C* with (g*,g) = A. Then
there is an infinite dimensional pointed co-Frobenius Hopf algebra
H(C, (n), (g", g"),(g*, g*"),0,1) with generators g, x;, x, such that g
is grouplike of infinite order, x; is a (1, g*)-primitive, and

x{=x5=0, X18 = Agxq, X8 = A"'gx,,
XoXy — A Mxgx, = gt — 1.

(iv) Let C = (g) be infinite cyclic, t > 2 and let u,, ..., u, be odd in-
tegers such that u; + u; # 0 for i # j. Then there is an infinite dimensional
co-Frobenius pointed Hopf algebra H(C, (2), ¢, (g*), 0, 1), where ¢; = g*
and (g*, g) = —1. The generators are g, x1, ..., X, such that g is group-like
of infinite order, x; is a (1, g")-primitive, and

2 _ _ utu
x; =0, X,g = —8x;, Xix;+xpx;=ghimt — 1.

By an argument similar to the proof of Theorem 2.1, we can classify the
Hopf algebras from Definition 5.1.

THEOREM 5.5.  There is a Hopf algebra isomorphism from H = H(C, (n),
¢, (g% g™ ,0,1) to H = H(C',(n'),c,(g",(g*)™"),0,1) if and only if
C = C', n=n' and there is an automorphism f of C such that

(i) fle)=c.fle)=¢  andg =g of;or
(i) fle)=c.fle)=c  andg =(g")"of.

Proof. 1f H = H', then exactly as in the proof of Theorem 2.1, there
exists an automorphism f of C and a bijection 7 of {1,2} such that
f(ei) = ¢,y and ¢ = C:(i) o f. The conditions (i) and (ii) in the state-
ment correspond to 7 the identity and 7 the nonidentity permutation.

Conversely, if (i) holds, define an isomorphism from H to H' by mapping
g to f(g) and x; to x;. If (ii) holds, define an isomorphism from H to H’
by mapping g to f(g), x; to x5 and x, to —(g*, ¢;)x}. 1

COROLLARY 5.6. If C = (g) is cyclic, then the Hopf algebras H and H'
above are isomorphic if and only if C = C', n = n/, and there is an integer h
such that the map taking g to g" is an automorphism of C and either

() c¢=c"and ct =gt =g =c fori=1,2;0r

(if)
For the Hopf algebras of Definition 5.2 there is a similar classification
result.

— (C;k )7h and gulh — gu’z’ guzh — gu1.
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THEOREM 5.7.  There is a Hopf algebra isomorphism from H = H(C, (2),
¢, (g9),0,1) to H = H(C',(2),c,(g*),0,1) if and only if C = C',t =t
and there is a permutation w € S, and an automorphism f of C such that
fle) = ¢y and g* = g of.

COROLLARY 5.8. Suppose C = (g) is cyclic. Then H and H' as above are
isomorphic if and only if C = C', t = t' and there exists a permutation mw € S,
and an automorphism of C taking g to g", such that ¢! = g = c;(i) for
all i.

In Example 2.5 we saw that if a # 0, Ore extension Hopf algebras with
non-zero derivations may be isomorphic to Ore extension Hopf algebras
with zero derivations. The following theorem shows that if a = 0, this is
impossible.

THEOREM 5.9. Hopf algebras of the form H(C,n,c,c*) = H(C,n,c,
c*, 0, 0) cannot be isomorphic to either the Hopf algebras of Definition 5.1 or
Definition 5.2.

Proof. Suppose that f: H(C', (n'),c, (g",g""),0,1) - H(C,n, c, c*)
is an isomorphism of Hopf algebras. Then, as in the proof of Theorem 2.1,
we see that C = C', f(x}]) =Y, a;x; and f(x5) = Y_; B;x; for scalars «;, B;.
But f applied to the relation

xpxy = ((8*) 7! exixy +ejep — 1

yields 3 ;a;B;(x;x; — ((g7)7!, ¢)x;x;) = 1 — 1 in H(C, n, ¢, c*), where
[ # 1 is a group-like element. The relations of an Ore extension with zero
derivations show that this is impossible. Similarly, H(C, n, c, ¢*) cannot be
isomorphic to a Hopf algebra as in Definition 5.2. 1

6. POINTED HOPF ALGEBRAS OF DIMENSION p?

We noted in Sect. 1 that the Hopf algebras of dimension p?, p
a prime, constructed from kC, are just the Taft Hopf algebras. The
purpose of this final section is to list the pointed Hopf algebras
of dimension p3 that can be obtained using constructions from this
paper, and to count how many types there are. If H is a pointed
Hopf algebra of dimension p°, then by the Nichols-Zoeller Theo-
rem [15, Theorem 3.1.5], dim(Corad(H)) < {1, p, p?, p°}. By the
Taft-Wilson theorem, dim(Corad(H)) # 1. Thus G(H) is one of the
groups Cp’cp X CP,sz,CP X Cp X Cp,sz X Cp,Cps,Gl,Gz, where
Gy =Cp > C, and G, = C, >a Cp are the two types of nontrivial
semidirect products. If G(H) is one of the five groups of order p?, then H
is just kG(H).
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First, we consider the examples with G(H) = C,, x C,,. By [4, Proposition
4], if a Hopf algebra H over an algebraically closed field k£ has dimension
p" and coradical isomorphic to k(CZ‘l) =kC,®---®kC,, then H is
isomorphic to k(CZ*Z) ® T where T is a Taft Hopf algebra. We present
the next result as an application of Theorem 2.1 for the non-cyclic group
C, xC,

PROPOSITION 6.1. H = H(C, x C, p, ¢, c*) is isomorphic to H(C,, p,
c,c’)® kC, for some ¢’ € C,, c* e C*, and thus there are p — 1 isomor-
phism classes of such Hopf algebras, corresponding to the p — 1 isomorphism
classes of the Taft Hopf algebras of dimension p*.

Proof. Let Cp X Cp = <g1> X <g2> and <C*’ g]) = Ala (C*’ g2> = )\2' If
up U % Uy | Uy e e .
c=g,'g’, then (c*, c) = A{'A,* , a primitive pth root of unity.
We distinguish two cases. If A;, A, # 1, choose A such that A, = A”

and let f be the automorphism of C, x C, mapping g; to g8, " and o

to glgh™. (Note that A" = 1 implies that f is a bijection.) By The-

orem 2.1, f induces an isomorphism from H to H(C, x C,, p, f(c), )
where f(c) = g\'g; """ g1 g, = g' ™", and (¢, g1) = Ay, (¥, &) =
1 so that ¢* = ¢* o f. Clearly this last Hopf algebra is isomorphic to
H(C,, p, glu‘+h“2, c*) ® kCp, i.e., the tensor product of a Taft Hopf algebra
and a group algebra.

If A; or A, is 1, say A, = 1, then the automorphism of C,, x C,, mapping
g1 to g,g5° and g, to g, ! induces in a similar way an isomorphism of Hopf
algebras from H to H(C, x C,, p, gy, ), ¢ as above.

It is easy to see that the Hopf algebras H(C,, x C,, p, g{, ¢*) and H(C), x
C,, p, 8], c*) where (c*, g1) = A # 1, (c*, g;) = 1, are isomorphic if and
only if u = v. Therefore we obtain exactly p — 1 types of Hopf algebras in
this way. I

Examples with G(H) = C,, are obtained by starting with kC,, and making
a double Ore extension with zero or non-zero derivation.

PROPOSITION 6.2. If p is an odd prime then there exist precisely (p —1)?/2
non-isomorphic Hopf algebras of the form H(C,, (p, p),c,c*). For p =2
there is only one such Hopf algebra.

Proof. Let p be an odd prime, let C, = (g), and let C; = (g*)
where (g*,g) = A, A # 1 a pth root of unity. Let ¢; = g1, ¢, = g2
By Proposition 4.5, we may assume ¢; = g* and ¢ = g*?. Since
u, = —du, mod p, d and u, determine u,. Thus we have (p — 1)*> Hopf al-
gebras H(C,, (p, p), ¢, ¢*), and we must determine which are isomorphic.
Fix H = H(C,,(p, p), ¢, c*) as above and suppose there is an isomor-
phism f from H to H' = H(C,, (p, p), ¢, ¢*') where ¢ = g", i = g* and

/% xd'

G =4
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Suppose f(g) = g". If the permutation 7 of {1,2} associated with f
is the identity, then (g*, g) = (g*,g") so h = 1. If & is the nontrivial
permutation of {1,2}, then (g*¢, g) = (g*, g") so d = h. Then (c|, ¢}) #
(¢1, ¢). For u), = du; = —u, and for p odd, u, # —u, mod p.

If p =2, it is clear that there is only one choice for d and ¢. I

PROPOSITION 6.3.  For any odd prime p there exist p — 1 types of Hopf
algebras of the form H(C,,(p, p), (8", g"),(g",g*"),0,1) where
< g%, 8 >= A, a nontrivial pth root of 1. If p = 2, then there are no double
Ore extension with non-zero derivations.

Proof.  Since A% = \*2% | we may assume u; = u,, and by Corollary 5.6
we may assume ¢ = (g, g). Again by Corollary 5.6, H(C,, (p, p), (8, &),

(g%, g% "),0,1) is isomorphic to H(C,, (p, p), (& 8), (8" ,g"M),0,1) if
andonlyif h=1. 1

Examples with G(H) = C > can be obtained by a single Ore extension
starting with kC .. The following is an immediate consequence of Theo-
rem 2.1.

PROPOSITION 6.4.  There exist 2(p — 1) types of Hopf algebras of the form
H(C,, p, c,c*), and p — 1 types of the form H(C ., p, c, c*, 1,0).

Adding all the types described, we have a total of (p_l)zﬂ + 5 types
when p is odd, and 10 types when p = 2. In fact the results of [4] describing
pointed Hopf algebras of dimension p”" with coradical kC, C abelian of
order p"~!, together with those of [7] or [2] which classify pointed Hopf
algebras of dimension p? with coradical of dimension p, combine to show
that these are all the types of pointed Hopf algebras of dimension p?.
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